1
|
Tao R, Liu L, Xiong Y, Zhang Q, Lv X, He L, Ren F, Zhou L, Chen B, Wu K, Zhang Y, Chen H. Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole. Drug Deliv Transl Res 2023; 13:2819-2833. [PMID: 37160629 DOI: 10.1007/s13346-023-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
The objective of this study was to develop phospholipid-based injectable phase transition in situ gels (PTIGs) for the sustained release of Brexpiprazole (Brex). Phospholipid (Lipoid S100, S100) and stearic acid (SA) were used as the gel matrix which was dissolved in biocompatible solvent medium-chain triglyceride (MCT), N-methyl pyrrolidone (NMP), and ethanol to obtain PTIGs solution. The Brex PTIG showed a solution condition of low viscosity in vitro and was gelatinized in situ in vivo after subcutaneous injection. Both in vitro release assay and in vivo pharmacokinetics study in SD rats displayed that Brex in PTIGs could achieve a sustained release, compared with brexpiprazole solution (Brex-Sol) or brexpiprazole suspension (Brex-Sus). The Brex-PTIGs had good degradability and biocompatibility in vivo with rare inflammation at the injection site. Among the three Brex-PTIG formulations, Brex-PTIG-3 with the SA in the formulation had the greatest gelation viscosity, the lowest initial release rate, and the most stable release profile with sustained release of up to 60 days. The above results indicated that, as a novel drug delivery system, the Brex-PTIGs offered a new option for the clinical treatment of patients with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Li Liu
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Yingxin Xiong
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Xiangyu Lv
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Linbo He
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Fang Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Lu Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Baoyan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Kexin Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China.
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Silva APB, Roque-Borda CA, Carnero Canales CS, Duran Gleriani Primo LM, Silva IC, Ribeiro CM, Chorilli M, da Silva PB, Silva JL, Pavan FR. Activity of Bacteriophage D29 Loaded on Nanoliposomes against Macrophages Infected with Mycobacterium tuberculosis. Diseases 2023; 11:150. [PMID: 37987261 PMCID: PMC10660732 DOI: 10.3390/diseases11040150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.
Collapse
Affiliation(s)
- Ana P. B. Silva
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Cesar Augusto Roque-Borda
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Christian S. Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Laura Maria Duran Gleriani Primo
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Isabel C. Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Camila M. Ribeiro
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Joás L. Silva
- National Heart, Lung, and Blood Institute, National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| |
Collapse
|
3
|
Zhong C, Qiu J, Liu M, Yuan Y, Zhu H, Gao Y. Rational design and bioimaging application of cholesterol conjugated fluorescence probe for Cu2+ detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Chantadee T, Santimaleeworagun W, Phorom Y, Phaechamud T. Saturated Fatty Acid-Based In Situ Forming Matrices for Localized Antimicrobial Delivery. Pharmaceutics 2020; 12:pharmaceutics12090808. [PMID: 32854439 PMCID: PMC7559323 DOI: 10.3390/pharmaceutics12090808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the world has faced the issue of antibiotic resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is a significant problem in various treatments and control of infections. Biocompatible materials with saturated fatty acids of different chain lengths (C8-C18) were studied as matrix formers of localized injectable vancomycin HCl (VCM)-loaded antisolvent-induced in situ forming matrices. The series of fatty acid-based in situ forming matrices showed a low viscosity (5.47-13.97 cPs) and pH value in the range of 5.16-6.78, with high injectability through a 27-G needle (1.55-3.12 N). The preparations exhibited low tolerance to high concentrations of KH2PO4 solution (1.88-5.42% v/v) and depicted an electrical potential change during phase transformation. Their phase transition and matrix formation at the microscopic and macroscopic levels depended on the chain length of fatty acids and solvent characteristics. The VCM release pattern depended on the nucleation/crystallization and solvent exchange behaviors of the delivery system. The 35% w/v of C12-C16 fatty acid-based in situ forming matrix prolonged the VCM release over seven days in which C12, C14, C16 -based formulation reached 56, 84, and 85% cumulative drug release at 7th day. The release data fitted well with Higuchi's model. The developed formulations presented efficient antimicrobial activities against standard S. aureus, MRSA, Escherichia coli, and Candida albicans. Hence, VCM-loaded antisolvent-induced fatty acid-based in situ forming matrix is a potential local delivery system for the treatment of local Gram-positive infection sites, such as joints, eyes, dermis of surgery sites, etc., in the future.
Collapse
Affiliation(s)
- Takron Chantadee
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (T.C.); (T.P.); Tel.: +66-034-255800 (T.C. & T.P.)
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Yaowaruk Phorom
- Secretary Office of Faculty, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (T.C.); (T.P.); Tel.: +66-034-255800 (T.C. & T.P.)
| |
Collapse
|
5
|
Spray congealed solid lipid microparticles as a sustained release delivery system for Gonadorelin [6-D-Phe]: Production, optimization and in vitro release behavior. Eur J Pharm Biopharm 2020; 154:18-32. [PMID: 32599272 DOI: 10.1016/j.ejpb.2020.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022]
Abstract
Sustained release lipid microparticles for a potential veterinary application were produced by the means of spray congealing using saturated triglycerides with respective surfactants. The spray congealing process was optimized using unloaded and loaded microparticles, revealing the highest impact of the spray flow on material loss. Yield could be optimized by increasing the spray flow as well as a reduction of the melt temperature from 90 to 75 °C. For the delivery system developed in this study, a release of around 15 days was targeted. The release profile was in first hand determined with the use of model substances (aspartame and tryptophan), before incorporating the decapeptide Gonadorelin [6-D-Phe]. Release could be controlled between 2 and 28 d, which was dependent on stability of microparticles upon incubation, type and concentration of emulsifier, as well as the used triglyceride. Differential scanning calorimetry and X-ray powder diffraction confirmed the crystallization behavior of C14 and C16-triglycerides in combination with various emulsifiers in different modification without impact on release.
Collapse
|
6
|
Wu C, Mu H. Lipid and PLGA Microparticles for Sustained Delivery of Protein and Peptide Drugs. Pharm Nanotechnol 2019; 8:22-32. [PMID: 31663483 DOI: 10.2174/2211738507666191029160944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Solid lipid particles have a great potential in sustained drug delivery, the lipid excipients are solid at room temperature with a slow degradation rate. Poly (D, L-lactic-coglycolic acid) (PLGA) has been successfully clinically applied for the sustained delivery of peptide drugs. A recent study showed the advantage of hybrid PLGA-lipid microparticles (MPs) over PLGA MPs for the sustained delivery of peptide drug in vivo. In this paper, we briefly present PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP prepared by the double emulsion method and the spray drying method and discuss the effects of excipients on encapsulation efficiency of protein and peptide drugs in the MPs. The pros and cons of PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP as carriers for sustained delivery of protein and peptide drugs are also discussed.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Wu C, Luo X, Baldursdottir SG, Yang M, Sun X, Mu H. In vivo evaluation of solid lipid microparticles and hybrid polymer-lipid microparticles for sustained delivery of leuprolide. Eur J Pharm Biopharm 2019; 142:315-321. [DOI: 10.1016/j.ejpb.2019.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
|
8
|
Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, Fresta M, Sandulovici R, Mircioiu I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019; 11:E140. [PMID: 30901930 PMCID: PMC6471682 DOI: 10.3390/pharmaceutics11030140] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Embedding of active substances in supramolecular systems has as the main goal to ensure the controlled release of the active ingredients. Whatever the final architecture or entrapment mechanism, modeling of release is challenging due to the moving boundary conditions and complex initial conditions. Despite huge diversity of formulations, diffusion phenomena are involved in practically all release processes. The approach in this paper starts, therefore, from mathematical methods for solving the diffusion equation in initial and boundary conditions, which are further connected with phenomenological conditions, simplified and idealized in order to lead to problems which can be analytically solved. Consequently, the release models are classified starting from the geometry of diffusion domain, initial conditions, and conditions on frontiers. Taking into account that practically all solutions of the models use the separation of variables method and integral transformation method, two specific applications of these methods are included. This paper suggests that "good modeling practice" of release kinetics consists essentially of identifying the most appropriate mathematical conditions corresponding to implied physicochemical phenomena. However, in most of the cases, models can be written but analytical solutions for these models cannot be obtained. Consequently, empiric models remain the first choice, and they receive an important place in the review.
Collapse
Affiliation(s)
- Constantin Mircioiu
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Victor Voicu
- Department of Clinical Pharmacology, Toxicology and Psychopharmacology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Andra Tudose
- Department of Applied Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Christian Celia
- Department of Pharmacy, G. D'Annunzio University of Chieti⁻Pescara, 66100 Chieti, Italy.
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy, "Magna Græcia" University of Catanzaro, Germaneto - Catanzaro (CZ) 88100, Italy.
| | - Roxana Sandulovici
- Department of Applied Mathematics and Biostatistics, Titu Maiorescu University, 004051 Bucharest, Romania.
| | - Ion Mircioiu
- Department of Biopharmacy and Pharmacokinetics, Titu Maiorescu University, 004051 Bucharest, Romania.
| |
Collapse
|
9
|
Effect of excipients on encapsulation and release of insulin from spray-dried solid lipid microparticles. Int J Pharm 2018; 550:439-446. [DOI: 10.1016/j.ijpharm.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023]
|
10
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
11
|
Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Vollrath M, Engert J, Winter G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. Eur J Pharm Biopharm 2017; 117:244-255. [PMID: 28442372 DOI: 10.1016/j.ejpb.2017.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023]
Abstract
Solid lipid implants (SLIs) prepared by twin-screw (tsc) extrusion represent a promising technology platform for the sustained release of pharmaceutical proteins. In this work, we report on two aspects, long-term release and stability of released protein. First, SLIs were produced by tsc-extrusion containing the low melting triglyceride H12 and the high melting triglyceride Dynasan D118. Two different proteins available in a freeze-dried matrix containing hydroxypropyl-β-cyclodextrine (HP-β-CD) were incorporated into the lipid matrix: a monoclonal antibody (mAb) from the IgG1 class and the fab-fragment Ranibizumab (Lucentis®). SLIs, composed of 10% protein lyophilizate and both triglycerides, were extruded at 35°C and 40rpm. Sustained release of both proteins was observed in a sustained manner for approximately 120days. Protein load per implant was increased by three different approaches resulting in a protein load of 3.00mg per implant without affecting the release profiles. The incubation medium containing the released protein was collected, concentrated and analyzed including liquid chromatography (SE-HPLC, IEX, HIC), electrophoresis (SDS-PAGE, on-chip gel electrophoresis) and FT-IR spectroscopy. The mAb showed a monomer loss of up to 7% (SE-HPLC) and IEX analysis revealed the formation of 16% acidic subspecies after 18weeks. FT-IR spectra of mAb indicated the formation of random coil structures towards the end of the release study. Ranibizumab was mainly released in its monomeric form (>95%), and approximately 5% hydrophobic subspecies were formed after 18weeks of release. FT-IR analysis revealed no changes in secondary structure. The release and stability profiles of both proteins underline the potential of SLIs as a delivery system. SLIs provide a promising platform for applications where really long-term release is needed, for example for intraocular delivery of anti-vascular endothelial growth factor (VEGF) drugs for age related macular degeneration (AMD).
Collapse
Affiliation(s)
- Moritz Vollrath
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany.
| |
Collapse
|
13
|
Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery. Eur J Pharm Sci 2017; 99:258-265. [DOI: 10.1016/j.ejps.2016.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023]
|
14
|
Hu X, Zhang J, Yu Z, Xie Y, He H, Qi J, Dong X, Lu Y, Zhao W, Wu W. Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1939-48. [DOI: 10.1016/j.nano.2015.06.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
|
15
|
Even MP, Bobbala S, Kooi KL, Hook S, Winter G, Engert J. Impact of implant composition of twin-screw extruded lipid implants on the release behavior. Int J Pharm 2015; 493:102-10. [DOI: 10.1016/j.ijpharm.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
|
16
|
Engert J. Implants as Sustained Release Delivery Devices for Vaccine Antigens. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-1-4939-1417-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Tamaddon L, Mostafavi A, Riazi-Esfahani M, Karkhane R, Aghazadeh S, Rafiee-Tehrani M, Abedin Dorkoosh F, Asadi Amoli F. Development, characterizations and biocompatibility evaluations of intravitreal lipid implants. Jundishapur J Nat Pharm Prod 2014; 9:e16414. [PMID: 24872944 PMCID: PMC4036376 DOI: 10.17795/jjnpp-16414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/07/2013] [Accepted: 01/28/2014] [Indexed: 12/02/2022] Open
Abstract
Background: The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. Objectives: The purpose of this study was to investigate the potential applications of natural triglycerides as alternative carriers to synthetic polymers in terms of drug release profile and also biocompatibility for intraocular use. Materials and Methods: In vitro/in vivo evaluations of intravitreal implants fabricated from the physiological lipid, glyceride tripalmitate containing clindamycin phosphate as a model drug was performed. The micro-implants with average diameter of 0.4 mm were fabricated via a hot melt extrusion method. The extrudates were analyzed using scanning electron microscopy, differential scanning calorimetry, and in vitro drug dissolution studies. For biocompatibility, the implants were implanted into rabbit eyes. Clinical investigations including fundus observations, electroretinography as well as histological evaluations were performed. Results: In vitro tests guaranteed usefulness of the production method for preparing the homogenous mixture of the drug and lipid without affecting thermal and crystalinity characteristics of the components. In vitro releases indicated a bi-phasic pattern for lower lipid ratios, which were completed by the end of day three. With higher lipid ratios, more controlled release profiles were achieved until about ten days for a lipid ratio of 95%. Clinical observations did not show any abnormalities up to two months after implantation into the rabbit eye. Conclusions: These results suggest that although the implant could not adequately retard release of the present drug model yet, due to good physical characteristics and in vivo biocompatibility, it can represent a suitable device for loading wide ranges of therapeutics in treatment of many kinds of retinochoroidal disorders.
Collapse
Affiliation(s)
- Lana Tamaddon
- Department of Pharmaceutics, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Abolfazl Mostafavi
- Department of Pharmaceutics, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Mohammad Riazi-Esfahani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reza Karkhane
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Sara Aghazadeh
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Morteza Rafiee-Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fahimeh Asadi Amoli
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
18
|
Zhang CY, Wu WS, Yao N, Zhao B, Zhang LJ. pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv 2014. [DOI: 10.1039/c4ra06413e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel pH-sensitive amphiphilic copolymer Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA and its micelles were developed as a promising anti-cancer drug carrier.
Collapse
Affiliation(s)
- Can Yang Zhang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- 510640 Guangzhou, People's Republic of China
| | - Wen Sheng Wu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- 510640 Guangzhou, People's Republic of China
| | - Na Yao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- 510640 Guangzhou, People's Republic of China
| | - Bin Zhao
- School of Chemistry and Chemical Engineering
- South China University of Technology
- 510640 Guangzhou, People's Republic of China
| | - Li Juan Zhang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- 510640 Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Schweizer D, Vostiar I, Heier A, Serno T, Schoenhammer K, Jahn M, Jones S, Piequet A, Beerli C, Gram H, Goepferich A. Pharmacokinetics, biocompatibility and bioavailability of a controlled release monoclonal antibody formulation. J Control Release 2013; 172:975-82. [PMID: 24140353 DOI: 10.1016/j.jconrel.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 02/08/2023]
Abstract
The sustained and localized delivery of monoclonal antibodies has become highly relevant, because of the increasing number of investigated local delivery applications in recent years. As the local delivery of antibodies is associated with high technological hurdles, very few successful approaches have been reported in the literature so far. Alginate-based delivery systems were previously described as promising sustained release formulations for monoclonal antibodies (mAbs). In order to further investigate their applicability, a single-dose animal study was conducted to compare the biocompatibility, the pharmacokinetics and the bioavailability of a human monoclonal antibody liquid formulation with two alginate-based sustained delivery systems after subcutaneous administration in rats. 28 days after injection, the depot systems were still found in the subcutis of the animals. A calcium cross-linked alginate formulation, which was injected as a hydrogel, was present as multiple compartments separated by subcutaneous tissue. An in situ forming alginate formulation was recovered as a single compact and cohesive structure. It can be assumed that the multiple compartments of the hydrogel formulation led to almost identical pharmacokinetic profiles for all tested animals, whereas the compact nature of the in situ forming system resulted in large interindividual variations in pharmacokinetics. As compared to the liquid formulation the hydrogel formulations led to lower mAb serum levels, and the in situ forming system to a shift in the time to reach the maximum mAb serum concentration (Tmax) from 2 to 4 days. Importantly, it was shown that after 28 days only marginal amounts of residual mAb were present in the alginate matrix and in the tissue at the injection site indicating nearly complete release. In line with this finding, systemic drug bioavailability was not affected by using the controlled release systems. This study successfully demonstrates the suitability and underlines the potential of polyanionic systems for local and controlled mAb delivery.
Collapse
Affiliation(s)
- Daniel Schweizer
- Novartis Pharma AG, Biologics Process Research & Development, 4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Studies on the lipase-induced degradation of lipid-based drug delivery systems. Part II – Investigations on the mechanisms leading to collapse of the lipid structure. Eur J Pharm Biopharm 2013; 84:456-63. [DOI: 10.1016/j.ejpb.2012.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/03/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022]
|
21
|
Grant J, Zahedi P, Tsallas A, Allen C. Thermosensitive depot-forming injectable phosphatidylcholine blends tailored for localized drug delivery. J Pharm Sci 2013; 102:3623-31. [PMID: 23873505 DOI: 10.1002/jps.23664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/06/2022]
Abstract
A thermosensitive depot-forming system was developed for sustained and localized delivery of the anticancer drug, paclitaxel. The formulation is injectable as a melt slightly above the body temperature and forms a solid depot upon cooling to 37°C. The thermosensitive system was prepared by blending various combinations of phosphatidylcholines at specific weight ratios solubilized in laurinaldehyde. Of the blends investigated, distearoyl-phosphatidylcholine (DSPC) and egg-phosphatidylcholine (ePC) were found to be most miscible. A liquid-to-gel phase transition temperature (TC ) of 39°C was observed for the 70:30 (w/w) DSPC-ePC blend and a TC of 38.4°C with the addition of paclitaxel. Blends containing higher concentrations of ePC had a greater degree of swelling and weight loss. Furthermore, microscopy revealed an increase in porosity and erosion as the amount of ePC was increased in blends incubated in biologically relevant media. DSPC-ePC blends provided sustained release of paclitaxel over a 30-day period and the rate of drug release increased as the amount of ePC increased. Overall, the relationships established between the composition and properties of the blend may be employed to tailor the thermosensitive injectable formulation for localized chemotherapy of solid tumors.
Collapse
Affiliation(s)
- Justin Grant
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Haupt M, Thommes M, Heidenreich A, Breitkreutz J. Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder. J Control Release 2013; 170:161-6. [PMID: 23732944 DOI: 10.1016/j.jconrel.2013.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 05/02/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
Abstract
The overactive bladder (OAB) is a common disease with an overactivity of the detrusor muscle in the bladder wall. Besides peroral administration of anticholinergic drugs and bladder irrigations, there is a need for a sustained release formulation in the urinary bladder. In order to realise a local long-term treatment of the overactive urinary bladder, lipidic drug delivery systems were prepared. Requirements for an intravesical application are a long-term controlled release of trospium chloride, a high drug loading and small sized drug carriers to permit an insertion through the urethra into the urinary bladder. The drug delivery systems were manufactured by using compression (mini-tablets), solid lipid extrusion (extrudates) and a melting and casting technique (mini-moulds) with different amounts of trospium chloride and glyceryl tristearate as matrix former. Drug release depended on the drug loading and the preparation method. Mini-tablets and lipidic extrudates showed a drug release over five days, whereas that from mini-moulds was negligibly small. The appearance of polymorphic transformations during processing and storage was investigated by using differential scanning calorimetry and X-ray diffraction. In contrast to mini-tablets and mini-moulds, lipidic extrudates showed no polymorphic transformations. In summary, lipids are suitable matrix formers for a highly water-soluble drug, like trospium chloride. Despite a drug loading of up to 30%, it was feasible to achieve a drug release ranging from several days up to weeks. In addition, small dosage forms with a size of only a few millimetres were realised. Therefore, an insertion and excretion through the urethra is possible and the requirements for an intravesical application are fulfilled.
Collapse
Affiliation(s)
- M Haupt
- Department of Urology, RWTH University Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
23
|
Windbergs M, Zhao Y, Heyman J, Weitz DA. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 2013; 135:7933-7. [PMID: 23631388 DOI: 10.1021/ja401422r] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.
Collapse
Affiliation(s)
- Maike Windbergs
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
24
|
Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release 2012; 163:187-94. [DOI: 10.1016/j.jconrel.2012.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
25
|
In-vivo biodegradation of extruded lipid implants in rabbits. J Control Release 2012; 163:195-202. [DOI: 10.1016/j.jconrel.2012.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
|
26
|
Release pathways of interferon α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy. J Control Release 2012; 162:295-302. [DOI: 10.1016/j.jconrel.2012.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
|
27
|
Impact of the experimental conditions on drug release from parenteral depot systems: From negligible to significant. Int J Pharm 2012; 432:11-22. [DOI: 10.1016/j.ijpharm.2012.04.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 11/24/2022]
|
28
|
Dufresne MH, Marouf E, Kränzlin Y, Gauthier MA, Leroux JC. Lipase is essential for the study of in vitro release kinetics from organogels. Mol Pharm 2012; 9:1803-11. [PMID: 22510056 DOI: 10.1021/mp3001099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro drug release studies remain indispensable in the development of drug delivery systems, even if correlations between in vitro and in vivo results are often imperfect. In this work, an improved in vitro analysis method for studying in situ-forming lipid-based implants was developed. More specifically, lipase was found to be an essential additive for evidencing differences in drug release kinetics from organogels of different amino acid-based organogelators, organogelator concentrations, drug loadings, and volumes. Lipases are thought to participate in the degradation of and release from amino acid-based organogel implants in vivo. Our experimental conditions allowed for the rapid and reliable screening of in vitro parameters that may be optimized to slow or accelerate drug release, once preliminary in vivo data are available.
Collapse
Affiliation(s)
- Marie-Hélène Dufresne
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich (ETHZ), Wolfgang-Pauli Str. 10, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Kreye F, Hamm G, Karrout Y, Legouffe R, Bonnel D, Siepmann F, Siepmann J. MALDI-TOF MS imaging of controlled release implants. J Control Release 2012; 161:98-108. [PMID: 22551600 DOI: 10.1016/j.jconrel.2012.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) imaging is used to characterize novel lipid implants allowing for controlled drug delivery. Importantly, this innovative technique provides crucial information on the inner structure of the implants before and after exposure to the release medium and does not require the addition of marker substances. Implants were prepared by extrusion at room temperature. Thus, in contrast to hot-melt extruded systems, the risks of drug inactivation and solid state transformations of the lipid matrix former are reduced. Hydrogenated/hardened soybean oil and glyceryl tristearate were studied as lipids and propranolol hydrochloride and theophylline as drugs, exhibiting significantly different solubility in water. The implants were also characterized by optical microscopy, differential scanning calorimetry, water uptake and lipid erosion studies, mathematical modeling as well as in vitro drug release measurements. Importantly, broad spectra of drug release patterns with release periods ranging from a few days up to several months could easily be provided when varying the initial drug content and type of lipid, irrespective of the type of drug. The diameter of the implants can be as small as 1mm, facilitating injection. MALDI-TOF MS imaging revealed homogeneous macroscopic drug distributions within the systems, but steep drug concentration gradients in radial and axial direction at the lower micrometer level, indicating drug- and lipid-rich domains. As the implants do not significantly swell, local irritation upon administration due to mechanical stress can be expected to be limited. Good agreement between experimentally measured and theoretically calculated drug release kinetics revealed that diffusional mass transport plays a major role for the control of drug release from this type of advanced drug delivery systems.
Collapse
Affiliation(s)
- F Kreye
- College of Pharmacy, University of Lille, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Ambrosch K, Manhardt M, Loth T, Bernhardt R, Schulz-Siegmund M, Hacker MC. Open porous microscaffolds for cellular and tissue engineering by lipid templating. Acta Biomater 2012; 8:1303-15. [PMID: 22155065 DOI: 10.1016/j.actbio.2011.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/03/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
Porous microspheres fabricated from biodegradable polymers have great potential as microscaffolds in tissue engineering applications, especially for novel strategies such as microtissue fabrication in vitro and microtissue assembly in vivo. Fabrication techniques for microparticulate scaffolds with surface and bulk pore sizes relevant for effective cell intrusion, however, are scarce. This study presents two techniques for the fabrication of open porous microscaffolds from poly(lactide-co-glycolide) in which lipid templating is used for pore formation and combined with either dispersion spraying or a double emulsion technique to determine the size and shape of the particulate structures generated. Both techniques yield microscaffolds with an average size of between 500 and 800 μm, high bulk porosities and open surface pores larger than 50 μm in diameter. Microscaffold morphology was investigated microscopically, particle size distribution was determined and porosity was quantified by intrusion measurements. Particle size and morphology was controlled by the processing parameters and the content and type of lipid porogen. Efficient extraction of the lipid template was shown by thermal analysis. Microscaffold cytocompatibility and in vitro cell culture performance was evaluated with L929 fibroblasts and rat adipose-derived stromal cells (ADSC), respectively. Extracts of different formulations were cytocompatible. Rat ADSC proliferated on the microscaffolds and were differentiated along the adipogenic lineage.
Collapse
|
31
|
Mathematical modeling of drug release from lipid dosage forms. Int J Pharm 2011; 418:42-53. [DOI: 10.1016/j.ijpharm.2011.07.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
|
32
|
Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm 2011; 78:394-400. [DOI: 10.1016/j.ejpb.2011.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/09/2011] [Accepted: 02/15/2011] [Indexed: 11/23/2022]
|
33
|
Kreye F, Siepmann F, Zimmer A, Willart J, Descamps M, Siepmann J. Cast Lipid Implants for Controlled Drug Delivery: Importance of the Tempering Conditions. J Pharm Sci 2011; 100:3471-3481. [DOI: 10.1002/jps.22574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 02/04/2011] [Accepted: 03/22/2011] [Indexed: 11/12/2022]
|
34
|
Kreye F, Siepmann F, Zimmer A, Willart J, Descamps M, Siepmann J. Controlled release implants based on cast lipid blends. Eur J Pharm Sci 2011; 43:78-83. [DOI: 10.1016/j.ejps.2011.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/17/2022]
|
35
|
Drug release mechanisms of compressed lipid implants. Int J Pharm 2011; 404:27-35. [DOI: 10.1016/j.ijpharm.2010.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
|
36
|
Zaky A, Elbakry A, Ehmer A, Breunig M, Goepferich A. The mechanism of protein release from triglyceride microspheres. J Control Release 2010; 147:202-10. [DOI: 10.1016/j.jconrel.2010.07.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/14/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022]
|
37
|
Studies on the lipase induced degradation of lipid based drug delivery systems. J Control Release 2009; 140:27-33. [DOI: 10.1016/j.jconrel.2009.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 06/28/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
|
38
|
Myschik J, Eberhardt F, Rades T, Hook S. Immunostimulatory biodegradable implants containing the adjuvant Quil-A—Part I: Physicochemical characterisation. J Drug Target 2008; 16:213-23. [DOI: 10.1080/10611860701848860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
A novel mathematical model quantifying drug release from lipid implants. J Control Release 2008; 128:233-40. [DOI: 10.1016/j.jconrel.2008.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/22/2022]
|
40
|
Hacker MC, Klouda L, Ma BB, Kretlow JD, Mikos AG. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Biomacromolecules 2008; 9:1558-70. [PMID: 18481893 DOI: 10.1021/bm8000414] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized and characterized a series of macromers based on poly( N-isopropylacrylamide) that undergo thermally induced physical gelation and, following chemical modification, can be chemically cross-linked. Macromers with number average molecular weights typically ranging from 2000-3500 Da were synthesized via free radical polymerization from, in addition to N-isopropylacrylamide, pentaerythritol diacrylate monostearate, a bifunctional monomer containing a long hydrophobic chain, acrylamide, a hydrophilic monomer, and hydroxyethyl acrylate, a hydrophilic monomer used to provide hydroxyl groups for further chemical modification. Results indicated that the hydrophobic-hydrophilic balance achieved by varying the relative concentrations of comonomers used during synthesis was an important parameter in controlling the transition temperature of the macromers in solution and stability of the resultant gels. Storage moduli of the macromers increased over 4 orders of magnitude once gelation occurred above the transition temperature. Furthermore, chemical cross-linking of these macromers resulted in gels with increased stability compared to uncross-linked controls. These results demonstrate the feasibility of synthesizing poly( N-isopropylacrylamide)-based macromers that undergo tandem gelation and establish key criteria relating to the transition temperature and stability of these materials. The data suggest that these materials may be attractive substrates for tissue engineering and cellular delivery applications as the combination of mechanistically independent gelation techniques used in tandem may offer superior materials with regard to gelation kinetics and stability.
Collapse
Affiliation(s)
- Michael C Hacker
- Department of Bioengineering, Rice University, MS-142, Post Office Box 1892, Houston, Texas 77251-1892, USA
| | | | | | | | | |
Collapse
|
41
|
Kreye F, Siepmann F, Siepmann J. Lipid implants as drug delivery systems. Expert Opin Drug Deliv 2008; 5:291-307. [DOI: 10.1517/17425247.5.3.291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Koennings S, Sapin A, Blunk T, Menei P, Goepferich A. Towards controlled release of BDNF — Manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J Control Release 2007; 119:163-72. [PMID: 17428570 DOI: 10.1016/j.jconrel.2007.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
It was the aim of this study to establish triglyceride matrices as potential carriers for long-term release of brain-derived neurotrophic factor (BDNF), a potential therapeutic for Huntington's disease. First, four different manufacturing strategies were investigated with lysozyme as a model substance: either lyophilized protein was mixed with lipid powder, or suspended in organic solution thereof (s/o). Or else, an aqueous protein solution was dispersed by w/o emulsion in organic lipid solution. Alternatively, a PEG co-lyophilization was performed prior to dispersing solid protein microparticles in organic lipid solution. After removal of the solvent(s), the resulting powder formulations were compressed at 250 N to form mini-cylinders of 2 mm diameter, 2.2 mm height and 7 mg weight. Protein integrity after formulation and release was evaluated from an enzyme activity assay and SDS-PAGE. Confocal microscopy revealed that the resulting distribution of FITC-lysozyme within the matrices depended strongly on the manufacturing method, which had an important impact on matrix performance: matrices with a very fine and homogeneous protein distribution (PEG co-lyophilization) continually released protein for 2 months. The other methods did not guarantee a homogeneous distribution and either failed in sustaining release for more than 1 week (powder mixture), completely liberating the loading (s/o dispersion) or preserving protein activity during manufacturing (w/o emulsion, formation of aggregates and 25% activity loss). Based on these results, miniature-sized implants of 1 mm diameter, 0.8 mm height and 1 mg weight were successfully loaded by the PEG co-lyophilization method with 2% BDNF and 2% PEG. Release studies in phosphate buffer pH 7.4 at 4 and 37 degrees C revealed a controlled release of either 20 or 60% intact protein over one month as determined by ELISA. SDS-PAGE detected only minor aggregates in the matrix during release at higher temperature. In vivo evaluation of lipid cylinders in the striatum of rat brains revealed a biocompatibility comparable to silicone reference cylinders.
Collapse
Affiliation(s)
- S Koennings
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstr, 31, 93040 Regensburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Koennings S, Tessmar J, Blunk T, Göpferich A. Confocal Microscopy for the Elucidation of Mass Transport Mechanisms Involved in Protein Release from Lipid-based Matrices. Pharm Res 2007; 24:1325-35. [PMID: 17457662 DOI: 10.1007/s11095-007-9258-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE It was the aim of this study to identify the governing mechanisms during protein release from cylindrical lipid matrices by visualizing mass transport and correlating the data with in vitro dissolution testing. MATERIALS AND METHODS Glyceryl trimyristate cylinders of 2 mm diameter, 2.2 mm height and 7 mg weight were manufactured by compression of a protein-lipid powder mixture prepared by a polyethylene glycol (PEG) co-lyophilization technique. BSA was fluorescence-labeled and the distribution visualized and quantified at different stages of the release process by confocal microscopy in parallel to the quantification in the release buffer. The impact of matrix loading and protein molecular weight was assessed with the model proteins lysozyme, BSA, alcohol dehydrogenase and thyroglobulin. RESULTS Buffer penetration and protein release occurred simultaneously from the outer regions of the cylinder progressing towards the center. Release from the top and bottom of the matrix was not negligible but much slower than penetration from the side, probably due to an oriented arrangement of lipid flakes during compression. The different quantification strategies were found to yield identical results. At 6% protein loading, buffer penetration was complete after 4 days, while only 60% of the protein was liberated in that time and release continued up to day 63. Protein release kinetics could be described using the power law equation M ( t ) /M ( infinity ) = kt ( n ) with an average time exponent n of 0.45 (+/-0.04) for loadings varying between 1 and 8%. A percolation threshold at 5% pure protein loading and 3-4% mixed loading (PEG and protein at a 1:1 mass ratio) could be identified. Release rate was found to decrease with increasing molecular weight. CONCLUSIONS Protein release from lipid-based matrices is a purely diffusion controlled mechanism. Potential protein stabilization approaches should address the time span between complete buffer penetration of the matrix and 100% release of the remaining loading, which would be exposed to an aqueous environment before leaving the matrix.
Collapse
Affiliation(s)
- Stephanie Koennings
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstr. 31, 93040, Regensburg, Germany
| | | | | | | |
Collapse
|
44
|
Herrmann S, Winter G, Mohl S, Siepmann F, Siepmann J. Mechanisms controlling protein release from lipidic implants: Effects of PEG addition. J Control Release 2007; 118:161-8. [PMID: 17275943 DOI: 10.1016/j.jconrel.2006.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/30/2006] [Accepted: 11/07/2006] [Indexed: 11/22/2022]
Abstract
Different types of tristearin-based implants for controlled rh-interferon alpha-2a (IFN-alpha) release were prepared by compression and thoroughly characterised in vitro. Hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was added as a co-lyophilisation agent for protein stabilisation and different amounts of polyethylene glycol (PEG) as efficient protein release modifier. To get deeper insight into the underlying mass transport mechanisms, the release of IFN-alpha, HP-beta-CD and PEG into phosphate buffer pH 7.4 was monitored simultaneously and appropriate analytical solutions of Fick's second law of diffusion were fitted to the experimental results. Importantly, the addition of only 5-20% PEG to the lipidic implants significantly altered the resulting protein release rates and the relative importance of the underlying mass transport mechanisms. The release of IFN-alpha from PEG-free implants was purely diffusion controlled. In contrast, in PEG-containing devices other phenomena were also involved in the control of protein release: the IFN-alpha release rate remained about constant over prolonged periods of time and the total amounts of mobile IFN-alpha increased. Interestingly, the release of PEG itself as well as of HP-beta-CD from the implants remained purely diffusion controlled, irrespective of the amount of added PEG. Thus, different mass transport mechanisms govern the release of the drug, co-lyophilisation agent and release modifier out of the lipidic implants.
Collapse
Affiliation(s)
- Sandra Herrmann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
45
|
Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Göpferich A. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm 2007; 65:175-87. [PMID: 17070025 DOI: 10.1016/j.ejpb.2006.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/01/2006] [Accepted: 08/08/2006] [Indexed: 11/30/2022]
Abstract
A spray congealing process for the preparation of protein-loaded microparticles was developed. The influence of the process parameters atomization pressure and spraying temperature on particle size and process yield was investigated by experimental design. The employed spray congealing technique enabled the production of microparticles with yields ranging from 79% to 95% and median particle sizes (d(0.5)) from 182.2 to 315 microm. Insulin lipid microparticles could be prepared without any loss of insulin during the preparation process and the protein stability was not affected by the spray congealing process as investigated by HPLC-MS analysis. The stability of insulin encapsulated in lipid microparticles under release conditions over 28 days was assessed by investigating the residual insulin content. Starting after 3 days of release, a continuous increase of desamidoinsulin in the remaining particles of up to 7.5% after 28 days was observed. An additional degradation product was detected by HPLC and HPLC-MS analysis and identified as a covalent insulin dimer by MALDI-ToF. The microparticles did not show a burst release and testing the insulin lipid microparticles in a fibrin gel chondrocyte culture revealed that the released insulin was bioactive and had a significant effect on chondrocyte extracellular matrix production.
Collapse
Affiliation(s)
- Angelika Maschke
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Koennings S, Garcion E, Faisant N, Menei P, Benoit JP, Goepferich A. In vitro investigation of lipid implants as a controlled release system for interleukin-18. Int J Pharm 2006; 314:145-52. [PMID: 16513302 DOI: 10.1016/j.ijpharm.2005.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/22/2005] [Indexed: 12/26/2022]
Abstract
Operating on the inductive and effective phases of an anti-tumor immune response and uncovering pivotal functions that may reduce cancer cell growth, interleukin-18 (IL-18) appears to be an attractive candidate for the sustained local adjuvant immunotherapeutic treatment of brain gliomas. The objective of this work was to develop IL-18 loaded lipid implants as a controlled delivery system. For the preparation of protein loaded triglyceride matrix material, a solid-in-oil (s/o) dispersion technique was chosen for which protein particles in the micrometer range were first prepared by co-lyophilization with polyethylene glycol (PEG). Implants of 1 mm diameter, 1.8 mm height and 1.8 mg weight were manufactured by compression of the powder mixture in a specially designed powder compacting tool. The in vitro release behavior of 125I-Bolton-Hunter-radiolabeled IL-18 was assessed in a continuous-flow system. A cell culture assay was established for the determination of bioactivity of released IL-18. Implants showed a continuous release of 10-100 ng IL-18 per day for 12 days. A progressive integrity loss was observed with ongoing release, which would be related to protein degradation during incubation. The initially released fraction proved complete retention of bioactivity, indicating that the manufacturing procedure had no detrimental effects on protein stability.
Collapse
Affiliation(s)
- S Koennings
- University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|