1
|
Tanha A, Rabiee M, Rostami A, Ahmadi S. A green-based approach for noninvasive skin rejuvenation: Potential application of hyaluronic acid. ENVIRONMENTAL RESEARCH 2023; 234:116467. [PMID: 37343757 DOI: 10.1016/j.envres.2023.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.
Collapse
Affiliation(s)
- Amirabas Tanha
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Azin Rostami
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Saber FR, Munekata PES, Rizwan K, El-Nashar HAS, Fahmy NM, Aly SH, El-Shazly M, Bouyahya A, Lorenzo JM. Family Myrtaceae: The treasure hidden in the complex/diverse composition. Crit Rev Food Sci Nutr 2023; 64:6737-6755. [PMID: 36748791 DOI: 10.1080/10408398.2023.2173720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myrtaceae is one of the most important plants families, being regarded as the eighth largest flowering plant family. It includes many genera of utmost ecological and economical importance distributed all over the world. This review aimed to report the latest studies on this family focusing on certain widely used plants including Eucalyptus sp., Eugenia sp. (Eugenia uniflora, Eugenia sulcata), Syzygium sp. (Syzygium aromaticum and Syzygium cumini), Psidium sp., Pimenta dioica, Myrtus sp. (Myrtus communis), Myrciaria sp. and Melaleuca alternifolia. The extraction of bioactive compounds has been evolving through the optimization of conventional methods and the use of emerging technologies. Supercritical CO2 was applied for essential oils and ultrasound for polyphenols leading to extracts and essential oils rich in bioactive compounds. Advances in the field of encapsulation and delivery systems showed promising results in the production of stable essential oils nanoemulsions and liposomes and the production of plant extracts in the form of nanoparticles. Moreover, a significant increase in the number of patents was noticed especially the application of Myrtaceae extracts in the pharrmacuetucal field. The applications of ceratin plants (Pimenta dioica, Melaleuca alternifolia, Syzygium aromaticum essential oils or Myrciaria cauliflora peel extract) in food area (either as a free or encapsulated form) also showed interesting results in limiting microbial spoilage of fresh meat and fish, slowing oxidative degradation in meat products, and inhibiting aflatoxin production in maize. Despite the massive literature on Myrtaceae plants, advances are still necessary to optimize the extraction with environmentally friendly technologies and carry out risk assessment studies should be accomplished to harness the full potential in food, industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
3
|
Sharma M, Rathi R, Kaur S, Singh I, Kadir EA, Chahardehi AM, Lim V. Antiinflammatory activity of herbal bioactive-based formulations for topical administration. RECENT DEVELOPMENTS IN ANTI-INFLAMMATORY THERAPY 2023:245-277. [DOI: 10.1016/b978-0-323-99988-5.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Lin L, Zhang P, Li C, Hua Z, Cui H. Inhibitory effect of calcium phosphate-coated high-affinity liposomes on Staphylococcus aureus and its biofilms. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022; 23:187. [PMID: 35798907 DOI: 10.1208/s12249-022-02344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022] Open
Abstract
Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.
Collapse
Affiliation(s)
- Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan. .,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
7
|
Azad MOK, Adnan M, Kang WS, Lim JD, Lim YS. A technical strategy to prolong anthocyanins thermal stability in formulated purple potato (
Solanum tuberosum
L. cv Bora valley) processed by hot‐melt extrusion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Md Obyedul Kalam Azad
- Department of Bio‐Health Convergence Kangwon National University Chuncheon 24341 South Korea
- Valley Food Tec. 2112, Highway 25 Eden Idaho 83325 USA
| | - Md. Adnan
- Department of Bio‐Health Convergence Kangwon National University Chuncheon 24341 South Korea
| | - Wie Soo Kang
- Be Nature Bio‐Lab. Co. 32, Souanggang‐ro Chuncheon‐Si Gangwon do 2423 South Korea
| | - Jung Dae Lim
- Department of Bio‐Health Convergence Kangwon National University Chuncheon 24341 South Korea
| | - Young Seok Lim
- Department of Bio‐Health Convergence Kangwon National University Chuncheon 24341 South Korea
- Valley Food Tec. 2112, Highway 25 Eden Idaho 83325 USA
| |
Collapse
|
8
|
Yu S, Wei Z, Xiao H, Mohamed H, Xu S, Yang X, Ren X, Li L, Song Y. Effect of mono- and double-layer polysaccharide surface coating on the physical stability of nanoliposomes under various environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Costa R, Costa Lima SA, Gameiro P, Reis S. On the Development of a Cutaneous Flavonoid Delivery System: Advances and Limitations. Antioxidants (Basel) 2021; 10:1376. [PMID: 34573007 PMCID: PMC8472229 DOI: 10.3390/antiox10091376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly found in plants. Due to their wide range of therapeutic properties, which include antioxidant, anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated to be promising agents in the treatment of several skin disorders. However, their lipophilic nature and poor water solubility invariably lead to limited oral bioavailability. In addition, they are rapidly degraded and metabolized in the human body, hindering their potential contribution to the prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous delivery systems have been extensively studied. Topical drug delivery besides offering an alternative administration route also ensures a sustained release of the active compound at the desired site of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced toxicity. This review focuses on currently available formulations used to administer either topically or systemically different classes of flavonoids in the skin, highlighting their potential application as therapeutic and preventive agents.
Collapse
Affiliation(s)
- Raquel Costa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (R.C.); (S.A.C.L.)
| |
Collapse
|
10
|
Reverse pharmacology of phytoconstituents of food and plant in the management of diabetes: Current status and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Osorno LL, Brandley AN, Maldonado DE, Yiantsos A, Mosley RJ, Byrne ME. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:278. [PMID: 33494400 PMCID: PMC7911285 DOI: 10.3390/nano11020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The novel and unique design of self-assembled micro and nanostructures can be tailored and controlled through the deep understanding of the self-assembly behavior of amphiphilic molecules. The most commonly known amphiphilic molecules are surfactants, phospholipids, and block copolymers. These molecules present a dual attraction in aqueous solutions that lead to the formation of structures like micelles, hydrogels, and liposomes. These structures can respond to external stimuli and can be further modified making them ideal for specific, targeted medical needs and localized drug delivery treatments. Biodegradability, biocompatibility, drug protection, drug bioavailability, and improved patient compliance are among the most important benefits of these self-assembled structures for drug delivery purposes. Furthermore, there are numerous FDA-approved biomaterials with self-assembling properties that can help shorten the approval pathway of efficient platforms, allowing them to reach the therapeutic market faster. This review focuses on providing a thorough description of the current use of self-assembled micelles, hydrogels, and vesicles (polymersomes/liposomes) for the extended and controlled release of therapeutics, with relevant medical applications. FDA-approved polymers, as well as clinically and commercially available nanoplatforms, are described throughout the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark E. Byrne
- Biomimetic & Biohybrid Materials, Biomedical Devices, & Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
12
|
High efficacy, rapid onset nanobiolosomes of sildenafil as a topical therapy for erectile dysfunction in aged rats. Int J Pharm 2020; 591:119978. [PMID: 33122159 DOI: 10.1016/j.ijpharm.2020.119978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Developing topical sildenafil for local treatment of erectile dysfunction has been of great interest in pharmaceutical research. Sildenafil citrate (SC) exhibited a well-documented success for treatment of several types of erectile dysfunction. However, its oral use is limited by serious adverse effects, poor bioavailability, delayed onset, and drug-drug interactions. This work is the first to design and assess sildenafil-loaded bilosomes for topical local treatment of erectile dysfunction. Different sildenafil-loaded bilosomes were prepared and characterized. Permeability of selected formulations was conducted through full-thickness human skin. Optimized bilosomes integrating sodium tauroglycocholate (STGC) showed spherical shape with good particle size (133 nm), high zeta potential (-53.6 mV) and high entrapment efficiency (87.45%). Ex-vivo permeability study revealed that about 39% of the applied dose permeated within 15 min. Furthermore, in-vivo appraisal of therapeutic efficacy was performed using aged male Sprague-Dawley rats. After single application of 2 mg/kg sildenafil loaded in STGC-bilosomes, behavioral and biochemical evaluation was carried out. Behavioral assessment recorded an increased rats' potency manifested as 2 folds increase in intromission frequency and intromission ratio compared to untreated group. That was accompanied by significant increase in cGMP concentration in corpora cavernosa (P < 0.0001) confirming increased potency. In conclusion, STGC-bilosomes could provide topical treatment of impotence with 20% of the oral dose and fast onset of action (10 min).
Collapse
|
13
|
Jahanfar S, Gahavami M, Khosravi‐Darani K, Jahadi M. Antioxidant Activities of Free and
Liposome‐Encapsulated
Green tea extracts on canola oil oxidation stability. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shima Jahanfar
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mehrdad Gahavami
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Science and Research Branch Islamic Azad University Tehran Iran
| | - Kianoush Khosravi‐Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences P.O. Box: 19395‐4741 Tehran Iran
| | - Mahshid Jahadi
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| |
Collapse
|
14
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
15
|
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46:1318-1333. [PMID: 32598186 DOI: 10.1080/03639045.2020.1788068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulitis is a common bacterial infection of the skin and soft tissues immediately beneath the skin. Despite the successful use of antibiotics in the treatment of infectious diseases, bacterial infections continue to impose significant global health challenges because of the rapid emergence of antibiotic resistance. The aim of this work was to develop an in situ hydrogel forming system containing highly permeable cephalexin-loaded nanotransfersomes (NTs), suitable for antibacterial drug delivery. Response surface design was applied for the optimization of NTs. Cephalexin NTs were prepared using thin-film hydration method and then embedded into a 3D hydrogel network. The in vitro antibacterial activity of the optimized NTs was assayed against indicator bacteria of Staphylococcus aureus (S. aureus). The drug permeation was evaluated using an ex vivo rat skin model. The in vivo efficacy of the cephalexin NT hydrogel was also determined against rat skin infection. The resulting data verified the formation of NTs, the size of which was approximately 192 nm. The cephalexin NTs exhibited higher antibacterial activity against S. aureus as compared to the untreated drug. The NT hydrogel improved drug penetration through the skin after 8 h. When applied on the rat skin for 10 days, the cephalexin NT hydrogel exhibited superior antibacterial activity with normal hair growth and skin appearance as compared with the plain drug hydrogel. These findings suggest that the cephalexin NT-hydrogel system can serve as a valuable drug delivery platform against bacterial infections.
Collapse
Affiliation(s)
- Sara Salatin
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Westfall A, Sigurdson GT, Rodriguez-Saona LE, Giusti MM. Ex Vivo and In Vivo Assessment of the Penetration of Topically Applied Anthocyanins Utilizing ATR-FTIR/PLS Regression Models and HPLC-PDA-MS. Antioxidants (Basel) 2020; 9:antiox9060486. [PMID: 32503271 PMCID: PMC7346188 DOI: 10.3390/antiox9060486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023] Open
Abstract
Anthocyanins are natural colorants with antioxidant properties, shown to inhibit photoaging reactions and reduce symptoms of some skin diseases. However, little is known about their penetration through the stratum corneum, a prerequisite for bioactivity. The aim was to investigate anthocyanin penetration from lipophilic cosmetic formulations through the skin using a porcine ear model and human volunteers. ATR-FTIR/PLS regression and HPLC-PDA-MS were used to analyze anthocyanin permeation through the stratum corneum. Penetration of all anthocyanins was evident and correlated with molecular weight and hydrophilicity. Lower-molecular-weight (MW) anthocyanins from elderberry (449–581 Da) were more permeable within the skin in both ex vivo and in vivo models (Kp = 2.3–2.4 × 10−4 cm h−1) than the larger anthocyanins (933-1019 Da) from red radish (Kp = 2.0–2.1 × 10−4 cm h−1). Elderberry and red radish anthocyanins were found at all levels of the stratum corneum and at depths for activity as bioactive ingredients for skin health.
Collapse
|
17
|
|
18
|
El Fawal G, Hong H, Song X, Wu J, Sun M, Zhang L, He C, Mo X, Wang H. Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Appl Biochem Biotechnol 2020; 191:1624-1637. [PMID: 32198603 DOI: 10.1007/s12010-020-03282-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 11/28/2022]
Abstract
This study aims to develop scaffold for transdermal drug delivery method (TDDM) using electrospinning technique from polyvinyl alcohol (PVA) and hydroxyethylcellulose (HEC). The fluorescein isothiocyanate (FITC) loaded on ethosomes (FITC@Eth) was used as a drug model. The prepared PVA/HEC/FITC@Eth scaffold was characterized via scanning electron microscope (SEM) that show morphology change by adding FITC@Eth. Also, Fourier transform infrared spectroscopy (FTIR), mechanical properties, X-ray diffraction (XRD), thermal gravimetric (TGA) analysis show that the addition of FITC@Eth to PVA/HEC does not change the scaffold properties. Franz diffusion cells were used for in vitro skin permeation experiments using rat dorsal skins. The FITC@Eth penetration was better than that of free FITC due to the presence of ethosome which enhance the potential skin targeting. In conclusion, the prepared PVA/HEC/FITC@Eth scaffold can serve as a promising transdermal scaffold for sustained FITC release.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Huoyan Hong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xinran Song
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jinglei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Meiqi Sun
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, 31200, China.
| | - Chuanglong He
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiumei Mo
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hongsheng Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
19
|
Piumitali B, Neeraj U, Jyotivardhan J. Transfersomes — A Nanoscience in Transdermal Drug Delivery and Its Clinical Advancements. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The convenient nanotransdermal delivery system is always likely to have some ideal and unique characteristics, predominantly for safety, desired actions, clinical efficacy, enriched with a therapeutic index with minimal adverse occurrence. One of the most challenging tasks for the formulators is to transfer the medicament, especially macromolecules, through the skin. Some of the ways to achieve this is the use of a painful needle or some other methods which also have economical constraints. A new technology has been developed, that is ultradeformable liposomes, also called as transfersomes. These are an elastic type of lipid vesicle aggregates capable of delivering wide range of active moieties including various biomolecules. It can be manufactured by evaporation, vortexing, reverse-phase evaporation, ethanol injection or freeze-thaw methods, where phospholipids and edge activators are the major ingredients that contribute the main role in their unique mechanism of permeation through less permeable stratum corneum. This review mainly focuses on the clinical trial studies and patents accessible on transfersomal products worldwide, highlights the recent work on transfersomes with various therapeutic agents. An effort to explain the deeper penetration of transfersomes across the epidermis layer by its pharmacokinetics and dynamic properties has been taken.
Collapse
Affiliation(s)
- Bera Piumitali
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Upmanyu Neeraj
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Jaiswal Jyotivardhan
- Alkem Research Center, MIDC Industrial Estate, Taloja, Navi Mumbai, Maharashtra 410208, India
| |
Collapse
|
20
|
Khalil I, Yehye WA, Etxeberria AE, Alhadi AA, Dezfooli SM, Julkapli NBM, Basirun WJ, Seyfoddin A. Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants (Basel) 2019; 9:E24. [PMID: 31888023 PMCID: PMC7022483 DOI: 10.3390/antiox9010024] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Antioxidants interact with free radicals, terminating the adverse chain reactions and converting them to harmless products. Antioxidants thus minimize the oxidative stress and play a crucial role in the treatment of free radicals-induced diseases. However, the effectiveness of natural and/or synthetic antioxidants is limited due to their poor absorption, difficulties to cross the cell membranes, and degradation during delivery, hence contributing to their limited bioavailability. To address these issues, antioxidants covalently linked with nanoparticles, entrapped in nanogel, hollow particles, or encapsulated into nanoparticles of diverse origin have been used to provide better stability, gradual and sustained release, biocompatibility, and targeted delivery of the antioxidants with superior antioxidant profiles. This review aims to critically evaluate the recent scientific evaluations of nanoparticles as the antioxidant delivery vehicles, as well as their contribution in efficient and enhanced antioxidant activities.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia; (I.K.); (N.B.M.J.); (W.J.B.)
| | - Wageeh A. Yehye
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia; (I.K.); (N.B.M.J.); (W.J.B.)
| | - Alaitz Etxabide Etxeberria
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand; (A.E.E.); (S.M.D.)
| | - Abeer A. Alhadi
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Drug Design and Development Research Group, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Seyedehsara Masoomi Dezfooli
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand; (A.E.E.); (S.M.D.)
| | - Nurhidayatullaili Binti Muhd Julkapli
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia; (I.K.); (N.B.M.J.); (W.J.B.)
| | - Wan Jefrey Basirun
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia; (I.K.); (N.B.M.J.); (W.J.B.)
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand; (A.E.E.); (S.M.D.)
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
21
|
Formulation development of ethosomes containing indomethacin for transdermal delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Physicochemical mechanisms of different biopolymers' (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. Int J Biol Macromol 2019; 138:473-482. [PMID: 31325502 DOI: 10.1016/j.ijbiomac.2019.07.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 01/25/2023]
Abstract
Having various domains of applicability, liposomes have been the issue of many studies since 1960s. Kinetically stable nature of liposomes required incorporation of other substituents to gain storage stability and interaction of liposomes with polymers, electrolytes, proteins or lipids still requires further investigation to explain the underlying mechanism. In this study, polyphenol-rich green tea extract was encapsulated into liposomes by means of microfluidization in two different aqueous media (pH = 3.8 acetate buffer and pH = 6.5 distilled water). Antioxidant loaded vesicles were further mixed with anionic biopolymers (gum arabic, whey protein) and cationic biopolymers (lysozyme, chitosan) separately. The physical and chemical interactions between liposomes and biopolymers were rationalized by particle size, zeta potential, transmission electron microscopy, total phenolic content and antioxidant activity measurements during 28-days storage at 4 °C. Experimental results indicated that the biopolymer incorporated liposomes showed better stability compared to control liposomes during storage, developing resistance against changes in particle size and zeta potential. On the other hand, biopolymer interaction mechanisms were shown to be different for different biopolymers. As was also proved by transmission electron microscopy, lysozyme was absorbed into the liposomes while gum arabic, whey protein and chitosan were adsorbed on the vesicle surface to shield green tea extract loaded liposomes.
Collapse
|
23
|
El-Kayal M, Nasr M, Elkheshen S, Mortada N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur J Pharm Sci 2019; 137:104972. [PMID: 31252049 DOI: 10.1016/j.ejps.2019.104972] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Skin carcinogenesis is a common malignancy affecting humans worldwide, which could benefit from nutraceuticals as a solution to the drawbacks of conventional skin cancer treatment. (-)-epigallocatechin-3-gallate (EGCG) is a promising nutraceutical in this regard; however, it suffers chemical instability and low bioavailability resulting in inefficient delivery. Therefore, EGCG encapsulation in ultradeformable colloidal vesicular systems, namely: penetration enhancer-containing vesicles (PEVs), ethosomes and transethosomes (TEs) for topical administration has been attempted in this study to overcome the problems associated with the use of free EGCG. The prepared vesicles were characterized for their entrapment efficiency, TEM visualization, chemical compatibility, antioxidant properties, ex-vivo skin deposition, photodegradation and physical stability after storage. Most of the prepared vesicles exhibited reasonable skin deposition and preservation of the inherent antioxidant properties of EGCG with good physical stability. EGCG-loaded PEVs and TEs exhibited an inhibitory effect on epidermoid carcinoma cell line (A431) in addition to reduced tumor sizes in mice, confirmed with histopathological analysis and biochemical quantification of skin oxidative stress biomarkers; glutathione, superoxide dismutase and catalase, as well as lipid peroxidation. EGCG PEVs succeeded in offering an effective delivery system targeting skin cancer, which is worthy of further experimentation.
Collapse
Affiliation(s)
- Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Seham Elkheshen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt.
| | - Nahed Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
24
|
Singh M, Devi S, Rana VS, Mishra BB, Kumar J, Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J Microencapsul 2019; 36:215-235. [PMID: 31092084 DOI: 10.1080/02652048.2019.1617361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bio-availability is a major concern in delivery of dietary phytochemicals for better bio-efficacy. The reduced bio-availability of food bioactive compounds is evident due to degradation during human digestion process which involves liberation, absorption, distribution, metabolism and elimination. The bio-efficacy of any nutrient can be increased by increasing bio-availability. Different technologies are available for engineered efficient delivery systems; still many challenges remain with advancement of delivery systems. The ease of preparedness and adaptability of liposomes has resulted in wide-range of applicability and acceptability in scientific field, especially as delivery vehicles. In view, of properties like biocompatibility and biodegradability, liposomes have been modified with different usable methodologies for delivery of phytochemicals. The aim of this review is to abridge liposomes, methods of preparation, their application as delivery cargo in dietary phytochemicals, result of using different preparation techniques on properties.
Collapse
Affiliation(s)
- Mangat Singh
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Shanti Devi
- b Chemistry Division , Forest Research Institute , Dehradun , India
| | - Virendra S Rana
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Bhuwan B Mishra
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Jitendra Kumar
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Vivek Ahluwalia
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| |
Collapse
|
25
|
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Zhao D, Simon JE, Wu Q. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Crit Rev Food Sci Nutr 2019; 60:597-625. [PMID: 30614258 DOI: 10.1080/10408398.2018.1546668] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aging of populations worldwide is driving greater demands for dietary polyphenols which have been recognized as promising prophylactic and/or therapeutic agents in the context of neurodegeneration, and are ubiquitously present in plant-based diets. In particular, grape-derived products encompass a wide array of phenolic compounds purported with multiple health benefits including neuroprotective efficacy. Despite the increasing preclinical and clinical evidence demonstrating high potential of grape polyphenol (GPP)-rich botanicals in preventing and attenuating diverse neurodegenerative disorders, the limited bioavailability of GPPs, especially in the brain, generates questions as to their applications and effectiveness in neuroprotection. To address this issue, significant research efforts have been made to enhance oral bioavailability of GPPs via application of novel strategies. This review highlights some critical issues related to the bioavailability and neuroprotective efficacy of GPPs and GPP-rich botanicals. The representative bioavailability-enhancing strategies are critically reviewed to provide practical solutions for augmenting the bioefficacy of GPP-rich botanicals. Synergistic applications of encapsulation techniques (for physiochemical protection and bypassing xenobiotic metabolism) and dietary intervention strategies involving modulation of gut microbiota (for generating more bioavailable phenolic metabolites) appear promising, and may substantially enhance the bioefficacy, especially the neuroprotective efficacy, of orally consumed GPPs.
Collapse
Affiliation(s)
- Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018; 23:molecules23092346. [PMID: 30217074 PMCID: PMC6225109 DOI: 10.3390/molecules23092346] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.
Collapse
Affiliation(s)
- Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jin-Pei Liang
- Intellectual Property Office of Lanshan District, Rizhao 543003, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Kai-Rong Wang
- Ningbo Extension Station of Forestry & Speciality Technology, Ningbo 315012, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Xie J, Ji Y, Xue W, Ma D, Hu Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids Surf B Biointerfaces 2018; 172:323-329. [PMID: 30176512 DOI: 10.1016/j.colsurfb.2018.08.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
A hyaluronic acid-containing ethosomes (HA-ES) as the transdermal drug delivery system was prepared in this work, and rhodamine B (RB) was used as a model drug to be encapsulated. The obtained HA-ES-RB was then characterized by the surface morphology, entrapment efficiency, drug loading and the stability. Results showed that the prepared HA-ES-RB was spherical and showed good dispersion as well as the stability, with a particle size of below 100 nm. The skin permeation experiments were carried out in vitro with the Franz diffusion cells and the rat dorsal skins were used. It was found that the penetration effect of HA-ES-RB was much better than that of ES-RB. The fluorescence microscopy image showed that HA-ES-RB penetrated into the deepest dermis. The excellent transdermic drug delivery effect of HA-ES-RB maybe attributed from its smaller size, hydration of hyaluronic acid as well as greater potential targeting to skin and skin appendages of liposomal carriers. Moreover, the HA-ES delivery system showed non-cytotoxicity to normal cells, indicating a good biocompatibility. This work provded a hyaluronic acid-containing ethosomes which can offer a quick, high efficient, safe and self-administered transdermal drug delivery system.
Collapse
Affiliation(s)
- Jiesi Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou 510632, China
| | - Yujie Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Jinan University, Guangzhou 510632, China.
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
29
|
Microemulsion formulation design and evaluation for hydrophobic compound: Catechin topical application. Colloids Surf B Biointerfaces 2018; 161:121-128. [DOI: 10.1016/j.colsurfb.2017.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
30
|
Hsu CY, Yang SC, Sung CT, Weng YH, Fang JY. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int J Nanomedicine 2017; 12:8227-8238. [PMID: 29184410 PMCID: PMC5689027 DOI: 10.2147/ijn.s147226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.
Collapse
Affiliation(s)
- Ching-Yun Hsu
- Department of Nutrition and Health Sciences.,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan
| | - Calvin T Sung
- School of Medicine, University of California, Riverside, CA, USA
| | - Yi-Han Weng
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University.,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taiwan
| |
Collapse
|
31
|
Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, Parekh HS, Mutalik S. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition. AAPS PharmSciTech 2017; 18:2346-2357. [PMID: 28124212 DOI: 10.1208/s12249-017-0718-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q12), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.
Collapse
|
32
|
Wang Y, Wang S, Firempong CK, Zhang H, Wang M, Zhang Y, Zhu Y, Yu J, Xu X. Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2017; 18:586-594. [PMID: 27151135 DOI: 10.1208/s12249-016-0537-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/18/2016] [Indexed: 11/30/2022] Open
Abstract
This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53 ± 1.71 nm, -37.4 ± 7.3 mV, and 72.2 ± 0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL-1 h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.
Collapse
|
33
|
Jia HJ, Jia FY, Zhu BJ, Zhang WP. Preparation and characterization of glycyrrhetinic-acid loaded PEG-modified liposome based on PEG-7 glyceryl cocoate. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong-Jiao Jia
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Fang-Ya Jia
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Bi-Jun Zhu
- Biomedical Research Center; Affiliated Zhongshan Hospital Fudan University; Shanghai P. R. China
| | - Wan-Ping Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| |
Collapse
|
34
|
Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, Beg S. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In Vitro Evaluation, and Ex Vivo Assessment. AAPS PharmSciTech 2017; 18:58-71. [PMID: 26868380 DOI: 10.1208/s12249-016-0489-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/22/2016] [Indexed: 11/30/2022] Open
Abstract
Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2-4% w/v and 0-40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm-2 drug retention in the skin, 44.312 μg cm-2 h-1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.
Collapse
|
35
|
Kulandaivelu K, Mandal AKA. Positive regulation of biochemical parameters by tea polyphenol encapsulated solid lipid nanoparticles at in vitro and in vivo conditions. IET Nanobiotechnol 2016; 10:419-424. [PMID: 27906144 PMCID: PMC8676672 DOI: 10.1049/iet-nbt.2015.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Tea polyphenols (TPPs) comprise preventive and therapeutic potentials against cancer, cardiovascular and neurological disorders. Chemical instability of TPP which leads to low bioavailability is the major constrain to its use as therapeutic agent. The authors prepared TPP encapsulated solid lipid nanoparticles (TPP-SLNs) to increase its stability and bioefficacy. Comparison of Fourier transformed infrared spectra of unloaded SLN, free TPP and TPP-SLN indicated encapsulation of TPP. Sustained release of TPP from TP-SLN was observed. TPP-SLN showed prolonged free radical scavenging activity compared with free TPP indicating protection of TPP. TPP-SLN showed activation of Caspases-9 and -3 cascades in breast cancer cell line (Michigan cancer foundation (MCF)-7) at in vitro conditions. Biochemical parameters were altered in Ehrlich ascetic carcinoma (EAC) cell bearing mice compared with normal (uninduced) mice which were ameliorated significantly by oral feeding of TPP-SLN. Oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice resulted in significant increase of plasma haemoglobin, glucose, superoxide dismutase and catalase when compared with EAC bearing control mice. Other biochemical parameters (cholesterol, bilirubin, triglyceride, urea, total protein, alanine aminotransferase, alkaline phosphatase and aspertate transaminase were significantly decreased on oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice.
Collapse
Affiliation(s)
- Karikalan Kulandaivelu
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
36
|
Gibis M, Ruedt C, Weiss J. In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res Int 2016; 88:105-113. [DOI: 10.1016/j.foodres.2016.02.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/13/2016] [Accepted: 02/14/2016] [Indexed: 12/16/2022]
|
37
|
Morsi NM, Aboelwafa AA, Dawoud MHS. Improved bioavailability of timolol maleate via transdermal transfersomal gel: Statistical optimization, characterization, and pharmacokinetic assessment. J Adv Res 2016; 7:691-701. [PMID: 27660724 PMCID: PMC5021919 DOI: 10.1016/j.jare.2016.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Timolol maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from extensive first pass effect, resulting in a reduction of oral bioavailability (F%) to 50% and a short elimination half-life of 4 h; parameters necessitating its frequent administration. The current study was therefore, designed to formulate and optimize the transfersomal TiM gel for transdermal delivery. TiM loaded transfersomal gel was optimized using two 23 full factorial designs; where the effects of egg phosphatidyl choline (PC): surfactant (SAA) molar ratio, solvent volumetric ratio, and the drug amount were evaluated. The formulation variables; including particle size, drug entrapment efficiency (%EE), and release rate were characterized. The optimized transfersomal gel was prepared with 4.65:1 PC:SAA molar ratio, 3:1 solvent volumetric ratio, and 13 mg drug amount with particle size of 2.722 μm, %EE of 39.96%, and a release rate of 134.49 μg/cm2/h. The permeation rate of the optimized formulation through the rat skin was excellent (151.53 μg/cm2/h) and showed four times increase in relative bioavailability with prolonged plasma profile up to 72 h compared with oral aqueous solution. In conclusion, a potential transfersomal transdermal system was successfully developed and the factorial design was found to be a smart tool, when optimized.
Collapse
Affiliation(s)
- Nadia M Morsi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed A Aboelwafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Modern Sciences and Arts University, Cairo, Egypt
| |
Collapse
|
38
|
Goindi S, Narula M, Kalra A. Microemulsion-Based Topical Hydrogels of Tenoxicam for Treatment of Arthritis. AAPS PharmSciTech 2016; 17:597-606. [PMID: 26285672 DOI: 10.1208/s12249-015-0383-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022] Open
Abstract
Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p < 0.001) mean cumulative percent permeation values in comparison to conventional cream and suspension of drug. In vivo anti-arthritic and anti-inflammatory activity of the developed TNX formulations was evaluated using various inflammatory models such as air pouch model, xylene-induced ear edema, cotton pellet granuloma and carrageenan-induced inflammation. Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.
Collapse
|
39
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
40
|
Puri A, Nguyen HX, Banga AK. Microneedle-mediated intradermal delivery of epigallocatechin-3-gallate. Int J Cosmet Sci 2016; 38:512-23. [DOI: 10.1111/ics.12320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/20/2016] [Indexed: 01/09/2023]
Affiliation(s)
- A. Puri
- Department of Pharmaceutical Sciences; College of Pharmacy; Mercer University; Atlanta GA 30341 USA
| | - H. X. Nguyen
- Department of Pharmaceutical Sciences; College of Pharmacy; Mercer University; Atlanta GA 30341 USA
| | - A. K. Banga
- Department of Pharmaceutical Sciences; College of Pharmacy; Mercer University; Atlanta GA 30341 USA
| |
Collapse
|
41
|
Harwansh RK, Mukherjee PK, Kar A, Bahadur S, Al-Dhabi NA, Duraipandiyan V. Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:318-29. [PMID: 27167597 DOI: 10.1016/j.jphotobiol.2016.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 10/21/2022]
Abstract
The present study was aimed to develop a catechin (CA) loaded nanoemulsion based nano-gel for the protection of skin against ultraviolet radiation (UV) induced photo-damage and to ensure its enhanced skin permeability as well as bioavailability through transdermal route. The optimized nanoemulsion (CA-NE4) was prepared by spontaneous nano-emulsification method. It was composed of oil (ethyl oleate), Smix [surfactant (span 80) and co-surfactant (transcutol CG)] and aqueous system in an appropriate ratio of 15:62:23% w/w respectively. The CA-NE4 was characterized through assessment of droplet size, zeta potential, refractive index, transmission electron microscopy (TEM), UV, high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) analysis. The average droplet size and zeta potential of CA-NE4 were found to be 98.6±1.01nm and -27.3±0.20mV respectively. The enhanced skin permeability was better with CA-NE4 based nano-gel (CA-NG4) [96.62%] compared to conventional gel (CA-CG) [53.01%] for a period of 24h. The enhanced % relative bioavailability (F) of CA (894.73), Cmax (93.79±6.19ngmL(-1)), AUC0-t∞ (2653.99±515.02nghmL(-1)) and Tmax (12.05±0.02h) was significantly obtained with CA-NG4 as compared to oral suspension for extended periods (72h). CA-NG4 could improve the level of cutaneous antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) and reduce the level of thiobarbituric acid reactive substances (TBRAS) against oxidative stress induced by UVA. Nano-gel formulation of CA showed sustained release profile and enhanced photoprotection potential due to its improved permeability as well as bioavailability (P<0.05) compared to the conventional gel. Therefore, transdermal administration of nano-gel (CA-NG4) of CA offers a better way to develop the endogenous cutaneous protection system and thus could be an effective strategy for decreasing UV-induced oxidative damage in the skin tissues.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Shiv Bahadur
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - V Duraipandiyan
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
42
|
Zeng C, Jiang W, Tan M, Yang X, He C, Huang W, Xing J. Optimization of the process variables of tilianin-loaded composite phospholipid liposomes based on response surface-central composite design and pharmacokinetic study. Eur J Pharm Sci 2016; 85:123-31. [PMID: 26883760 DOI: 10.1016/j.ejps.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
Tilianin is attracting considerable attention because of its antihypertensive, anti-atherogenic and anticonvulsive efficacy. However, tilianin has poor oral bioavailability. Thus, to improve the oral bioavailability of tilianin, composite phospholipid liposomes were adopted in this work as a novel nanoformulation. The aim was to develop and formulate tilianin composite phospholipid liposomes (TCPLs) through ethanol injection and to apply the response surface-central composite design to optimize the tilianin composite phospholipid liposome formulation. The independent variables were the amount of phospholipids (X1), amount of cholesterol (X2) and weight ratio of phospholipid to drug (X3); the depended variables were particle size (Y1) and encapsulation efficiency (EE) (Y2) of TCPLs. Results indicated that the optimum preparation conditions were as follows: phospholipid amount, 500 mg, cholesterol amount, 50mg and phospholipid/drug ratio, 25. These variables were also the major contributing variables for particle size (101.4 ± 6.1 nm), higher EE (90.28% ± 1.36%), zeta potential (-18.3 ± 2.6 mV) and PDI (0.122 ± 0.027). Subsequently, differential scanning calorimetry techniques were used to investigate the molecular interaction in TCPLs, and the in vitro drug release of tilianin and TCPLs was investigated by the second method of dissolution in the Chinese Pharmacopoeia (Edition 2015). Furthermore, pharmacokinetics in Sprague Dawley rats was evaluated using a rat jugular vein intubation tube. Results demonstrated that the Cmax of TCPLs became 5.7 times higher than that of tilianin solution and that the area under the curve of TCPLs became about 4.6-fold higher than that of tilianin solution. Overall, our results suggested that the prepared tilianin composite phospholipid liposome formulations could be used to improve the bioavailability of tilianin after oral administration.
Collapse
Affiliation(s)
- Cheng Zeng
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830054, PR China; Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Wen Jiang
- Department of pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Meie Tan
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Xiaoyi Yang
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Chenghui He
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Jianguo Xing
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China.
| |
Collapse
|
43
|
Bragagni M, Scozzafava A, Mastrolorenzo A, Supuran CT, Mura P. Development and ex vivo evaluation of 5-aminolevulinic acid-loaded niosomal formulations for topical photodynamic therapy. Int J Pharm 2015; 494:258-63. [DOI: 10.1016/j.ijpharm.2015.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
44
|
Gómez-Mascaraque LG, Lagarón JM, López-Rubio A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.03.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Food Inhibits the Oral Bioavailability of the Major Green Tea Antioxidant Epigallocatechin Gallate in Humans. Antioxidants (Basel) 2015; 4:373-93. [PMID: 26783711 PMCID: PMC4665468 DOI: 10.3390/antiox4020373] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/06/2015] [Accepted: 05/18/2015] [Indexed: 01/05/2023] Open
Abstract
The bioavailability of the most abundant and most active green tea antioxidant, epigallocatechin gallate (EGCG) remains uncertain. Therefore, the systemic absorption of EGCG was tested in healthy fasted humans. It was administered as capsules with water or with a light breakfast, or when incorporated within a strawberry sorbet. The results for plasma EGCG clearly revealed that taking EGCG capsules without food was better; the AUC was 2.7 and 3.9 times higher than when EGCG capsules were taken with a light breakfast (p = 0.044) or with EGCG imbedded in the strawberry sorbet (p = 0.019), respectively. This pattern was also observed for Cmax and Cav. Therefore, ingesting food at the same time as EGCG, whether it was imbedded or not in food, substantially inhibited the absorption of the catechin. As with some types of medications that are affected by food, it appears that EGCG should be taken without food in order to maximise its systemic absorption. Therefore, based on these findings, ingesting EGCG with water on an empty stomach is the most appropriate method for the oral delivery of EGCG in clinical trials where EGCG is to be investigated as a potential bioactive nutraceutical in humans.
Collapse
|
46
|
Wang X, Guan Q, Chen W, Hu X, Li L. Novel nanoliposomal delivery system for polydatin: preparation, characterization, and in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1805-13. [PMID: 25848217 PMCID: PMC4386770 DOI: 10.2147/dddt.s77615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The objective of this study was to develop a novel polydatin (PLD)-loaded liposome system using the thin film hydration technique. Methods The delivery system was characterized in terms of morphology, size, zeta potential, encapsulation efficiency, and in vitro release. In addition, a pharmacokinetic study was carried out in rats after oral administration of PLD-loaded liposomes in vivo. Results Transmission electron microscopy revealed that the PLD-loaded liposomes had a homogeneous size and spherical shape. Dynamic light scattering showed that the PLD-loaded liposomes had a smaller size with a mean value of 80.2±3.7 nm and a polydispersity index of 0.12±0.06. The encapsulation efficiency of the prepared liposomes was 88.4%±3.7%. During the release process, liposome showed two distinct phases. The first was characterized by rapid release during the first 2 hours, which could be related to the release of the drug adsorbed on the surface of liposomes. In the second phase, the release rate slowed down, demonstrating a typical sustained and prolonged drug-release behavior. The release kinetic model for the PLD-loaded liposomes fitted well with the Weibull distribution equation. In vivo, relative oral bioavailability of the encapsulated PLD was 282.9%, ie, significantly enhanced (P<0.05) compared with the free drug. No histological changes occurred in the organs after administration of PLD-loaded liposomes. Conclusion PLD-loaded liposomes could significantly prolong the drug circulation time in vivo and increase the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Qigang Guan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Chen
- Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People's Republic of China
| | - Xianming Hu
- Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
47
|
Zou L, Peng S, Liu W, Chen X, Liu C. A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (−)-epigallocatechin gallate. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Zam W, Bashour G, Abdelwahed W, Khayata W. Alginate-pomegranate peels' polyphenols beads: effects of formulation parameters on loading efficiency. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium alginate beads containing pomegranate peels' polyphenol extract were encapsulated by ionic gelation method. The effects of various formulation factors (sodium alginate concentration, calcium chloride concentration, calcium chloride exposure time, gelling bath time maintaining, and extract concentration) on the efficiency of extract loading were investigated. The formulation containing an extract of 1 g pomegranate peels in 100 mL distilled water encapsulated with 3 % of sodium alginate cured in 0.05 M calcium chloride for 20 minutes and kept in a gelling bath for 15 minutes was chosen as the best formula regarding the loading efficiency. These optimized conditions allowed the encapsulation of 43.90% of total extracted polyphenols and 46.34 % of total extracted proanthocyanidins. Microencapsulation of pomegranate peels' extract in calcium alginate beads is a promising technique for pharmaceutical and food supplementation with natural antioxidants.
Collapse
Affiliation(s)
- Wissam Zam
- University of Aleppo, Syrian Arab Republic
| | | | | | | |
Collapse
|
49
|
Zidan AS, Hosny KM, Ahmed OAA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv 2014; 23:1536-49. [PMID: 25386740 DOI: 10.3109/10717544.2014.980896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.
Collapse
Affiliation(s)
- Ahmed S Zidan
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , KSA .,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Zagazig University , Zagazig , Egypt
| | - Khaled M Hosny
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , KSA .,c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Beni Suef University , Beni Suef , Egypt , and
| | - Osama A A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , KSA .,d Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Minia University , Minia , Egypt
| | - Usama A Fahmy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , KSA
| |
Collapse
|
50
|
Kamal N, Cutie AJ, Habib MJ, Zidan AS. QbD approach to investigate product and process variabilities for brain targeting liposomes. J Liposome Res 2014; 25:175-190. [PMID: 25308415 DOI: 10.3109/08982104.2014.968854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Efficacy of central nervous system-acting medications is limited by its localization and ability to cross the blood-brain barrier (BBB); therefore, the crux is in designing delivery systems targeted to cross the BBB. Toward this objective, this study proposed pegylated and glycosylated citalopram hydrobromide (Cit-HBr) liposomes as a delivery approach for brain targeting. The multicomponent liposomes were evaluated for drug encapsulation, vesicular size, size distribution, conductivity and drug release characteristics. Moreover, the interaction among the employed components was evaluated by Fourier transform infrared, differential scanning calorimetric and X-ray diffraction analysis. Through a systematic screening design of formulation and process variables in the optimization phase, an improvement of Cit-HBr loading, fine vesicular size with narrow size distribution, greater stability and sustained release features were achieved. The compatibility studies unveiled a significant interaction between Cit-HBr and dicetyl phosphate to control drug encapsulation and release properties. The optimization process showed a minimal range of design space to achieve the preset desirability; more precisely dicetyl phosphate, polyethylene glycol, N-acetyl glucosamine and freeze-thaw cycles of 3%, 5%, 4% and 2 cycles, respectively, were used. Using brain endothelial cell models, the optimized formulations showed an acceptable cell viability with preserved monolayer integrity and an enhanced flux and permeability. Thus, this study has proposed an optimized pegylated and glycosylated vector that is a promising step for brain targeting.
Collapse
Affiliation(s)
- Nahid Kamal
- a Department of Pharmaceutical Sciences , School of Pharmacy, Howard University , Washington, DC , USA.,b Department of Pharmaceutical Sciences , Arnold & Marie Schwartz College of Pharmacy & Health Science, Long Island University , Brookville, NY , USA
| | - Anthony J Cutie
- b Department of Pharmaceutical Sciences , Arnold & Marie Schwartz College of Pharmacy & Health Science, Long Island University , Brookville, NY , USA
| | - Muhammad J Habib
- a Department of Pharmaceutical Sciences , School of Pharmacy, Howard University , Washington, DC , USA
| | - Ahmed S Zidan
- c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Zagazig University , Zagazig , Egypt , and.,d Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , KSA
| |
Collapse
|