1
|
Chen B, Li D, Tong B, Wang L, Lin H, Xu H, Hu S. Oral alginate microspheres for the efficient site-specific delivery of epidermal growth factor attenuated murine ulcerative colitis via repairing the mucosal barrier. Int J Pharm 2024; 661:124394. [PMID: 38944169 DOI: 10.1016/j.ijpharm.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Ulcerative colitis (UC) is a chronic bowel inflammatory disease affecting the colorectum. Epidermal growth factor (EGF) has been demonstrated to be effective to counteract UC. However, there exists the gastrointestinal challenges such as stomach acid, enzyme and bile salts for oral delivery of EGF. Herein, calcium alginate microsphere was prepared by the microfluidic technique to encapsulate EGF. The morphology of EGF-loaded microsphere (MS-EGF) was spherical and its average particle size was 80 ± 23 μm. The encapsulation efficiency of EGF was reaching to 93.8 % ± 1.6 %. In vitro release experiments showed that MS-EGF presented the good pH-sensitive properties, that was, it could effectively resist the gastric acid and small intestinal fluids, and undergone the rapid dissolution in the artificial colon fluid. In vitro cellular experiments demonstrated that the bioactivity of EGF was well preserved by microsphere. Moreover, in vivo murine colitis model showed that MS-EGF presented the obvious colitis alleviation. Furthermore, the colonic morphology of colitis mice was effectively recovered and the tight junction between the gut epithelium was obviously repaired. In conclusion, calcium alginate microsphere might be a promising vehicle of EGF for UC treatment.
Collapse
Affiliation(s)
- Ben Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Bingjie Tong
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation, Hainan Medical University, Haikou City, Hainan Province, China
| | - Haoran Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Helin Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, China.
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
2
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|
4
|
Fabrication of soy protein isolate/κ-carrageenan hydrogels for release control of hydrophilic compounds: Flax lignans. Int J Biol Macromol 2022; 223:821-829. [PMID: 36347376 DOI: 10.1016/j.ijbiomac.2022.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A suitable carrier for flax lignans using Soybean protein isolated (SPI) - κ-carrageenan (KC) hydrogels was developed. The effects of KC concentration on the stability of hydrogels were investigated, as well as water holding capacity (WHC), syneresis and morphological changes. A solid-like gel network and viscoelasticity of composite hydrogels were confirmed by rheological behavior test. Scanning electron microscopy (SEM) displayed a dense and uniform structure for hydrogels with the optimum KC concentration (0.6 %). Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) curves suggested lignan might interact with SPI and KC by hydrogen bonding or hydrophobic effects. The release of flax lignans in hydrogels was followed with Fick diffusion in simulated gastric fluids (SGF) and non-Fickian diffusion in simulated intestinal fluids (SIF), respectively. The cumulative release rate of flax lignan in complex gels (46.00 %) was lower than that of pure SPI hydrogels (77.43 %) at the end of digestion. The results indicated that KC protected the protein by hindering the accession of digestive enzymes into the hydrogels, thus resulting in a reduction of gel matrix erosion and lignan release during digestion. These findings shield a light on SPI-KC hydrogels as carriers for water-soluble bioactive compounds in food and pharmaceutical industries.
Collapse
|
5
|
Mahdipour E, Mequanint K. Films, Gels and Electrospun Fibers from Serum Albumin Globular Protein for Medical Device Coating, Biomolecule Delivery and Regenerative Engineering. Pharmaceutics 2022; 14:2306. [PMID: 36365125 PMCID: PMC9698923 DOI: 10.3390/pharmaceutics14112306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 09/18/2023] Open
Abstract
Albumin is a natural biomaterial that is abundantly available in blood and body fluids. It is clinically used as a plasma expander, thereby increasing the plasma thiol concentration due to its cysteine residues. Albumin is a regulator of intervascular oncotic pressure, serves as an anti-inflammatory modulator, and it has a buffering role due to its histidine imidazole residues. Because of its unique biological and physical properties, albumin has also emerged as a suitable biomaterial for coating implantable devices, for cell and drug delivery, and as a scaffold for tissue engineering and regenerative medicine. As a biomaterial, albumin can be used as surface-modifying film or processed either as cross-linked protein gels or as electrospun fibers. Herein we have discussed how albumin protein can be utilized in regenerative medicine as a hydrogel and as a fibrous mat for a diverse role in successfully delivering drugs, genes, and cells to targeted tissues and organs. The review of prior studies indicated that albumin is a tunable biomaterial from which different types of scaffolds with mechanical properties adjustable for various biomedical applications can be fabricated. Based on the progress made to date, we concluded that albumin-based device coatings, delivery of drugs, genes, and cells are promising strategies in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Elahe Mahdipour
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, University Ave., Mashhad 9177948564, Iran
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
6
|
Cassano R, Curcio F, Procopio D, Fiorillo M, Trombino S. Multifunctional Microspheres Based on D-Mannose and Resveratrol for Ciprofloxacin Release. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207293. [PMID: 36295357 PMCID: PMC9607382 DOI: 10.3390/ma15207293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
This article describes the preparation, characterization, and performance evaluation of functional microspheres useful for the release of ciprofloxacin. The particles were obtained using D-mannose, a natural aldohexose sugar, and resveratrol, a powerful antioxidant. In particular, the above compounds were initially converted into D-mannose carboxylate and resveratrol methacrylate and, therefore, subjected to an esterification reaction. The resulting product was used for the preparation of the microspheres which were characterized by light scattering, FT-IR spectrophotometry and scanning electron microscopy (SEM). Subsequently, their degree of bloating was evaluated at pH 1.2 to simulate the pH of the stomach, at pH 6.8 and pH 7.4 to mimic the intestinal environment. The antibiotic ciprofloxacin was then loaded into the microspheres, with an encapsulation efficiency of 100%. The cumulative amount of drug released was 55% at pH 6.8 and 99% at pH 7.4. The tests conducted to evaluate the antibacterial activity demonstrated the ability of the microspheres obtained to inhibit the growth of Escherichia coli. The antioxidant efficacy, due to the presence of resveratrol in their structure, was confirmed using rat liver microsomal membranes. The results obtained have highlighted how the microspheres based on D-mannose and resveratrol can be considered promising multifunctional vectors useful in the treatment of intestinal and urinary infections.
Collapse
|
7
|
The effect of thiol functional groups on bovine serum albumin/chitosan buccal mucoadhesive patches. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kaur M, Bains A, Chawla P, Yadav R, Kumar A, Inbaraj BS, Sridhar K, Sharma M. Milk Protein-Based Nanohydrogels: Current Status and Applications. Gels 2022; 8:432. [PMID: 35877517 PMCID: PMC9320064 DOI: 10.3390/gels8070432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Milk proteins are excellent biomaterials for the modification and formulation of food structures as they have good nutritional value; are biodegradable and biocompatible; are regarded as safe for human consumption; possess valuable physical, chemical, and biological functionalities. Hydrogels are three-dimensional, cross-linked networks of polymers capable of absorbing large amounts of water and biological fluids without dissolving and have attained great attraction from researchers due to their small size and high efficiency. Gelation is the primary technique used to synthesize milk protein nanohydrogels, whereas the denaturation, aggregation, and gelation of proteins are of specific significance toward assembling novel nanostructures such as nanohydrogels with various possible applications. These are synthesized by either chemical cross-linking achieved through covalent bonds or physical cross-linking via noncovalent bonds. Milk-protein-based gelling systems can play a variety of functions such as in food nutrition and health, food engineering and processing, and food safety. Therefore, this review highlights the method to prepare milk protein nanohydrogel and its diverse applications in the food industry.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | - Anil Kumar
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India; (R.Y.); (A.K.)
| | | | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de L’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale du Hainaut-Condorcet, 11, Rue de la Sucrerie, 7800 Ath, Belgium
| |
Collapse
|
9
|
Macro- and Nanoscale Effect of Ethanol on Bovine Serum Albumin Gelation and Naproxen Release. Int J Mol Sci 2022; 23:ijms23137352. [PMID: 35806356 PMCID: PMC9266526 DOI: 10.3390/ijms23137352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
We report extended ethanol-induced gelation procedures of bovine serum albumin (BSA) at 37 °C and investigate the release behavior of a spin-labeled naproxen derivative (SL-NPX) from these hydrogels. The macroscopic mechanical properties of these gels during formation were studied using rheology, while a nanoscopic, more molecular view was obtained by analyzing the secondary structure of the protein during gelation via infrared (ATR-IR) spectroscopy. To evaluate the potential use of BSA hydrogels in controlled drug delivery, SL-NPX-BSA interaction was investigated in detail by continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy, which provides information on the interaction of the small drug molecules and the hydrogel. In addition to CW EPR spectroscopy, dynamic light scattering (DLS), which provides insight into the size and nature of released components, was applied to characterize the combined influence of incubation time, ethanol, SL-drug, and BSA concentration on release behavior. It was found that the alteration of initial drug loading percentage, hydrogel incubation time as well as BSA and alcohol concentrations affect and thus tune the release rate of SL-NPX from BSA hydrogels. These results lead to the conclusion that BSA hydrogels as controlled release systems offer a remarkable fine-tuning capability for pharmaceutical applications due to the variety of gelation parameters.
Collapse
|
10
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
11
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
12
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
13
|
Diffusion-controlled release of the theranostic protein-photosensitizer Azulitox from composite of Fmoc-Phenylalanine Fibrils encapsulated with BSA hydrogels. J Biotechnol 2021; 341:51-62. [PMID: 34464649 DOI: 10.1016/j.jbiotec.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
Hydrogels offer a promising potential for the encapsulation and regulated release of drugs due to their biocompatibility and their tunable properties as materials. Only a limited number of systems and procedures enable the encapsulation of sensitive proteins. N-terminally fmoc-protected phenylalanine has been shown to self-assemble into a transparent, stable hydrogel It can be considered a supergelator due to the low amount of monomers necessary for hydrogelation (0.1% w/v), making it a good candidate for the encapsulation and stabilization of sensitive proteins. However, application options for this hydrogel are rather limited to those of many other fibril-based materials due to its intrinsic lack of mechanical strength and high susceptibility to changes in environmental conditions. Here, we demonstrate that the stability of a fibrillary system and the resulting release of the protein-photosensitizer Azulitox can be increased by combining the hydrogel with a tightly cross-linked BSA hydrogel. Azulitox is known to display cell-penetrating properties, anti-proliferative activity and has a distinctive fluorescence. Confocal microscopy and fluorescence measurements verified the maintenance of all essential functions of the encapsulated protein. In contrast, the combination of fibrillary and protein hydrogel resulted in a significant stabilization of the matrix and an adjustable release pattern for encapsulated protein.
Collapse
|
14
|
Snetkov P, Morozkina S, Olekhnovich R, Uspenskaya M. Diflunisal Targeted Delivery Systems: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6687. [PMID: 34772213 PMCID: PMC8588122 DOI: 10.3390/ma14216687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Diflunisal is a well-known drug for the treatment of rheumatoid arthritis, osteoarthritis, primary dysmenorrhea, and colon cancer. This molecule belongs to the group of nonsteroidal anti-inflammatory drugs (NSAID) and thus possesses serious side effects such as cardiovascular diseases risk development, renal injury, and hepatic reactions. The last clinical data demonstrated that diflunisal is one of the recognized drugs for the treatment of cardiac amyloidosis and possesses a survival benefit similar to that of clinically approved tafamidis. Diflunisal stabilizes the transthyretin (TTR) tetramer and prevents the misfolding of monomers and dimers from forming amyloid deposits in the heart. To avoid serious side effects of diflunisal, the various delivery systems have been developed. In the present review, attention is given to the recent development of diflunisal-loaded delivery systems, its technology, release profiles, and effectiveness.
Collapse
Affiliation(s)
- Petr Snetkov
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia; (S.M.); (R.O.); (M.U.)
| | | | | | | |
Collapse
|
15
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
16
|
Cassano R, Curcio F, Mandracchia D, Trapani A, Trombino S. Gelatin and Glycerine-Based Bioadhesive Vaginal Hydrogel. Curr Drug Deliv 2021; 17:303-311. [PMID: 31995006 DOI: 10.2174/1567201817666200129130031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 01/07/2020] [Indexed: 11/22/2022]
Abstract
AIM The work's aim was the preparation and characterization of a hydrogel based on gelatin and glycerine, useful for site-specific release of benzydamine, an anti-inflammatory drug, able to attenuate the inflammatory process typical of the vaginal infection. OBJECTIVE The obtained hydrogel has been characterized by Electronic Scanning Microscopy (SEM) and Differential Scanning Calorimetry (DSC). In addition, due to the precursor properties, the hydrogel exhibits a relevant mucoadhesive activity. METHODS The swelling degree was evaluated at two different pHs and at defined time intervals. In particular, phosphate buffers were used at pH 6.6, in order to mimic the typical conditions of infectious diseases at the vaginal level, particularly for HIV-seropositive pregnant women, and pH 4.6, to simulate the physiological environment. RESULTS The obtained results revealed that the hydrogel swells up well at both pHs. CONCLUSION Release studies conducted at both pathological and physiological pHs have shown that benzydamine is released at the level of the vaginal mucosa in a slow and gradual manner. These data support the hypothesis of the hydrogel use for the site-specific release of benzydamine in the vaginal mucosa.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Delia Mandracchia
- Department of Pharmacy, Universita degli Studi di Bari Aldo, Bari, Italy
| | - Adriana Trapani
- Department of Pharmacy, Universita degli Studi di Bari Aldo, Bari, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
17
|
Kazemi-Taskooh Z, Varidi M. Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Arabi SH, Aghelnejad B, Volmer J, Hinderberger D. Hydrogels from serum albumin in a molten globule-like state. Protein Sci 2020; 29:2459-2467. [PMID: 33058378 PMCID: PMC7679958 DOI: 10.1002/pro.3976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023]
Abstract
We demonstrate that a molten globule‐like (MG) state of a protein, usually described as a compact yet non‐folded conformation that is only present in a narrow and delicate parameter range, is preserved in the high concentration environment of the protein hydrogel. We reveal mainly by means of electron paramagnetic resonance (EPR) spectroscopy that bovine serum albumin (BSA) retains the known basic MG state after a hydrogel has been formed from 20 wt% precursor solutions. At pH values of ~11.4, BSA hydrogels made from MG‐BSA remain stable for weeks, while gels formed at slightly different (~0.2) pH units above and below the MG‐state value dissolve into viscous solutions. On the contrary, when hydrophobic screening agents are added such as amphiphilic, EPR‐active stearic acid derivatives (16‐DOXYL‐stearic acid, 16‐DSA), the MG‐state based hydrogel is the least long‐lived, as the hydrophobic interaction of delicately exposed hydrophobic patches of BSA molecules is screened by the amphiphilic molecules. These bio‐ and polymer‐physically unexpected findings may lead to new bio‐compatible MG‐based hydrogels that display novel properties in comparison to conventional gels.
Collapse
Affiliation(s)
- Seyed Hamidreza Arabi
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Behdad Aghelnejad
- Département de chimie, École normale supérieure, PSL University, Sorbonne Université, Paris, France
| | - Jonas Volmer
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
19
|
Preparation, characterization and in vitro evaluation of resveratrol-loaded nanospheres potentially useful for human breast carcinoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Teimouri S, Morrish C, Kasapis S. Release profile of vitamin B6 from a pH-responsive BSA network crosslinked with genipin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Joshi M, Nagarsenkar M, Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Gökçe Kocabay Ö, İsmail O. Acrylamide based hydrogels in swelling and uptake of methylene blue from aqueous solutions. MAIN GROUP CHEMISTRY 2020. [DOI: 10.3233/mgc-190818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Özlem Gökçe Kocabay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, İstanbul, Turkey
- T.R. Ministry of Culture and Tourism, İstanbul, Turkey
| | - Osman İsmail
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, İstanbul, Turkey
| |
Collapse
|
23
|
Ferracci G, Zhu M, Ibrahim MS, Ma G, Fan TF, Lee BH, Cho NJ. Photocurable Albumin Methacryloyl Hydrogels as a Versatile Platform for Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:920-934. [DOI: 10.1021/acsabm.9b00984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Gaia Ferracci
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Mengxiang Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Wenzhou Institute of Biomaterials and Engineering, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Mohammed Shahrudin Ibrahim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gamaliel Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Teng Fei Fan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bae Hoon Lee
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Wenzhou Institute of Biomaterials and Engineering, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
24
|
Nandi R, Yucknovsky A, Mazo MM, Amdursky N. Exploring the inner environment of protein hydrogels with fluorescence spectroscopy towards understanding their drug delivery capabilities. J Mater Chem B 2020; 8:6964-6974. [DOI: 10.1039/d0tb00818d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Time-resolved fluorescence have used to explore the inner surface and solvation dynamics within protein hydrogels assisting in rationalizing their drug binding and release capabilities.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| | - Manuel M. Mazo
- Cell Therapy Area
- Clinica Universidad de Navarra, and Regenerative Medicine Program
- Cima Universidad de Navarra
- Pamplona
- Spain
| | - Nadav Amdursky
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| |
Collapse
|
25
|
Gökçe Kocabay Ö, İsmail O. Acrylamide based hydrogels in swelling and uptake of methylene blue from aqueous solutions. MAIN GROUP CHEMISTRY 2019. [DOI: 10.3233/mgc-180765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Özlem Gökçe Kocabay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpasa Campus, İstanbul, Turkey
- T.R. Ministry of Culture and Tourism, İstanbul, Turkey
| | - Osman İsmail
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Davutpasa Campus, İstanbul, Turkey
| |
Collapse
|
26
|
Chatterjee S, Hui PCL, Kan CW, Wang W. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019; 9:11658. [PMID: 31406233 PMCID: PMC6690975 DOI: 10.1038/s41598-019-48254-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023] Open
Abstract
A dual-responsive hydrogel (pH/temperature) was developed from a thermos-responsive polymer, pluronic F-127 (PF127), and pH-responsive polymers, N,N,N-trimethyl chitosan (TMC) and polyethylene glycolated hyaluronic acid (PEG-HA). Gallic acid, the principal component of the traditional Chinese drug Cortex Moutan was loaded into the hydrogel (PF127/TMC/PEG-HA) for possible application in textile-based transdermal therapy as Cortex Moutan has been proven to be an effective drug for the treatment of atopic dermatitis (AD). TMC and PEG-HA were synthesized, characterized (1H-NMR and FTIR), and added to the formulations to enhance drug release from the hydrogels, and increase the drug targeting of the carriers. The thermo-responsive properties of the hydrogel were assessed by dynamic viscosity analysis and the tube inversion method, and the pH-responsiveness of the formulation was determined by changing the pH of the external media. Rheology study of the hydrogels showed that complex viscosity and storage/loss moduli for PF127/TMC/PEG-HA hydrogel formulation are higher than PF127 hydrogel. The microstructure analysis by reflection SAXS indicated similar type of frozen inhomogeneity of hydrogel formulations. Various characterizations such as FTIR, SEM, TEM, zeta potential, and degradation of the hydrogel formulation indicated that the PF127/TMC/PEG-HA hydrogel showed better physico-chemical properties and morphology than did the PF127 hydrogel, and drug release was also higher for the PF127/TMC/PEG-HA hydrogel than for PF127. The drug release from hydrogels followed more closely first-order rate model than other rate models.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
27
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
28
|
Machado ND, Fernández MA, Häring M, Saldías C, Díaz DD. Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol. RSC Adv 2019; 9:7601-7609. [PMID: 35521173 PMCID: PMC9061210 DOI: 10.1039/c8ra09655d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
A series of biohydrogels based on mixtures of kappa-carrageenan (κ-carrageenan, κ-C) and gelatin were evaluated as potential soft delivery vehicles for the encapsulation and subsequent release of non-ionic surfactant vesicles (niosomes) loaded with resveratrol (RSV). The niosomes were prepared using a mixture of amphiphilic lipids Tween 80 and Span 80 in water. The results showed that RSV-niosomes did not significantly affect the hydrogelation properties of the biopolymer mixture. Moreover, in vitro drug release experiments from biohydrogels containing RSV-niosomes were successfully carried out under simulated gastrointestinal conditions. The RSV-niosomal liberation profiles from hydrogels were fitted using first order kinetics, Higuchi, Korsmeyer-Peppas and Weibull drug release models, showing the prevalence of diffusion mechanisms in each case. In addition, the RSV release was easily tuned by adjusting the total concentration of κ-C : gelatin. Interestingly, the niosomal-hydrogel system was also found to prevent the trans-to-cis photoisomerization of RSV.
Collapse
Affiliation(s)
- Noelia D Machado
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
| | - Mariana A Fernández
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Marleen Häring
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
| | - César Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile Macul Santiago Chile
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg Universitätstrasse. 31 93040 Regensburg Germany
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna Tenerife Spain
| |
Collapse
|
29
|
Sakthivel M, Franklin D, Sudarsan S, Chitra G, Sridharan T, Guhanathan S. Investigation on pH/salt-responsive multifunctional itaconic acid based polymeric biocompatible, antimicrobial and biodegradable hydrogels. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Abaee A, Mohammadian M, Jafari SM. Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Cassano R, Nicoletta FP, Mellace S, Grande F, Picci N, Trombino S. Liquid crystalline microspheres for 5-fluorouracil specific release. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Nita L, Chiriac A, Bercea M, Asandulesa M, Wolf BA. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions. Int J Biol Macromol 2017; 95:412-420. [DOI: 10.1016/j.ijbiomac.2016.11.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022]
|
33
|
Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:696-716. [PMID: 26762467 PMCID: PMC4945487 DOI: 10.1002/wnan.1389] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Parham Sahandi-Zangabad
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Mirab
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Negar Farajisafiloo
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Shafaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Deepanjan Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical science, Tehran, Iran
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Fariba Dashkhaneh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical Science, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:457-65. [DOI: 10.1016/j.msec.2015.12.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
35
|
Trombino S, Cassano R, Mellace S, Picci N, Loizzo MR, Menichini F, Tundis R. Novel microspheres based on triterpene saponins from the roots of Physospermum verticillatum (Waldst & Kit) (Apiaceae) for the improvement of gemcitabine release. J Pharm Pharmacol 2016; 68:275-81. [DOI: 10.1111/jphp.12509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
This study concerns the preparation and characterization of microspheres based on a mixture of triterpene saponins, from Physospermum verticillatum (Waldst & Kit), as a carrier for the specific release of gemcitabine.
Methods
Triterpene saponins were derivatized with acrylic acid. The obtained polymerizable product was characterized by Fourier transform infrared to confirm the ester linkage. Then, spherical microparticles were prepared by suspension radical copolymerization and impregnated with gemcitabine.
Key findings
Microspheres exhibited a mean diameter of 2.7 μ. The swelling studies showed that particles swell most at pH 6.2, typical of the tumour pathology, than at pH 7.4, miming physiological conditions. The microspheres were loaded with gemcitabine (LE 72.2%). Their release profile showed an initial dot of around 24% and a further release for 24 h.
Conclusions
This carrier could be potentially release the drug in the lung, as a function of different pHs between tumour cells and healthy, reducing the systemic drug toxicity, allowing the reduction of the doses number, increasing the drug half-life and eliminating the problems related to the fast clearance of gemcitabine administration.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Silvia Mellace
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Monica R Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Francesco Menichini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
36
|
Wu SS, Zhang JZ, Yu XH, Cao Y, Wang HJ. BSA-conjugated CdS/Ag 2S quantum dots: synthesis and preliminary antineoplastic assessment. RSC Adv 2014. [DOI: 10.1039/c4ra09526j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Dong K, Dong Y, You C, Xu W, Huang X, Yan Y, Zhang L, Wang K, Xing J. Assessment of the safety, targeting, and distribution characteristics of a novel pH-sensitive hydrogel. Colloids Surf B Biointerfaces 2014; 123:965-73. [DOI: 10.1016/j.colsurfb.2014.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 11/15/2022]
|
38
|
Sitta DL, Guilherme MR, da Silva EP, Valente AJ, Muniz EC, Rubira AF. Drug release mechanisms of chemically cross-linked albumin microparticles: Effect of the matrix erosion. Colloids Surf B Biointerfaces 2014; 122:404-413. [DOI: 10.1016/j.colsurfb.2014.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
|
39
|
Cassano R, Ferrarelli T, Mauro MV, Cavalcanti P, Picci N, Trombino S. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv 2014; 23:1047-56. [DOI: 10.3109/10717544.2014.932862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberta Cassano
- Department of Pharmaceutical Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy and
| | - Teresa Ferrarelli
- Department of Pharmaceutical Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy and
| | | | - Paolina Cavalcanti
- Virology and Microbiology Service of “Annunziata” Hospital, Cosenza, Italy
| | - Nevio Picci
- Department of Pharmaceutical Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy and
| | - Sonia Trombino
- Department of Pharmaceutical Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy and
| |
Collapse
|
40
|
Synthesis, characterization, and acute oral toxicity evaluation of pH-sensitive hydrogel based on MPEG, poly(ε-caprolactone), and itaconic acid. BIOMED RESEARCH INTERNATIONAL 2013; 2013:239838. [PMID: 24364030 PMCID: PMC3864077 DOI: 10.1155/2013/239838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/17/2013] [Accepted: 10/26/2013] [Indexed: 02/05/2023]
Abstract
A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PECA), poly(ethylene glycol) methyl ether methacrylate (MPEGMA, MEG), N,N-methylenebisacrylamide (BIS), and itaconic acid (IA) were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system.
Collapse
|
41
|
Abstract
INTRODUCTION Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. AREAS COVERED Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. EXPERT OPINION Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs, Astellas Pharma, Inc. , 180 Ozumi, Yaizu, Shizuoka 425-0072 , Japan +81 54 627 6861 ; +81 54 627 9918 ;
| | | | | | | |
Collapse
|
42
|
Sitta DLA, Guilherme MR, Garcia FP, Cellet TSP, Nakamura CV, Muniz EC, Rubira AF. Covalent Albumin Microparticles as an Adjuvant for Production of Mucosal Vaccines against Hepatitis B. Biomacromolecules 2013; 14:3231-7. [DOI: 10.1021/bm400859z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danielly L. A. Sitta
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Marcos R. Guilherme
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Francielle P. Garcia
- Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
| | - Thelma S. P. Cellet
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Celso V. Nakamura
- Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
- Programa de pós-graduação
em Ciências Farmacêuticas, Departamento de Ciências
Básicas da Saúde, Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900
Maringá, PR, Brazil
| | - Edvani C. Muniz
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| | - Adley F. Rubira
- Grupo de Materiais Poliméricos
e Compósitos, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo,
5790, CEP 87020-900 Maringá, PR, Brazil
| |
Collapse
|
43
|
Cassano R, Ferrarelli T, Schätzlein AG, Uchegbu IF, Trombino S. Dextran-pegylated microparticles for enhanced cellular uptake of hydrophobic drugs. Eur J Pharm Biopharm 2013; 84:540-8. [DOI: 10.1016/j.ejpb.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/21/2013] [Accepted: 01/26/2013] [Indexed: 10/27/2022]
|
44
|
Injectable extracellular matrix hydrogel developed using porcine articular cartilage. Int J Pharm 2013; 454:183-91. [PMID: 23834831 DOI: 10.1016/j.ijpharm.2013.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/16/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
This work was first development of a delivery system capable of maintaining a sustained release of protein drugs at specific sites by using potentially biocompatible porcine articular cartilage. The prepared porcine articular cartilage powder (PCP) was easily soluble in phosphate-buffered saline. The PCP suspension easily entrapped bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) in pharmaceutical formulations at room temperature. The aggregation of PCP and BSA-FITC was confirmed by dynamic light scattering. When the BSA-FITC-loaded PCP suspension was subcutaneously injected into rats, it gelled and formed an interconnecting three-dimensional PCP structure that allowed BSA to penetrate through it. The amount of BSA-FITC released from the PCP hydrogel was determined in rat plasma and monitored by real-time in vivo molecular imaging. The data indicated sustained release of BSA-FITC for 20 days in vivo. In addition, the PCP hydrogel induced a slight inflammatory response. In conclusion, we showed that the PCP hydrogel could serve as a minimally invasive therapeutics depot.
Collapse
|
45
|
Dong K, Xu W, You CY, Xing JF, Zhang YJ, Gao Y, Wang K. Novel Biodegradable pH/Thermosensitive Hydrogels: Part 1. Preparation and Characterization. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Yang L, Liu H. Stimuli-responsive magnetic particles and their applications in biomedical field. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Synthesis and characterization of pH and temperature sensitive hydrogel based on poly(N-isopropylacrylamide), poly(ɛ-caprolactone), methylacrylic acid, and methoxyl poly(ethylene glycol). Macromol Res 2013. [DOI: 10.1007/s13233-013-1098-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Cassano R, Trombino S, Ferrarelli T, Bilia AR, Bergonzi MC, Russo A, De Amicis F, Picci N. Preparation, characterization and in vitro activities evaluation of curcumin based microspheres for azathioprine oral delivery. REACT FUNCT POLYM 2012. [DOI: 10.1016/j.reactfunctpolym.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. MONATSHEFTE FUR CHEMIE 2012. [DOI: 10.1007/s00706-012-0776-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Abstract
The development of natural biomaterials is not regarded as a new area of science, but has existed for centuries. The use of natural products as a biomaterial is currently undergoing a renaissance in the biomedical field. The major limitations of natural biomaterials are due to the immunogenic response that can occur following implantation and the lot-to-lot variability in molecular structure associated with animal sourcing. The chemical stability and biocompatibility of natural products in the body greatly accounts for their utilization in recent times. The paper succinctly defines biomaterials in terms of natural products and also that natural products as materials in biomedical fields are considerably versatile and promising. The various types of natural products and forms of biomaterials are highlighted. Three main areas of applications of natural products as materials in medicine are described, namely, wound management products, drug delivery systems, and tissue engineering. This paper presents a brief history of natural products as biomaterials, various types of natural biomaterials, properties, demand and economic importance, and the area of application of natural biomaterials in recent times.
Collapse
Affiliation(s)
- Oladeji O. Ige
- Department of Materials Science and Engineering, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Lasisi E. Umoru
- Department of Materials Science and Engineering, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Sunday Aribo
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure 340252, Nigeria
| |
Collapse
|