1
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
2
|
Chen X, Moonshi SS, Nguyen NT, Ta HT. Preparation of protein-loaded nanoparticles based on poly(succinimide)-oleylamine for sustained protein release: a two-step nanoprecipitation method. NANOTECHNOLOGY 2023; 35:055101. [PMID: 37863070 DOI: 10.1088/1361-6528/ad0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Currently, the treatment for acute disease encompasses the use of various biological drugs (BDs). However, the utilisation of BDs is limited due to their rapid clearance and non-specific accumulation in unwanted sites, resulting in a lack of therapeutic efficacy together with adverse effects. While nanoparticles are considered good candidates to resolve this problem, some available polymeric carriers for BDs were mainly designed for long-term sustained release. Thus, there is a need to explore new polymeric carriers for the acute disease phase that requires sustained release of BDs over a short period, for example for thrombolysis and infection. Poly(succinimide)-oleylamine (PSI-OA), a biocompatible polymer with a tuneable dissolution profile, represents a promising strategy for loading BDs for sustained release within a 48-h period. In this work, we developed a two-step nanoprecipitation method to load the model protein (e.g. bovine serum albumin and lipase) on PSI-OA. The characteristics of the nanoparticles were assessed based on various loading parameters, such as concentration, stirring rate, flow rate, volume ratio, dissolution and release of the protein. The optimised NPs displayed a size within 200 nm that is suitable for vasculature delivery to the target sites. These findings suggest that PSI-OA can be employed as a carrier for BDs for applications that require sustained release over a short period.
Collapse
Affiliation(s)
- Xiangxun Chen
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
3
|
Omidian H, Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023; 15:1583. [PMID: 37376032 DOI: 10.3390/pharmaceutics15061583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma. Nanotechnology has also shown promise in enhancing disease diagnosis accuracy, drug availability, and overcoming the blood-brain barrier obstacle in treating medulloblastoma. It is important to acknowledge that while nanotechnology offers significant opportunities, there are inherent risks and limitations associated with the use of nanoparticles. This review provides a comprehensive summary of the existing literature on nanotechnology in pediatric medicine, highlighting its potential to revolutionize pediatric healthcare while also recognizing the challenges and limitations that need to be addressed.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kwadwo Mfoafo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
4
|
|
5
|
Characterization, Cytotoxicity and Anti-Inflammatory Effect Evaluation of Nanocapsules Containing Nicotine. Bioengineering (Basel) 2021; 8:bioengineering8110172. [PMID: 34821738 PMCID: PMC8614771 DOI: 10.3390/bioengineering8110172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Nanotechnology is an emerging field that can be applied in the biomedical area. In this study, Eudragit nanocapsules (NCs) containing nicotine were produced. Nicotine is the main alkaloid found in tobacco and has anti-inflammatory properties. NCs containing nicotine may be used as an adjuvant therapy in the treatment of inflammation in the central nervous system. (2) Methods: Nanocapsules were prepared by the interfacial deposition of the pre-formed polymer method and characterized in terms of zeta potential, diameter, polydispersity index, pH, encapsulation efficiency (EE), stability and sustained release profile. In vitro tests with the PC12 cell line were performed, such as MTT, LIVE/DEAD and ELISA assays, to verify their cytotoxic and anti-inflammatory effects. (3) Results: The nanocapsules presented satisfactory values of the characterization parameters; however, poor encapsulation was obtained for nicotine (8.17% ± 0.47). The in vitro tests showed that the treatment with nanocapsules reduced cell viability, which suggests that the Eudragit or the amount of polymer on top of the cells may be detrimental to them, as the cells were able to survive when treated with bulk nicotine. ELISA showed an increment in the expression of IL-6 and IL-1β, corroborating the hypothesis that NCs were toxic to the cells because of the increase in the levels of these pro-inflammatory cytokines. (4) Conclusions: This study demonstrates that NCs of Eudragit present toxicity. It is therefore necessary to improve NC formulation to obtain better values for the encapsulation efficiency and reduce toxicity of these nanodevices.
Collapse
|
6
|
Ferreira-Nunes R, Cunha-Filho M, Gratieri T, Gelfuso GM. Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids Surf B Biointerfaces 2021; 208:112101. [PMID: 34517218 DOI: 10.1016/j.colsurfb.2021.112101] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
This study proposes developing a topical formulation based on poly-ε-caprolactone (PCL) or methacrylic acid/methyl methacrylate copolymer (EL100) nanoparticles to enable a safer and more effective therapy of alopecia and acne with spironolactone. The effect of the size of the nanoparticle on follicular-targeted drug delivery is also verified. Compatibility studies based on thermal analyses and complementary techniques showed a small interaction of the drug with excipients, which may not compromise the drug stability. PCL nanoparticles of 180.0 ± 1.6 and 126.8 ± 1.0 nm, and EL100 nanoparticles of 102.7 ± 7.1 nm were then prepared. All nanoparticles entrapped more than 75 % of spironolactone, were physically stable, and stabilized the drug for at least 90 days. They were also non-irritant according to HET-CAM tests. Drug release from the nanoparticles was reduced in aqueous buffer media but fast when in contact with oil. Finally, in vitro skin penetration experiments revealed the largest nanoparticles (of 180 nm) targeted drug delivery to the hair follicles 5-fold (p < 0.05) more than the control solution, 2.1-fold (p < 0.05) more than nanoparticles produced with the same polymer (PCL) but with smaller size (123 nm), and 4.9-fold (p < 0.05) more than the 102-nm E100 nanoparticles. In conclusion, follicular targeting can be adjusted according to nanoparticle size, and this work succeeded in obtaining polymeric nanoparticles adequate to enable topical treatment of acne and alopecia with spironolactone.
Collapse
Affiliation(s)
- Ricardo Ferreira-Nunes
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70.910-900, Brasília, DF, Brazil.
| |
Collapse
|
7
|
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage. Polymers (Basel) 2021; 13:polym13132047. [PMID: 34206674 PMCID: PMC8271558 DOI: 10.3390/polym13132047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR–ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25–40 nm range. FTIR chemical characterization showed specific interactions of protein–doxorubicin–enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.
Collapse
|
8
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
9
|
Optimized rapamycin-loaded PEGylated PLGA nanoparticles: Preparation, characterization and pharmacokinetics study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Oil-In-Water Microemulsion Encapsulation of Antagonist Drugs Prevents Renal Ischemia-Reperfusion Injury in Rats. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing new therapeutic drugs to prevent ischemia/reperfusion (I/R)-induced renal injuries is highly pursued. Liposomal encapsulation of spironolactone (SP) as a mineralocorticoid antagonist increases dissolution rate, bioavailability and prevents the drug from degradation. In this context, this work develops a new formulation of oil-in-water type microemulsions to enhance the bioavailability of SP. The size of the SP-loaded microemulsion was about 6.0 nm by dynamic light scattering analysis. Briefly, we investigated the effects of nano-encapsulated SP (NESP) on renal oxidative stress, biochemical markers and histopathological changes in a rat model of renal I/R injury. Forty eight male Wistar rats were divided into six groups. Two groups served as control and injury model (I/R). Two groups received “conventional” SP administration (20 mg/kg) and NESP (20 mg/kg), respectively, for two days. The remaining two groups received SP (20 mg/kg) and NESP (20 mg/kg) two days before induction of I/R. At the end of the experiments, serum and kidneys of rats underwent biochemical, molecular and histological examinations. Our results showed that I/R induces renal oxidative stress, abnormal histological features and altered levels of renal biomarkers. Administration of SP in healthy animals did not cause any significant changes in the measured biochemical and histological parameters compared to the control group. However, SP administration in the I/R group caused some corrections in renal injury, although it could not completely restore I/R-induced renal oxidative stress and kidney damage. On the contrary, NESP administration restored kidney oxidative injury via decreasing renal lipid peroxidation and enhancing glutathione, superoxide dismutase and catalase in kidneys of the I/R group. The deviated serum levels of urea, creatinine, total proteins and uric acid were also normalized by NESP administration. Furthermore, NESP protected against renal abnormal histology features induced by I/R. Therefore, NESP has beneficial effects in preventing kidney damage and renal oxidative stress in a rat model of I/R, which deserves further evaluations in the future.
Collapse
|
11
|
Torabi H, Mehdikhani M, Varshosaz J, Shafiee F. An innovative approach to fabricate a thermosensitive melatonin‐loaded conductive pluronic/chitosan hydrogel for myocardial tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.50327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hadis Torabi
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center Isfahan University of Medical Sciences Isfahan Iran
- Department of Pharmaceutics School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
12
|
Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers (Basel) 2020; 12:polym12081705. [PMID: 32751402 PMCID: PMC7464256 DOI: 10.3390/polym12081705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.
Collapse
|
13
|
Hamdallah SI, Zoqlam R, Erfle P, Blyth M, Alkilany AM, Dietzel A, Qi S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 2020; 584:119408. [PMID: 32407942 DOI: 10.1016/j.ijpharm.2020.119408] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022]
Abstract
Using micro-sized channels to manipulate fluids is the essence of microfluidics which has wide applications from analytical chemistry to material science and cell biology research. Recently, using microfluidic-based devices for pharmaceutical research, in particular for the fabrication of micro- and nano-particles, has emerged as a new area of interest. The particles that can be prepared by microfluidic devices can range from micron size droplet-based emulsions to nano-sized drug loaded polymeric particles. Microfluidic technology poses unique advantages in terms of the high precision of the mixing regimes and control of fluids involved in formulation preparation. As a result of this, monodispersity of the particles prepared by microfluidics is often recognised as being a particularly advantageous feature in comparison to those prepared by conventional large-scale mixing methods. However, there is a range of practical drawbacks and challenges of using microfluidics as a direct micron- and nano-particle manufacturing method. Technological advances are still required before this type of processing can be translated for application by the pharmaceutical industry. This review focuses specifically on the application of microfluidics for pharmaceutical solid nanoparticle preparation and discusses the theoretical foundation of using the nanoprecipitation principle to generate particles and how this is translated into microfluidic design and operation.
Collapse
Affiliation(s)
- Sherif I Hamdallah
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Randa Zoqlam
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Mark Blyth
- School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik / Institute of Microtechnology, Alte Salzdahlumer Str. 203, Geb. 1A, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
14
|
Lammari N, Froiio F, Louaer M, Cristiano MC, Bensouici C, Paolino D, Louaer O, Meniai AH, Elaissari A. Poly(ethyl acrylate-co-methyl Methacrylate-co-trimethylammoniethyl methacrylate chloride) (Eudragit RS100) Nanocapsules as Nanovector Carriers for Phoenix dactylifera L. Seeds Oil: a Versatile Antidiabetic Agent. Biomacromolecules 2020; 21:4442-4456. [DOI: 10.1021/acs.biomac.0c00255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Narimane Lammari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, F-69622 Lyon, France
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria
| | - Francesca Froiio
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, F-69622 Lyon, France
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta” - Building of BioSciences, Viale S. Venuta, I-88100 Germaneto - Catanzaro, Italy
| | - Mehdi Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta” - Building of BioSciences, Viale S. Venuta, I-88100 Germaneto - Catanzaro, Italy
| | - Chawki Bensouici
- Centre de Recherche en Biotechnologie (CRBt), Constantine, Algeria
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta” - Building of BioSciences, Viale S. Venuta, I-88100 Germaneto - Catanzaro, Italy
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, 25000 Constantine, Algeria
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, F-69622 Lyon, France
| |
Collapse
|
15
|
Omarch G, Kippie Y, Mentor S, Ebrahim N, Fisher D, Murilla G, Swai H, Dube A. Comparative in vitro transportation of pentamidine across the blood-brain barrier using polycaprolactone nanoparticles and phosphatidylcholine liposomes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1428-1436. [PMID: 31007068 DOI: 10.1080/21691401.2019.1596923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NPs) have gained importance in addressing drug delivery challenges across biological barriers. Here, we reformulated pentamidine, a drug used to treat Human African Trypanosomiasis (HAT) in polymer based nanoparticles and liposomes and compared their capability to enhance pentamidine penetration across blood brain barrier (BBB). Size, polydispersity index, zeta potential, morphology, pentamidine loading and drug release profiles were determined by various methods. Cytotoxicity was tested against the immortalized mouse brain endothelioma cells over 96 h. Moreover, cells monolayer integrity and transportation ability were examined for 24 h. Pentamidine-loaded polycaprolactone (PCL) nanoparticles had a mean size of 267.58, PDI of 0.25 and zeta potential of -28.1 mV and pentamidine-loaded liposomes had a mean size of 119.61 nm, PDI of 0.25 and zeta potential 11.78. Pentamidine loading was 0.16 µg/mg (w/w) and 0.17 µg/mg (w/w) in PCL NPs and liposomes respectively. PCL nanoparticles and liposomes released 12.13% and 22.21% of pentamidine respectively after 24 h. Liposomes transported 87% of the dose, PCL NPs 66% of the dose and free pentamidine penetration was 63% of the dose. These results suggest that liposomes are comparatively promising nanocarriers for transportation of pentamidine across BBB.
Collapse
Affiliation(s)
- Geofrey Omarch
- a School of Life Sciences , The Nelson Mandela African Institution of Science and Technology , Tengeru , Arusha , Tanzania.,b Tanzania Veterinary Laboratory Agency , Temeke , Dar es Salaam , Tanzania
| | - Yunus Kippie
- c School of Pharmacy , University of the Western Cape , Bellville , South Africa
| | - Shireen Mentor
- d School of Life Sciences , University of the Western Cape , Bellville , South Africa
| | - Naushaad Ebrahim
- c School of Pharmacy , University of the Western Cape , Bellville , South Africa
| | - David Fisher
- d School of Life Sciences , University of the Western Cape , Bellville , South Africa
| | - Grace Murilla
- e Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization , Kikuyu, Nairobi , Kenya
| | - Hulda Swai
- a School of Life Sciences , The Nelson Mandela African Institution of Science and Technology , Tengeru , Arusha , Tanzania
| | - Admire Dube
- c School of Pharmacy , University of the Western Cape , Bellville , South Africa
| |
Collapse
|
16
|
Teixeira M, Pedro M, Nascimento MSJ, Pinto MMM, Barbosa CM. Development and characterization of PLGA nanoparticles containing 1,3-dihydroxy-2-methylxanthone with improved antitumor activity on a human breast cancer cell line. Pharm Dev Technol 2019; 24:1104-1114. [DOI: 10.1080/10837450.2019.1638398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maribel Teixeira
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies, Gandra, Portugal
| | - Madalena Pedro
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies, Gandra, Portugal
| | - Maria São José Nascimento
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Carlos Maurício Barbosa
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Qelliny MR, Aly UF, Elgarhy OH, Khaled KA. Budesonide-Loaded Eudragit S 100 Nanocapsules for the Treatment of Acetic Acid-Induced Colitis in Animal Model. AAPS PharmSciTech 2019; 20:237. [PMID: 31243601 DOI: 10.1208/s12249-019-1453-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues as insufficient drug amount at diseased regions, high adverse effects of released drugs, and unintentionally premature drug release to noninflamed gastrointestinal regions. Herein, the prepared budesonide-loaded Eudragit S 100/Capryol 90 nanocapsules for the treatment of inflammatory bowel disease. Nanocapsules were prepared efficiently by nanoprecipitation technique and composed mainly of the pH-sensitive Eudragit S 100 polymeric coat with a semisynthetic Capryol 90 oily core. Full 31 × 21 factorial design was applied to obtain optimized nanocapsules. Optimal nanocapsules showed mean particle size of 171 nm with lower polydispersity index indicating the production of monodispersed system and negative zeta-potential of - 37.6 mV. Optimized nanocapsules showed high encapsulation efficiency of 83.4% with lower initial rapid release of 10% for first 2 h and higher rapid cumulative release of 72% after 6 h. The therapeutic activity of the prepared budesonide-loaded nanocapsules was evaluated using a rat colitis model. Disease activity score, macroscopical examination, blood glucose level, and histopathological assessment showed marked improvements over that free drug suspension. Obtained results demonstrate that the budesonide-loaded Eudragit S 100 nanocapsules are an effective colon-targeting nanosystem for the treatment of inflammatory bowel disease. Capryol 90 was found to be a successful, and even preferred, alternative to benzyl benzoate, which is commonly employed as the oil core of such nanocapsules.
Collapse
|
18
|
Quérette T, Fleury E, Sintes-Zydowicz N. Non-isocyanate polyurethane nanoparticles prepared by nanoprecipitation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561:244-264. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Nanomedicines are now considered as the new-generation medication in the current era mainly because of their features related to nano size. The efficacy of many drugs in their micro/macro formulations is shown to have poor bioavailability and pharmacokinetics after oral administration. To overcome this predicament, use of natural/synthetic biodegradable polymeric nanoparticles (NPs) have gained prominence in the field of nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, enhanced permeability, better retention time and lower toxicity. For drug delivery, it is essential to have biodegradable nanoparticle formulations for safe and efficient transport and release of drug at the intended site. Moreover, depending on the target organ, a suitable biodegradable polymer can be selected as the drug-carrier for target specific as well as for sustained drug delivery. The aim of this review is to present the current status and scope of natural biodegradable polymers as well as some emerging polymers with special characteristics as suitable carriers for drug delivery applications. The most widely preferred preparation methods are discussed along with their characterization using different analytical techniques. Further, the review highlights significant features of methods developed using natural polymers for drug entrapment and release studies.
Collapse
|
20
|
Qindeel M, Ahmed N, Sabir F, Khan S, Ur-Rehman A. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Dev Ind Pharm 2019; 45:629-641. [PMID: 30633578 DOI: 10.1080/03639045.2019.1569031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Difference of pH that exists between the skin surface and blood circulation can be exploited for transdermal delivery of drug molecules by loading drug into pH-sensitive polymer. Eudragit S100 (ES100), a pH-sensitive polymer having dissolution profile above pH 7.4, is used in oral, ocular, vaginal and topical delivery of drug molecules. However, pH-sensitive potential of this polymer has not been explored for transdermal delivery. The aim of this research work was to exploit the pH-sensitive potential of ES100 as a nanocarrier for transdermal delivery of model drug, that is, Piroxicam. METHODS Simple nanoprecipitation technique was employed to prepare the nanoparticles and response surface quadratic model was applied to get an optimized formulation. The prepared nanoparticles were characterized and loaded into Carbopol 934 based hydrogel. In vitro release, ex vivo permeation and accelerated stability studies were carried out on the prepared formulation. RESULTS Particles with an average size of 25-40 nm were obtained with an encapsulation efficiency of 88%. Release studies revealed that nanoparticles remained stable at acidic pH while sustained release with no initial burst effect was observed at pH 7.4 from the hydrogel. Permeation of these nanocarriers from hydrogel matrix showed significant permeation of Piroxicam through mice skin. CONCLUSION It can be concluded that ES100 based pH-sensitive nanoparticles have potential to be delivered through transdermal route.
Collapse
Affiliation(s)
- Maimoona Qindeel
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Naveed Ahmed
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Fakhara Sabir
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| | - Samiullah Khan
- b Department of Microbiology , Quaid.i.Azam University , Islamabad , Pakistan
| | - Asim Ur-Rehman
- a Department of Pharmacy , Quaid.i.Azam University , Islamabad , Pakistan
| |
Collapse
|
21
|
Zanetti M, Mazon LR, de Meneses AC, Silva LL, de Araújo PHH, Fiori MA, de Oliveira D. Encapsulation of geranyl cinnamate in polycaprolactone nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:198-207. [PMID: 30678904 DOI: 10.1016/j.msec.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 11/17/2022]
Abstract
Geranyl cinnamate is an ester derived from natural compounds that has excellent antibacterial properties but is susceptible to degradation in the presence of oxygen, light, heat, moisture and other aggressive agents, making it unstable. In this work, the encapsulation of geranyl cinnamate in polycaprolactone (PCL) nanoparticles and its antibacterial properties towards Escherichia coli and Staphylococcus aureus were investigated. PCL nanoparticles loaded with geranyl cinnamate were obtained by a miniemulsification/solvent evaporation technique resulting in spherical nanoparticles with an average diameter of 177.6 nm. TGA showed that geranyl cinnamate evaporation was retarded at 20 °C after encapsulation. Aqueous dispersions of geranyl cinnamate-loaded PCL nanoparticles stored at 4 °C presented good colloidal stability over 60 days. Minimum inhibitory concentration (MIC) tests showed that geranyl cinnamate was not released from the PCL nanoparticles in aqueous solution even after 72 h, requiring the use of a trigger (e.g. oil phase, lipase to degrade the polymer matrix) to release the active compound.
Collapse
Affiliation(s)
- Micheli Zanetti
- Department of Food Engineering, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó 89809-000, SC, Brazil.
| | - Laís Regina Mazon
- Department of Food Engineering, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó 89809-000, SC, Brazil
| | - Alessandra Cristina de Meneses
- Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Luciano Luiz Silva
- Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó 89809-000, SC, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Márcio Antônio Fiori
- Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó 89809-000, SC, Brazil; Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó 89809-000, SC, Brazil.
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
22
|
Musumeci T, Cupri S, Bonaccorso A, Impallomeni G, Ballistreri A, Puglisi G, Pignatello R. Technology assessment of new biodegradable poly(R-3-hydroxybutyrate-co
-1,4-butylene adipate) copolymers for drug delivery. J Appl Polym Sci 2018. [DOI: 10.1002/app.47233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Teresa Musumeci
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| | - Sarha Cupri
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Angela Bonaccorso
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Giuseppe Impallomeni
- Consiglio Nazionale delle Ricerche - Istituto per i Polimeri, Compositi e Biomateriali; I-95125, Catania Italy
| | - Alberto Ballistreri
- Dipartimento di Scienze del Farmaco, Sezione di Chimica; Università degli Studi di Catania; I-95125, Catania Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| | - Rosario Pignatello
- Dipartimento di Scienze del Farmaco, Sezione di Tecnologia Farmaceutica; Università degli Studi di Catania; I-95125, Catania Italy
- NANO- i - Research Centre on Ocular Nanotechnology; University of Catania; Catania Italy
| |
Collapse
|
23
|
Sallam MA, Elzoghby AO. Flutamide-Loaded Zein Nanocapsule Hydrogel, a Promising Dermal Delivery System for Pilosebaceous Unit Disorders. AAPS PharmSciTech 2018; 19:2370-2382. [PMID: 29882189 DOI: 10.1208/s12249-018-1087-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022] Open
Abstract
Zein is a naturally occurring corn protein having similarity to skin keratin. Owing to its hydrophobicity and biodegradability, zein nanocarriers are promising drug delivery vehicles for hydrophobic dermatological drugs. In this study, zein-based nanocapsules (ZNCs) were exploited for the first time as dermal delivery carriers for flutamide (FLT), an antiandrogen used for the management of pilosebasceous unit disorders. FLT-loaded ZNC of appropriate particle size and negative surface charge were prepared by nanoprecipitation method. The dermal permeation and skin retention of FLT from ZNCs were studied in comparison to corresponding nanoemulsion (NE) and hydroalcoholic drug solution (HA). ZNCs showed a significantly lower permeation flux compared to NE and HA while increasing the skin retention of FLT. Confocal laser scanning microscopy (CLSM) demonstrated the follicular localization of the fluorescently labeled NCs. The incorporation of NCs in chitosan gel or Carbomer® 934 gel was studied. Carbomer® gel increased the skin retention of FLT compared to chitosan gel. Accordingly, Carbomer® hydrogel embedding FLT-loaded ZNCs is a promising inexpensive, biocompatible dermal delivery nanocarrier for localized therapy of PSU disorders suitable for application on oily skin.
Collapse
|
24
|
Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703493. [PMID: 29468837 DOI: 10.1002/smll.201703493] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Indexed: 05/20/2023]
Abstract
Template synthesis represents an important class of nanofabrication methods. Herein, recent advances in nanomaterial preparation by extrusion through nanoporous membranes that preserve the template membrane without sacrificing it, which is termed as "non-sacrificing template synthesis," are reviewed. First, the types of nanoporous membranes used in nanoporous membrane extrusion applications are introduced. Next, four common nanoporous membrane extrusion strategies: vesicle extrusion, membrane emulsification, precipitation extrusion, and biological membrane extrusion, are examined. These methods have been utilized to prepare a wide range of nanomaterials, including liposomes, emulsions, nanoparticles, nanofibers, and nanotubes. The principle and historical context of each specific technology are discussed, presenting prominent examples and evaluating their positive and negative features. Finally, the current challenges and future opportunities of nanoporous membrane extrusion methods are discussed.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan road, Shanghai, 200240, China
| | - Charles R Martin
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
25
|
Tarhini M, Benlyamani I, Hamdani S, Agusti G, Fessi H, Greige-Gerges H, Bentaher A, Elaissari A. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method. MATERIALS 2018. [PMID: 29518919 PMCID: PMC5872973 DOI: 10.3390/ma11030394] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoparticles are nowadays largely investigated in the field of drug delivery. Among nanoparticles, protein-based particles are of paramount importance since they are natural, biodegradable, biocompatible, and nontoxic. There are several methods to prepare proteins containing nanoparticles, but only a few studies have been dedicated to the preparation of protein- based nanoparticles. Then, the aim of this work was to report on the preparation of bovine serum albumin (BSA)-based nanoparticles using a well-defined nanoprecipitation process. Special attention has been dedicated to a systematic study in order to understand separately the effect of each operating parameter of the method (such as protein concentration, solvent/non-solvent volume ratio, non-solvent injection rate, ionic strength of the buffer solution, pH, and cross-linking) on the colloidal properties of the obtained nanoparticles. In addition, the mixing processes (batch or drop-wise) were also investigated. Using a well-defined formulation, submicron protein-based nanoparticles have been obtained. All prepared particles have been characterized in terms of size, size distribution, morphology, and electrokinetic properties. In addition, the stability of nanoparticles was investigated using Ultraviolet (UV) scan and electrophoresis, and the optimal conditions for preparing BSA nanoparticles by the nanoprecipitation method were concluded.
Collapse
Affiliation(s)
- Mohamad Tarhini
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
- Faculty of Sciences, Lebanese University, B.P. 90656 Jdaidet El-Matn, Lebanon.
| | - Ihsane Benlyamani
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| | - Selim Hamdani
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| | | | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium-EA 7426, Faculté de Médecine Lyon Sud, 69495 Pierre Benite, France.
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
26
|
Geroge JK, Verma PRP, Venkatesan J, Lee JY, Yoon DH, Kim SK, Singh SK. Studies on Core-Shell Nanocapsules of Felodipine: In Vitro-In Vivo Evaluations. AAPS PharmSciTech 2017; 18:2871-2888. [PMID: 28424979 DOI: 10.1208/s12249-017-0770-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed for in vitro-in vivo-in silico simulation studies of experimentally designed (32-factorial) Capmul PG-8-cored, Eudragit RSPO-Lutrol F 127 nanocapsules to ferry felodipine using GastroPlus™. The in silico parameter sensitivity analysis for pharmacokinetic parameters was initially assessed to justify the preparation of felodipine-loaded nanocapsules (FLNs) with enhanced solubility to overcome the bioavailability issues of felodipine. The overall integrated desirability ranged between 0.8187 and 0.9488 for three optimized FLNs when analyzed for mean particle size, zeta potential, encapsulation efficiency, and in vitro dissolution parameters. The morphological evaluation (SEM, TEM, and AFM) demonstrated spherical nanoparticles (200-300 nm). Validated LC-MS/MS analysis demonstrated enhanced relative bioavailability (13.37-fold) of optimized FLN as compared to suspension. The simulated regional absorption of the FLN presented significant absorption from the cecum (26.3%) and ascending colon (20.1%) with overall absorption of 67.4% from the GIT tract. Furthermore, in vitro-in vivo correlation demonstrated the Wagner-Nelson method as the preferred model as compared to mechanistic and numerical deconvolution on the basis of least mean absolute prediction error, least standard error of prediction, least mean absolute error, and maximum correlation coefficient (r 2 = 0.920). The study demonstrated enhanced oral absorption of felodipine-loaded nanocapsules, and GastroPlus™ was found to be an efficient simulation tool for in vitro-in vivo-in silico simulations.
Collapse
|
27
|
Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int J Pharm 2017; 532:66-81. [DOI: 10.1016/j.ijpharm.2017.08.064] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 01/09/2023]
|
28
|
Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting. J Control Release 2017; 260:134-141. [PMID: 28603029 DOI: 10.1016/j.jconrel.2017.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking.
Collapse
|
29
|
Preparation of Drug-Loaded PLGA-PEG Nanoparticles by Membrane-Assisted Nanoprecipitation. Pharm Res 2017; 34:1296-1308. [PMID: 28342057 DOI: 10.1007/s11095-017-2146-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this work is to develop a scalable continuous system suitable for the formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their availability at industrial scale. Innovation in process technology is required to translate laboratory production into mass production while preserving their desired nanoscale characteristics. METHODS Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation reaction. RESULTS The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 5%, respectively. The dexamethasone was released from the nanoparticles following Fickian kinetics. CONCLUSIONS The method allowed to produce polymeric nanoparticles for drug delivery with a high productivity, reproducibility and easy scalability.
Collapse
|
30
|
Balogh A, Farkas B, Pálvölgyi Á, Domokos A, Démuth B, Marosi G, Nagy ZK. Novel Alternating Current Electrospinning of Hydroxypropylmethylcellulose Acetate Succinate (HPMCAS) Nanofibers for Dissolution Enhancement: The Importance of Solution Conductivity. J Pharm Sci 2017; 106:1634-1643. [PMID: 28257818 DOI: 10.1016/j.xphs.2017.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
Abstract
Novel, high-yield alternating current electrospinning (ACES) and direct current electrospinning methods were investigated to prepare high-quality hydroxypropylmethylcellulose acetate succinate (HPMCAS) fibers for the dissolution enhancement of poorly soluble spironolactone. Although HPMCAS is of great pharmaceutical importance as a carrier of marketed solid dispersion-based products, it was found to be unprocessable using electrospinning. Addition of small amounts of polyethylene oxide as aid polymer provided smooth fibers with direct current electrospinning but strongly beaded products with ACES. Solution characteristics were thus modified by introducing further excipients. In the presence of sodium dodecyl sulfate, high-quality, HPMCAS-based fibers were obtained even at higher throughput rates of ACES owing to the change in conductivity (rather than surface tension). Replacement of sodium dodecyl sulfate with non-surface-active salts (calcium chloride and ammonium acetate) maintained the fine quality of nanofibers, confirming the importance of conductivity in ACES process. The HPMCAS-based fibers contained spironolactone in an amorphous form according to differential scanning calorimetry and X-ray powder diffraction. In vitro dissolution tests revealed fast drug release rates depending on the salt used to adjust conductivity. The presented results signify that ACES can be a prospective process for high-scale production of fibrous solid dispersions in which conductivity of solution has a fundamental role.
Collapse
Affiliation(s)
- Attila Balogh
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Balázs Farkas
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Ádám Pálvölgyi
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - András Domokos
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Balázs Démuth
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - György Marosi
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Zsombor Kristóf Nagy
- Organic Chemistry and Technology Department, Budapest University of Technology and Economics, Budapest 1111, Hungary.
| |
Collapse
|
31
|
Ali MA, Kataoka N, Ranneh AH, Iwao Y, Noguchi S, Oka T, Itai S. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes. Chem Pharm Bull (Tokyo) 2017; 65:42-48. [PMID: 28049915 DOI: 10.1248/cpb.c16-00513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Md Ashraf Ali
- Department of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | | | | | | | | | | | | |
Collapse
|
32
|
Varan C, Bilensoy E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1446-1456. [PMID: 28900598 PMCID: PMC5530721 DOI: 10.3762/bjnano.8.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 05/20/2023]
Abstract
Background: Brain tumors are the most common tumors among adolescents. Although some chemotherapeutics are known to be effective against brain tumors based on cell culture studies, the same effect is not observed in clinical trials. For this reason, the development of drug delivery systems is important to treat brain tumors and prevent tumor recurrence. The aim of this study was to develop core-shell polymeric nanoparticles with positive charge by employing a chitosan coating. Additionally, an implantable formulation for the chemotherapeutic nanoparticles was developed as a bioadhesive film to be applied at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less than 100 nm and a net positive surface charge to facilitate cellular internalization of drug-loaded nanoparticles. Hydroxypropyl cellulose films were prepared to incorporate these nanoparticle dispersions to complete the implantable drug delivery system. Results: The diameter of core-shell nanoparticles were in the range of 70-270 nm, depending on the preparation technique, polymer type and coating. Moreover, the chitosan coating significantly altered the surface charge of the nanoparticles to net positive values of +30 to +50 mV. The model drug docetaxel was successfully loaded into all particles, and the drug release rate from the nanoparticles was slowed down to 48 h by dispersing the nanoparticles in a hydroxypropyl cellulose film. Cell culture studies revealed that docetaxel-loaded nanoparticles cause higher cytotoxicity compared to the free docetaxel solution in DMSO. Conclusion: Docetaxel-loaded nanoparticles dispersed in a bioadhesive film were shown to be suitable for application of chemotherapeutics directly to the action site during surgical operation. The system was found to release chemotherapeutics for several days at the tumor site and neighboring tissue. This can be suggested to result in a more effective brain tumor treatment when compared to chemotherapeutics administered as an intravenous bolus infusion.
Collapse
Affiliation(s)
- Cem Varan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Erem Bilensoy
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
33
|
Gharib R, Greige-Gerges H, Jraij A, Auezova L, Charcosset C. Preparation of drug-in-cyclodextrin-in-liposomes at a large scale using a membrane contactor: Application to trans -anethole. Carbohydr Polym 2016; 154:276-86. [DOI: 10.1016/j.carbpol.2016.06.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022]
|
34
|
Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515:757-773. [DOI: 10.1016/j.ijpharm.2016.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
35
|
Othman R, Vladisavljević GT, Nagy ZK, Holdich RG. Encapsulation and Controlled Release of Rapamycin from Polycaprolactone Nanoparticles Prepared by Membrane Micromixing Combined with Antisolvent Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10685-10693. [PMID: 27690454 DOI: 10.1021/acs.langmuir.6b03178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rapamycin-loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a polydispersity index of 0.006-0.073 were fabricated by antisolvent precipitation combined with micromixing using a ringed stainless steel membrane with 10 μm diameter laser-drilled pores. The organic phase composed of 6 g L-1 PCL and 0.6-3.0 g L-1 RAPA in acetone was injected through the membrane at 140 L m-2 h-1 into 0.2 wt % aqueous poly(vinyl alcohol) solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9%, and a drug loading in the NPs of 9-33%. The encapsulation of RAPA was confirmed by UV-vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or RAPA and PCL were present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91% of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide, 10 vol % ethanol, and 2 vol % Tween 20 in phosphate buffered saline. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.
Collapse
Affiliation(s)
- Rahimah Othman
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
- School of Bioprocess Engineering, Universiti Malaysia Perlis , Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Goran T Vladisavljević
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
| | - Zoltan K Nagy
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
- School of Chemical Engineering, Purdue University , West Lafayette, Indiana 47907-2100, United States
| | - R G Holdich
- Department of Chemical Engineering, Loughborough University , Ashby Road, Loughborough, Leicestershire LE11 3TU, U.K
| |
Collapse
|
36
|
Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016; 128-129:99-112. [PMID: 27436182 DOI: 10.1016/j.biochi.2016.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
Nano-formulations of medicinal drugs have attracted the interest of many researchers for drug delivery applications. These nano-formulations enhance the properties of conventional drugs and are specific to the targeted delivery site. Dendrimers, polymeric nanoparticles, liposomes, nano-emulsions and micelles are some of the nano-formulations that are gaining prominence in pharmaceutical industry for enhanced drug formulation. Wide varieties of synthesis methods are available for the preparation of nano-formulations to deliver drugs in biological system. The choice of synthesis methods depend on the size and shape of particulate formulation, biochemical properties of drug, and the targeted site. This article discusses recent developments in nano-formulation and the progressive impact on pharmaceutical research and industries. Additionally, process challenges relating to consistent generation of nano-formulations for drug delivery are discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
37
|
Ji WJ, Ma YQ, Zhang X, Zhang L, Zhang YD, Su CC, Xiang GA, Zhang MP, Lin ZC, Wei LQ, Wang PP, Zhang Z, Li YM, Zhou X. Inflammatory monocyte/macrophage modulation by liposome-entrapped spironolactone ameliorates acute lung injury in mice. Nanomedicine (Lond) 2016; 11:1393-406. [PMID: 27221077 DOI: 10.2217/nnm-2016-0006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM To examine the therapeutic/preventive potential of liposome-encapsulated spironolactone (SP; Lipo-SP) for acute lung injury (ALI) and fibrosis. MATERIALS & METHODS Lipo-SP was prepared by the film-ultrasonic method, and physicochemical and pharmacokinetic characterized for oral administration (10 and 20 mg/kg for SP-loaded liposome; 20 mg/kg for free SP) in a mouse model bleomycin-induced ALI. RESULTS Lipo-SP enhanced bioavailability of SP with significant amelioration in lung pathology. Mechanistically, SP-mediated mineralocorticoid receptor antagonism contributes to inflammatory monocyte/macrophage modulation via an inhibitory effect on Ly6C(hi) monocytosis-directed M2 polarization of alveolar macrophages. Moreover, Lipo-SP at lower dose (10 mg/kg) exhibited more improvement in body weight gain. CONCLUSION Our data highlight Lipo-SP as a promising approach with therapeutic/preventive potential for ALI and fibrosis.
Collapse
Affiliation(s)
- Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China.,Department of Respiratory & Critical Care Medicine, Pingjin Hospital, Tianjin 300162, China
| | - Yong-Qiang Ma
- Department of Respiratory & Critical Care Medicine, Pingjin Hospital, Tianjin 300162, China
| | - Xin Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Li Zhang
- Department of Pharmacognosy & Pharmaceutics, Logistics University of People's Armed Police Forces, Tianjin 300309, China
| | - Yi-Dan Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Cheng-Cheng Su
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Guo-An Xiang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Mei-Ping Zhang
- Department of Pharmacognosy & Pharmaceutics, Logistics University of People's Armed Police Forces, Tianjin 300309, China
| | - Zhi-Chun Lin
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Lu-Qing Wei
- Department of Respiratory & Critical Care Medicine, Pingjin Hospital, Tianjin 300162, China
| | - Peizhong P Wang
- Division of Community Health & Humanities, Faculty of Medicine, Memorial University of Newfoundland, Canada
| | - Zhuoli Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China.,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| |
Collapse
|
38
|
Rodríguez J, Martín MJ, Ruiz MA, Clares B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Elhusseiny AF, Eldissouky A, Al-Hamza AM, Hassan HH. Metal complexes of the nanosized ligand N-benzoyl-N′-(p-amino phenyl) thiourea: Synthesis, characterization, antimicrobial activity and the metal uptake capacity of its ligating resin. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Hassan HHAM, Elhusseiny AF, Elkony YMA, Mansour EME. Synthesis and Characterization of Thermally Stable Ring-Shaped Nanosized Aramides Containing Pendant Substituted Arylamide: Structure-Properties Correlation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.1080100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
George JK, Singh SK, Verma PRP. Morphological and in vitro investigation of core–shell nanostructures of carvedilol using quality by design. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0204-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Characterization, stability and rheology of highly concentrated monodisperse emulsions containing lutein. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Kelidari H, Saeedi M, Akbari J, Morteza-Semnani K, Gill P, Valizadeh H, Nokhodchi A. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces 2015; 128:473-479. [DOI: 10.1016/j.colsurfb.2015.02.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 11/27/2022]
|
44
|
Lee Y, Hanif S, Theato P, Zentel R, Lim J, Char K. Facile Synthesis of Fluorescent Polymer Nanoparticles by Covalent Modification-Nanoprecipitation of Amine-Reactive Ester Polymers. Macromol Rapid Commun 2015; 36:1089-95. [DOI: 10.1002/marc.201500003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/02/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Yeonju Lee
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy and Environment; School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Korea
| | - Sadaf Hanif
- Institute of Organic Chemistry; University of Mainz; Mainz Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry; University of Hamburg; Hamburg Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; University of Mainz; Mainz Germany
| | - Jeewoo Lim
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy and Environment; School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Korea
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy and Environment; School of Chemical and Biological Engineering; Seoul National University; Seoul 151-744 Korea
| |
Collapse
|
45
|
Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J Org Chem 2015; 11:204-12. [PMID: 25815071 PMCID: PMC4362320 DOI: 10.3762/bjoc.11.22] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to design and evaluate hybrid cyclodextrin (CD) nanocapsules intended for the oral delivery of the anticancer agent camptothecin (CPT) in order to maintain drug stability in the body and to improve its eventual bioavailability. For this reason, an amphiphilic cyclodextrin (CD) derivative per-modified on the primary face 6OCAPRO was used as core molecule to form nanocapsules with the nanoprecipitation technique. Nanocapsules were further coated with the cationic polymer chitosan to improve the cellular uptake and interaction with biological membranes through positive surface charge. Nanocapsules were evaluated for their in vitro characteristics such as particle size, zeta potential, drug loading and release profiles followed by cell culture studies with the MCF-7 and Caco-2 cell line evaluating their anticancer efficacy and permeability. The CD nanocapsules were imaged by scanning electron microscopy (SEM). The concentration of CPT entrapped in nanocapsules was determined by reversed phase HPLC. The in vitro release study of CPT was performed with a dialysis bag method under sink conditions mimicking the gastric and intestinal pH. The hydrolytic stability of CPT in nanocapsules was investigated in simulated gastric and intestinal fluids (SGF, SIF). RESULTS The mean particle sizes of both anionic and cationic CPT-loaded nanocapsules were in the range of 180-200 nm with polydispersity indices lower than 0.400 indicating monodisperse size distribution of nanocapsules with favourable potential for intracellular drug delivery to tumour cells. Surface charges of anionic and cationic nanocapsules were demonstrated as -21 mV and +18 mV, respectively. The stability of CPT in simulated release media, SGF and SIF were maintained suggesting the improved protection of the drug molecule from rapid hydrolysis degradation or gastrointestinal pH in nanocapsule oily core. Furthermore CD nanocapsules showed higher anticancer efficacy than CPT solution against the MCF-7 cell line. Permeation of CPT across Caco-2 cells was found to be 3 fold higher when incorporated in hybrid CD nanocapsules compared with a DMSO solution. CONCLUSION Oral CD nanocapsules indicating increased oral bioavailability might be a promising strategy to maintain the physiological stability and to improve the oral bioavailability of problematic anticancer drugs such as CPT which may contribute to patient quality of life and drug efficacy in cancer therapy.
Collapse
Affiliation(s)
- Hale Ünal
- Division of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Division of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Sıhhıye, Ankara, 06100, Turkey
| |
Collapse
|
46
|
Parvizian F, Rahimi M, Hosseini S. Prediction of the Characteristics of a New Sonochemical Reactor Using an Expert Model. CHEM ENG COMMUN 2015. [DOI: 10.1080/00986445.2014.996635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
ElHusseiny AF, Eldissouky A, Al-Hamza AM, Hassan HH. Structure–property relationship studies of copper(I) complexes of nanosized hypodentate ligands and evaluation of their antitumor and antimicrobial activities. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.982551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Amel F. ElHusseiny
- Faculty of Science, Chemistry Department, Alexandria University, Alexandria, Egypt
| | - Ali Eldissouky
- Faculty of Science, Chemistry Department, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Al-Hamza
- Faculty of Science, Chemistry Department, Alexandria University, Alexandria, Egypt
| | - Hammed H.A.M. Hassan
- Faculty of Science, Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
48
|
Hallouard F, Dollo G, Brandhonneur N, Grasset F, Corre PL. Preparation and characterization of spironolactone-loaded nano-emulsions for extemporaneous applications. Int J Pharm 2014; 478:193-201. [PMID: 25448582 DOI: 10.1016/j.ijpharm.2014.11.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
In neonates as well as in adults having swallowing difficulty, oral medication is given through a nasogastric tube making liquid formulations preferable. In this study, we present the high potential of nanometric emulsions formulated by spontaneous surfactant diffusion, as extemporaneous formulations of hydrophobic drug. Spironolactone used as hydrophobic drug model, was incorporated in oil before formulation at a concentration of 13.5mg/g oil. Then, all formulations were evaluated from pharmacotechnical and clinical standpoints, for their use in hospital or community pharmacy. The strength of this new liquid formulation lies on the simplicity, efficiency and reproducibility of their low energy process as on clinical aspects: high dose uniformity, facility to be administered through in nasogastric tube without any retention and a stability of 2 months at least compatible for an extemporaneous use. Moreover, this emulsion presented spironolactone content of 3.75 mg/ml among the most concentrated formulations published.
Collapse
Affiliation(s)
- François Hallouard
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France
| | - Gilles Dollo
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France; Centre Hospitalo-Universitaire de Rennes, Pôle Pharmacie, Rennes, France.
| | - Nolwenn Brandhonneur
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France
| | - Fabien Grasset
- Université de Rennes I, Institut des Sciences Chimiques de Rennes, UMR/CNRS 6226, Rennes, France; CNRS, UMI 3629CNRS/Saint-Gobain, Laboratory for Innovative Key Materials and Structures-Link, National Institute of Material Science (NIMS), GREEN/MANA Room 512, 1-1 Namiki, 305-0044 Tsukuba, Japan
| | - Pascal Le Corre
- Université de Rennes I, Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique, Rennes, France; Centre Hospitalo-Universitaire de Rennes, Pôle Pharmacie, Rennes, France
| |
Collapse
|
49
|
Liu Y, Lu YC, Luo GS. Modified nanoprecipitation method for polysulfone nanoparticles preparation. SOFT MATTER 2014; 10:3414-20. [PMID: 24643577 DOI: 10.1039/c3sm53003e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Towards developing a more universal and productive nanoprecipitation processes, we focus on the preparation of polysulfone (PSF) nanoparticles through instantaneous solvent displacement in a metal membrane contactor between dimethylformamide (DMF) and water. In the original nanoprecipitation process, cubic nuclei can form instantaneously, but slow growth and aggregation have intensive interactions. Moreover, the reservation of DMF may enhance the adhesive effect between polymeric particles, causing severe particle aggregation. To overcome this difficulty, a modified nanoprecipitation method appending a quenching step was proposed. The well-dispersed PSF nanoparticles are successfully obtained when ethyl acetate is introduced. In this way, DMF can be extracted from water solution, thus facilitating the precipitating of PSF. Furthermore, selecting water as the continuous fluid, the particle size can be adjusted simply by tuning the operating parameters, including the PSF concentration in the dispersed fluid and the ratio of two feeds. Compared with previous reports on the continuous nanoprecipitation process for polymeric nanoparticles preparation, this work shows advantages including expanding the adaptability to more functional polymers, providing better flexibility on process or product development independent of the use of surfactant, and presenting a high throughput and easy-to-scale-up equipment platform.
Collapse
Affiliation(s)
- Y Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
50
|
Gaba B, Fazil M, Ali A, Baboota S, Sahni JK, Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv 2014; 22:691-700. [DOI: 10.3109/10717544.2014.898110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|