1
|
Zhang H, Wu A, Nan X, Yang L, Zhang D, Zhang Z, Liu H. The Application and Pharmaceutical Development of Etomidate: Challenges and Strategies. Mol Pharm 2024. [PMID: 39495089 DOI: 10.1021/acs.molpharmaceut.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Etomidate is a synthetic imidazole anesthetic that exerts hypnotic effects by potentiating the action of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) or directly activating the anionic GABA (GABAA) receptor. It stands out among many anesthetics because of its multiple advantages, such as good hemodynamic stability and minimal inhibition of spontaneous respiration. However, its low water solubility and side effects, such as adrenal cortex inhibition and myoclonus, have limited the clinical application of this drug. To address these issues, extensive research has been conducted on the drug delivery of etomidate in recent decades, which has led to the emergence of different etomidate preparations. Despite so many etomidate preparations, so far some of the toxic side effects have not yet been effectively addressed. Herein we discuss the pharmaceutical design of etomidate that may resolve the above problem. We also propose targeted strategies for future research on etomidate preparations and discuss the feasibility of different administration routes and dosage forms to expand the application of this drug. Through this review, we hope to draw more attention to the potential of etomidate and its application challenges and provide valuable insights into the development of new etomidate preparations.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
- Department of Pharmacy, Zigong First People's Hospital, Zigong, Sichuan 643000, People's Republic of China
| | - Ailing Wu
- Department of Anesthesiology, Second People's Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan 641000, People's Republic of China
- Department of Anesthesiology, First People's Hospital of Neijiang, Neijiang, Sichuan 641099, People's Republic of China
| | - Xichen Nan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
2
|
Mateen A, Khan A, Khan I, Ahmad L, Khan A, Salam A. Formulation development, characterization, and evaluation of sorafenib-loaded PLGA-chitosan nanoparticles. Front Pharmacol 2024; 15:1465363. [PMID: 39444599 PMCID: PMC11496126 DOI: 10.3389/fphar.2024.1465363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
The basic purpose of this work was to develop environmentally friendly, biodegradable, and biocompatible polymeric nanoparticles of sorafenib that can effectively release the desired drug in a customized and controlled manner for targeting hepatocellular carcinoma. The solvent evaporation technique was employed for the synthesis of sorafenib-loaded PLGA-chitosan nanoparticles, followed by various experimental specifications and compatibility studies using poloxamer 407 as the stabilizer. The best nanoparticles thus synthesized were selected to be used for cytotoxicity investigations through in vitro and in vivo assessments. For the in vitro drug release tests, the dialysis bag diffusion technique was used. For both chitosan nanoparticles and PLGA loaded with sorafenib, a biphasic release pattern was found, exhibiting a protracted release lasting 10 days after a 24-h burst release. As experimental animals, rabbits were utilized to evaluate different in vivo pharmacokinetic properties of the selected formulations. Plasma samples were extracted with acetonitrile and analyzed through the developed HPLC method. Pharmacokinetic parameters such as AUC0-t, Cmax MRT, Vd, and half-life (t1/2) were enhanced significantly (p ≤ 0.001), while clearance was considerably decreased (p ≤ 0.001) for the chosen synthesized nanoparticles in contrast to the commercially accessible sorafenib formulation (Nexavar®). The cytotoxicity of the reference drug and sorafenib-loaded PLGA and chitosan nanoparticles was calculated by performing an MTT assay against HepG2 cell lines. The developed polymeric sorafenib nanoformulations possess the appropriate physicochemical properties, better targeting, surface morphology, and prolonged release kinetics. The pharmacokinetic parameters were improved significantly when the results were compared with commercially available sorafenib formulations.
Collapse
Affiliation(s)
- Abdul Mateen
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Ismail Khan
- HBS Institute of Healthcare & Allied Health Sciences, Islamabad, Pakistan
| | - Lateef Ahmad
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Amjad Khan
- Department of Pharmacy Kohat University of Science and Technology (KUST) Kohat, Kohat, Pakistan
| | - Abdul Salam
- Institute of Pathology and Diagnostics Medicine, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
3
|
Xu J, Xie Y, Yao Q, Lv L, Chu H. Advances in sustainable nano-biochar: precursors, synthesis methods and applications. NANOSCALE 2024; 16:15009-15032. [PMID: 39041285 DOI: 10.1039/d4nr01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nano-biochar, characterized by its environmentally friendly nature and unique nanostructure, offers a promising avenue for sustainable carbon materials. With its small particle size, large specific surface area, abundant functional groups and tunable pore structure, nano-biochar stands out due to its distinct physical and chemical properties compared to conventional biochar. This paper aims to provide an in-depth exploration of nano-biochar, covering its sources, transformation mechanisms, properties, applications, and areas requiring further research. The discussion begins with an overview of biomass sources for nano-biochar production and the conversion processes involved. Subsequently, primary synthesis methods and strategies for functionalization enhancement are examined. Furthermore, the applications of nano-biochar in catalysis, energy storage, and pollutant adsorption and degradation are explored and enhanced in various fields.
Collapse
Affiliation(s)
- Junchao Xu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Yiming Xie
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Qingdong Yao
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| | - Li Lv
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang Province, PR China
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Maanshan 243000, Anhui Province, PR China.
| |
Collapse
|
4
|
El-Shahed SA, Hassan DH, El-Nabarawi MA, El-Setouhy DA, Abdellatif MM. Polymeric Mixed Micelle-Loaded Hydrogel for the Ocular Delivery of Fexofenadine for Treating Allergic Conjunctivitis. Polymers (Basel) 2024; 16:2240. [PMID: 39204460 PMCID: PMC11359231 DOI: 10.3390/polym16162240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study was designed to formulate a polymeric mixed micelle (PMM) formulation to sustainably release fexofenadine (FEX) to treat allergic conjunctivitis effectively. A 32 factorial design was employed where the studied factors were PL90G amount (X1) and Pluronic (F127 and P123) mixture ratio (X2), and the dependent variables were entrapment efficacy (EE, Y1, %), particle size (PS, Y2, nm), zeta potential (ZP, Y3, mV), and the percent of drug released after 6 h (Q6h, Y4, %). The optimized formula was blended with a hydrogel base to develop an FEX-PMM hydrogel, where the safety and efficiency of this hydrogel were evaluated using in vivo studies. The EE% of FEX-PMM ranged from 62.15 ± 2.75 to 90.25 ± 1.48%, the PS from 291.35 ± 6.43 to 467.95 ± 3.60 nm, the ZP from -5.41 ± 0.12 to -9.23 ± 0.23 mV, and the Q6h from 50.27 ± 1.11 to 95.38 ± 0.92%. The Draize test results confirmed the safety of the FEX-PMM hydrogel. Furthermore, the FEX-PMM hydrogel showed rapid recovery in animals with induced allergic conjunctivitis compared to the free drug hydrogel. These results assure PMM's capability to deliver FEX to the conjunctival surface in a sustained pattern, consequently achieving better therapeutic outcomes.
Collapse
Affiliation(s)
- Sherouk A. El-Shahed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt; (S.A.E.-S.); (D.H.H.)
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University El-Kasr El-Aini Street, Cairo 11562, Egypt; (M.A.E.-N.); (D.A.E.-S.)
| | - Menna M. Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt
| |
Collapse
|
5
|
Cerqueira R, Domingues C, Veiga F, Jarak I, Figueiras A. Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer. Int J Mol Sci 2024; 25:7577. [PMID: 39062820 PMCID: PMC11276776 DOI: 10.3390/ijms25147577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer treatment with a staggering number of molecular targets involved in tumor initiation, promotion, and progression. Despite being promising, its therapeutic potential is hindered due to its hydrophobic nature. Hence, the ongoing development of optimal delivery strategies based on nanotechnology, such as polymeric micelles (PMs), to overcome issues in CUR solubilization and delivery to tumor cells. In this sense, this study aimed to optimize the development and stability of CUR-loaded P123:F127:TPGS PMs (PFT:CUR) based on the thin-film approach and evaluate their therapeutic potential in CRC. Overall, the results revealed that the solubility of CUR was improved when room temperature was used to hydrate the film. The PFT-CUR hydrated at room temperature presents an average hydrodynamic diameter of 15.9 ± 0.3 nm with a polydispersity index (PDI) of 0.251 ± 0.103 and a zeta potential of -1.5 ± 1.9 mV, and a 35.083 ± 1.144 encapsulation efficiency (EE%) and 3.217 ± 0.091 drug loading (DL%) were observed. To ensure the stability of the optimized PFT-CUR nanosystems, different lyophilization protocols were tested, the use of 1% of glycine (GLY) being the most promising protocol. Regarding the critical micellar concentration (CMC), it was shown that the cryoprotectant and the lyophilization process could impact it, with an increase from 0.064 mg/mL to 0.119 mg/mL. In vitro results showed greater cytotoxic effects when CUR was encapsulated compared to its free form, yet further analysis revealed the heightened cytotoxicity could be attributed to the system itself. Despite challenges, the developed CUR-loaded PM shows potential as an effective therapeutic agent for CRC. Nonetheless, the system must undergo refinements to enhance drug entrapment as well as improve overall stability.
Collapse
Affiliation(s)
- Rita Cerqueira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CI MAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Kumari NU, Chary PS, Pardhi E, Mehra NK. Tailoring micellar nanocarriers for pemetrexed in breast cancer: design, fabrication and in vitro evaluation. Nanomedicine (Lond) 2024; 19:1145-1166. [PMID: 38700294 PMCID: PMC11418286 DOI: 10.2217/nnm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: To investigate the pemetrexed encapsulated polymeric mixed micelles (PMMs) against breast cancer treatment.Methods: We meticulously optimized the formulation and conducted extensive characterizations, including photon correlation spectroscopy for micellization, advanced analytical techniques and in vitro cell line assessments.Results: The PMM exhibited favorable characteristics, with a spherical morphology, hydrodynamic particle size of 19.58 ± 0.89 nm, polydispersity index of 0.245 ± 0.1, and a surface charge of -9.70 ± 0.61 mV. Encapsulation efficiency and drug payload reached 96.16 ± 0.37% and 4.5 ± 0.32%, respectively. Cytotoxicity analysis indicated superior efficacy of the PMM over the drug solution.Conclusion: The PMM formulation exhibited controlled release of the drug, and demonstrated enhanced cytotoxicity against breast cancer cells, highlighting its therapeutic promise.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
7
|
Ghadi R, Kuche K, Date T, Nallamothu B, Chaudhari D, Jain S. Unlocking apoptosis in triple negative breast cancer: Harnessing "glutamine trap" to amplify the efficacy of lapatinib-loaded mixed micelles. BIOMATERIALS ADVANCES 2024; 159:213822. [PMID: 38442461 DOI: 10.1016/j.bioadv.2024.213822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Certain aggressive cancers, such as triple-negative breast cancer (TNBC), heavily bank on glutamine for their proliferation and survival. In this context, TNBC functions as a "glutamine trap," extracting circulating glutamine at a rate surpassing that of any other organ. Moreover, the overexpression of Alanine, Serine, Cysteine Transporter 2 (ASCT2), a key player in glutamine uptake, further underscores the significance of targeted therapy to enhance TNBC treatment. This led to the exploration of a novel approach involving hydrophobized Pluronic-based mixed micelles achieved through the use of docosahexaenoic acid and stapled with glutamine for displaying inherent ASCT2 targeting ability-a formulation termed LPT G-MM. LPT G-MM exhibited optimal characteristics, including a size of 163.66 ± 10.34 nm, a polydispersity index of 0.237 ± 0.083, and an enhanced drug loading capacity of approximately 15 %. Transmission electron microscopy validated the spherical shape of these micelles. In vitro release studies demonstrated drug release in a sustained manner without the risk of hemolysis. Importantly, LPT G-MM displayed heightened cellular uptake, increased cytotoxicity, a lower IC50 value, elevated reactive oxygen species, induced mitochondrial membrane depolarization, and a greater apoptosis index in TNBC cell lines compared to free LPT. The pharmacokinetic profile of LPT G-MM revealed a substantial rise in half-life (t1/2) by approximately 1.48-fold and an elevation in the area under the curve [AUC(0→∞)] by approximately 1.19-fold. Moreover, there was a significant reduction in the percentage of tumor volume by approximately 7.26-fold, along with decreased serum toxicity markers compared to free LPT. In summary, LPT G-MM demonstrated promising potential in boosting payload capacities and targeting specificity in the context of TNBC treatment.
Collapse
Affiliation(s)
- Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
8
|
Sontakke A, Dighe S, Sharma R, Yadav V, Jain S. Harnessing the potential of fatty Acid-Surfactant-Based micellar gel for enhanced topical delivery of Apremilast in psoriasis treatment. Int J Pharm 2024; 655:124026. [PMID: 38518872 DOI: 10.1016/j.ijpharm.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Apremilast (APR) is a potent anti-psoriatic agent that inhibits the phosphodiesterase 4 enzyme. Due to the poor oral bioavailability and associated systemic side effects the clinical applicability of APR has been constrained. Nanotechnology-based carrier system presents a novel option to increase the efficacy of the topical treatment of APR. The current investigation deals with the development of fatty acid-surfactant conjugate-based hybrid mixed micellar gel (HMMG) for the topical delivery of APR. The developed micelles exhibited an average size of 83.59 ± 4.46 nm, PDI of 0.239 ± 0.047, % entrapment efficiency of ∼ 94.78 ± 3.98 %, with % practical drug loading of ∼11.37 ± 3.14 %. TEM analysis revealed the spherical shape of micelles. The hybrid micelles were further loaded in a carbopol®934P gel base for ease of application. Ex vivo permeation study revealed enhanced permeation and ∼ 38-fold higher retention in deeper layers of skin from a hybrid micellar gel. In vivo, assessment demonstrated augmented efficacy of APR-HMMG as compared to 0.1 % betamethasone valerate. Also, APR-HMMG showed no sign of irritation, suggesting superior safety as a topical application. Thus, the proposed formulation strategy represents a viable avenue for enhancing the therapeutic efficacy of various anti-psoriatic moieties.
Collapse
Affiliation(s)
- Arun Sontakke
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
9
|
Sweed NM, Dawoud MHS, Aborehab NM, Ezzat SM. An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Sci Rep 2024; 14:2073. [PMID: 38267567 PMCID: PMC10808409 DOI: 10.1038/s41598-024-52143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.
Collapse
Affiliation(s)
- Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
10
|
Talib H, Mehmood A, Amjad MS, Mustafa A, Khan MAR, Raffi M, Khan RT, Ahmad KS, Qureshi H. Antibacterial, antioxidant, and anticancer potential of green fabricated silver nanoparticles made from Viburnum grandiflorum leaf extract. BOTANICAL STUDIES 2024; 65:4. [PMID: 38252177 PMCID: PMC10803688 DOI: 10.1186/s40529-024-00411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 μg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 μg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.
Collapse
Affiliation(s)
- Hina Talib
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan.
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, 12500, Pakistan.
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Amna Mustafa
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | | | - Muhammad Raffi
- Department of Materials Engineering, National Institute of Lasers and Optronics (NILOP), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan
| | - Rizwan Taj Khan
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| |
Collapse
|
11
|
Ghadi R, Pandey PK, Gabhale A, Wadikar A, Dharshini M, Kuche K, Date T, Jain S. Genipin-crosslinked albumin nanoparticles containing neratinib and silibinin: A dual-death therapy for triple negative breast cancer. Int J Pharm 2023; 648:123570. [PMID: 37918494 DOI: 10.1016/j.ijpharm.2023.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC50 values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe2+ activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.
Collapse
Affiliation(s)
- Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Pawan Kumar Pandey
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Akash Gabhale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Aaradhya Wadikar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - M Dharshini
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
12
|
Sadri E, Khoee S, Moayeri S, Haji Ali B, Pirhajati Mahabadi V, Shirvalilou S, Khoei S. Enhanced anti-tumor activity of transferrin/folate dual-targeting magnetic nanoparticles using chemo-thermo therapy on retinoblastoma cancer cells Y79. Sci Rep 2023; 13:22358. [PMID: 38102193 PMCID: PMC10724238 DOI: 10.1038/s41598-023-49171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Malignant neoplasms are one of the main causes of death, especially in children, on a global scale, despite strenuous efforts made at advancing both diagnostic and therapeutic modalities. In this regard, a new nanocarrier Vincristine (VCR)-loaded Pluronic f127 polymer-coated magnetic nanoparticles conjugated with folic acid and transferrin (PMNP-VCR-FA-TF) were synthesized and characterized by various methods. The cytotoxicity of these nanoparticles was evaluated in vitro and ex vivo conditions. The in vitro anti-tumor effect of the nanoparticles was evaluated by colony formation assay (CFA) and reactive oxygen species (ROS) in Y79 cell line. The results showed that nanoparticles with two ligands conferred greater toxicity toward Y79 cancer cells than ARPE19 normal cells. Under an alternating magnetic field (AMF), these nanoparticles demonstrated a high specific absorption rate. The CFA and ROS results indicated that the AMF in combination with PMNP-VCR-FA-TF conferred the highest cytotoxicity toward Y79 cells compared with other groups (P < 0.05). PMNP-VCR-FA-TF could play an important role in converting externally applied radiofrequency energy into heat in cancer cells. The present study confirmed that dual targeting chemo-hyperthermia using PMNP-VCR-FA-TF was significantly more effective than hyperthermia or chemotherapy alone, providing a promising platform for precision drug delivery as an essential component in the chemotherapy of retinoblastoma.
Collapse
Affiliation(s)
- Elaheh Sadri
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Samaneh Moayeri
- Department of Polymer Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Haji Ali
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Shah VM, Rizvi S, Smith A, Tsuda M, Krieger M, Pelz C, MacPherson K, Eng J, Chin K, Munks MW, Daniel CJ, Al-Fatease A, Yardimci GG, Langer EM, Brody JR, Sheppard BC, Alani AWG, Sears RC. Micelle-Formulated Juglone Effectively Targets Pancreatic Cancer and Remodels the Tumor Microenvironment. Pharmaceutics 2023; 15:2651. [PMID: 38139993 PMCID: PMC10747591 DOI: 10.3390/pharmaceutics15122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic cancer remains a formidable challenge due to limited treatment options and its aggressive nature. In recent years, the naturally occurring anticancer compound juglone has emerged as a potential therapeutic candidate, showing promising results in inhibiting tumor growth and inducing cancer cell apoptosis. However, concerns over its toxicity have hampered juglone's clinical application. To address this issue, we have explored the use of polymeric micelles as a delivery system for juglone in pancreatic cancer treatment. These micelles, formulated using Poloxamer 407 and D-α-Tocopherol polyethylene glycol 1000 succinate, offer an innovative solution to enhance juglone's therapeutic potential while minimizing toxicity. In-vitro studies have demonstrated that micelle-formulated juglone (JM) effectively decreases proliferation and migration and increases apoptosis in pancreatic cancer cell lines. Importantly, in-vivo, JM exhibited no toxicity, allowing for increased dosing frequency compared to free drug administration. In mice, JM significantly reduced tumor growth in subcutaneous xenograft and orthotopic pancreatic cancer models. Beyond its direct antitumor effects, JM treatment also influenced the tumor microenvironment. In immunocompetent mice, JM increased immune cell infiltration and decreased stromal deposition and activation markers, suggesting an immunomodulatory role. To understand JM's mechanism of action, we conducted RNA sequencing and subsequent differential expression analysis on tumors that were treated with JM. The administration of JM treatment reduced the expression levels of the oncogenic protein MYC, thereby emphasizing its potential as a focused, therapeutic intervention. In conclusion, the polymeric micelles-mediated delivery of juglone holds excellent promise in pancreatic cancer therapy. This approach offers improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Vidhi M. Shah
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Syed Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 South Moody Avenue, Portland, OR 97201, USA
| | - Alexander Smith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Motoyuki Tsuda
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carl Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kevin MacPherson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jenny Eng
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael W. Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Adel Al-Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Galip Gürkan Yardimci
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ellen M. Langer
- Cancer Early Detection Advanced Research Center, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R. Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Surgery, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Surgery, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Adam WG. Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 South Moody Avenue, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Rosalie C. Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; (V.M.S.)
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
14
|
Sakhi M, Khan A, Khan I, Ahmad Khan S, Irum Khan S, Ali Khattak M, Uddin MN, Kazi M, Nasir F. Effect of polymeric stabilizers on the size and stability of PLGA paclitaxel nanoparticles. Saudi Pharm J 2023; 31:101697. [PMID: 37559864 PMCID: PMC10407900 DOI: 10.1016/j.jsps.2023.101697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The aim of this study is to formulate polymeric paclitaxel nanoparticles with various stabilizers to improve solubility, enhance stability, maximize therapeutic efficacy and minimize detrimental toxicities of paclitaxel. In this study, trastuzumab-guided poly lactic-co-glycolic acid (PLGA)-loaded paclitaxel nanoparticles were formulated with pluronic F-127, polyvinyl alcohol (PVA), poloxamer 407, Tween-80, span 20, sodium dodecyl sulfate (SDS), and sodium lauryl sulfate (SLS) at different concentrations (0.5, 1, 1.5 and 2%) using the solvent evaporation method. The nanoparticles were evaluated for physicochemical characteristics and short and long-term stability. The optimum particle size (190 nm ± 12.42 to 350 nm ± 11.1), PDI (0.13 ± 0.02 to 0.2 ± 0.01), surface charge (-19.1mv ± 1.5 to -40.4mv ± 1.6), drug loading (2.43 to 9.5 %) and encapsulation efficiency (greater than 80 %) were obtained with these stabilizers while keeping the polymer concentration, temperature, probe size, amplitude and sonication time constant. The nanoformulations were stably stored at 4 °C. The nanoformulations of paclitaxel with pluronic F-127, polyvinyl alcohol (PVA), and poloxamer 407 were found to be more soluble, stable, uniform in physicochemical properties, and efficient in drug loading and encapsulation for improved therapeutic effects.
Collapse
Affiliation(s)
- Mirina Sakhi
- HBS College of Pharmacy, Islamabad 45500, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi 25120, Pakistan
| | - Ismail Khan
- Department of Pharmacy, University of Swabi, Swabi 25120, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Sumaira Irum Khan
- Department of Pharmacy, Mirpur University of Science and Technology, AJK 10250, Pakistan
| | - Muzna Ali Khattak
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO BOX 2457, Riyadh 11451, Saudi Arabia
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
15
|
Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A, Marisetti AL, Gupta MM, Kazmi I, Alzarea SI, Almalki WH, Gupta G. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond) 2023; 18:1383-1398. [PMID: 37702303 DOI: 10.2217/nnm-2023-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.
Collapse
Affiliation(s)
- Nikita Kaushal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Kamini Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
| |
Collapse
|
16
|
Mod Razif MRF, Chan SY, Widodo RT, Chew YL, Hassan M, Hisham SA, Rahman SA, Ming LC, Tan CS, Lee SK, Liew KB. Optimization of a Luteolin-Loaded TPGS/Poloxamer 407 Nanomicelle: The Effects of Copolymers, Hydration Temperature and Duration, and Freezing Temperature on Encapsulation Efficiency, Particle Size, and Solubility. Cancers (Basel) 2023; 15:3741. [PMID: 37509402 PMCID: PMC10378229 DOI: 10.3390/cancers15143741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Luteolin is a flavonoid compound that has been widely studied for its various anti-cancer properties and sensitization to multidrug-resistant cells. However, the limited solubility and bioavailability of Lut hindered its potential clinical use. Theoretically, the combination of this compound with vitamin E TPGS and poloxamer 407 can produce a synergistic effect to enhance tumor apoptosis and P-glycoprotein inhibition. This study aimed to develop and optimize vitamin E TPGS/Poloxamer 407 micelles loaded with luteolin through investigating certain factors that can affect the encapsulation efficiency and particle size of the micelle. METHODS A micelle was prepared using the film hydration method, and the micellar solution was lyophilized. The cake formed was analyzed. The factors investigated include the concentrations of the surfactants, ratio of vitamin E TPGS/Poloxamer 407, temperature of the hydrating solution, duration of hydration, and freezing temperature before lyophilization. The effects of these factors on the encapsulation efficiency and particle size of the micelle were also studied. The encapsulation efficiency was measured using a UV-Vis spectrophotometer, while particle size was measured using dynamic light scattering. RESULTS The optimized micelle was found to have 90% encapsulation efficiency with a particle size of less than 40 nm, which was achieved using a 10% concentration of surfactants at a vitamin E TPGS/Poloxamer 407 ratio of 3:1. The optimized temperature for hydrating the micellar film was 40 °C, the optimized mixing time was 1 h, and the optimized freezing temperature was -80 °C. The solubility of the luteolin-loaded micelles increased 459-fold compared to pure Lut in water. The critical micelle concentration of the vitamin E TPGS/Poloxamer 407 micelle was 0.001 mg/mL, and the release study showed that luteolin-loaded micelles exhibited sustained release behavior. The release of luteolin from a micelle was found to be higher in pH 6.8 compared to pH 7.4, which signified that luteolin could be accumulated more in a tumor microenvironment compared to blood. CONCLUSION This study demonstrated that several factors need to be considered when developing such nanoparticles in order to obtain a well-optimized micelle.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | | | - Yik-Ling Chew
- Faculty of Pharmaceutical Science, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia
| |
Collapse
|
17
|
Gutiérrez-Saucedo RA, Gómez-López JC, Villanueva-Briseño AA, Topete A, Soltero-Martínez JFA, Mendizábal E, Jasso-Gastinel CF, Taboada P, Figueroa-Ochoa EB. Pluronic F127 and P104 Polymeric Micelles as Efficient Nanocarriers for Loading and Release of Single and Dual Antineoplastic Drugs. Polymers (Basel) 2023; 15:polym15102249. [PMID: 37242824 DOI: 10.3390/polym15102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The potential application of biodegradable and biocompatible polymeric micelles formed by Pluronic F127 and P104 as nanocarriers of the antineoplastic drugs docetaxel (DOCE) and doxorubicin (DOXO) is presented in this work. The release profile was carried out under sink conditions at 37 °C and analyzed using the Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin diffusion models. The cell viability of HeLa cells was evaluated using the proliferation cell counting kit CCK-8 assay. The formed polymeric micelles solubilized significant amounts of DOCE and DOXO, and released them in a sustained manner for 48 h, with a release profile composed of an initial rapid release within the first 12 h followed by a much slower phase the end of the experiments. In addition, the release was faster under acidic conditions. The model that best fit the experimental data was the Korsmeyer-Peppas one and denoted a drug release dominated by Fickian diffusion. When HeLa cells were exposed for 48 h to DOXO and DOCE drugs loaded inside P104 and F127 micelles, they showed lower IC50 values than those reported by other researchers using polymeric nanoparticles, dendrimers or liposomes as alternative carriers, indicating that a lower drug concentration is needed to decrease cell viability by 50%.
Collapse
Affiliation(s)
- Ramón A Gutiérrez-Saucedo
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Julio C Gómez-López
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Adrián A Villanueva-Briseño
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| | - J F Armando Soltero-Martínez
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Eduardo Mendizábal
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Carlos F Jasso-Gastinel
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas e Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Edgar B Figueroa-Ochoa
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
18
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Rana R, Chauhan D, Yadav P, Mishra K, Kedar AS, Kalleti N, Gayen JR, Wahajuddin M, Rath SK, Mugale MN, Mitra K, Sharma D, Chourasia MK. Enhanced apoptosis and mitochondrial cell death by paclitaxel-loaded TPP-TPGS 1000-functionalized nanoemulsion. Nanomedicine (Lond) 2023; 18:343-366. [PMID: 37140535 DOI: 10.2217/nnm-2022-0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ashwini S Kedar
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Navodayam Kalleti
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Srikanta K Rath
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
Qi Z, Shi J, Song Y, Deng Y. A novel micellar carrier to reverse multidrug resistance of tumours: TPGS derivatives with end-grafted cholesterol. J Drug Target 2023; 31:537-553. [PMID: 37092957 DOI: 10.1080/1061186x.2023.2205614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
D-α-tocopherol polyethylene glycol succinate (TPGS) has good biocompatibility, low immunogenicity, prolonged circulation time, and it can reverse multidrug resistance of tumours. However, the micelle concentration (CMC) of TPGS is too high (0.2 mg/mL) to develop the formulation of the micelle. In this study, TPGS was modified with cholesterol to obtain a new carrier material, TPGS-CHMC. The CMC of TPGS-CHMC was 2 μg/mL, which was extremely lower than that of TPGS. Docetaxel (DTX)-loaded TPGS-CHMC micelles (TPGS-CHMC/DTX) exhibited an average size of approximately 13 nm, a zeta potential of approximately -4.66 mV, and high encapsulation efficiency (99.2 ± 0.6%). TPGS-CHMC reduced mitochondrial membrane potential and cell membrane fluidity in paclitaxel-resistant ovarian cancer cells (A2780/T). In vivo, DiR-loaded TPGS-CHMC micelles were selectively distributed in A2780/T tumour-bearing nude mice. In A2780/T tumour-bearing nude mice, TPGS-CHMC/DTX micelles displayed significantly higher anti-tumour activity and less toxicity than the free DTX solution. In summary, TPGS-CHMC has various advantages, and provides a new option for developing functional polymeric micelles.
Collapse
Affiliation(s)
- Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia Shi
- The first affiliated hospital of Jinzhou medical university, Jinzhou, Liaoning, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
20
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tzankova V, Yoncheva K. Double-Loaded Doxorubicin/Resveratrol Polymeric Micelles Providing Low Toxicity on Cardiac Cells and Enhanced Cytotoxicity on Lymphoma Cells. Pharmaceutics 2023; 15:pharmaceutics15041287. [PMID: 37111772 PMCID: PMC10143567 DOI: 10.3390/pharmaceutics15041287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The anthracycline antibiotic doxorubicin is a well-known antitumour agent, however its cardiotoxicity is a significant obstacle to therapy. The aim of the present study was to improve the safety of doxorubicin through its simultaneous encapsulation with a cardioprotective agent (resveratrol) in Pluronic micelles. The formation and double-loading of the micelles was performed via the film hydration method. Infrared spectroscopy proved the successful incorporation of both drugs. X-ray diffraction analyses revealed that resveratrol was loaded in the core, whereas doxorubicin was included in the shell. The double-loaded micelles were characterised by a small diameter (26 nm) and narrow size distribution, which is beneficial for enhanced permeability and retention effects. The in vitro dissolution tests showed that the release of doxorubicin depended on the pH of the medium and was faster than that of resveratrol. In vitro studies on cardioblasts showed the opportunity to reduce the cytotoxicity of doxorubicin through the presence of resveratrol in double-loaded micelles. Higher cardioprotection was observed when the cells were treated with the double-loaded micelles compared with referent solutions with equal concentrations of both drugs. In parallel, treatments of L5178 lymphoma cells with the double-loaded micelles revealed that the cytotoxic effect of doxorubicin was enhanced. Thus, the study demonstrated that the simultaneous delivery of doxorubicin and resveratrol via the micellar system enabled the cytotoxicity of doxorubicin in lymphoma cells and lowered its cardiotoxicity in cardiac cells.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
21
|
Patel HS, Kunjadiya A, Rahdar A, Sharma RK. Pluronic-phosphatidylcholine mixed polymeric nanomicellar formulation for curcumin drug bioavailability: Design, fabrication, characterization and in vitro bioinvestigations. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Curcumin (CUR), obtained from turmeric, has biological advantages, but low aqueous solubility restricts its pharmaceutical applications. In the present work, a mixed polymeric nanomicellar formulation composed of bioactive Pluronic P123, Pluronic F68, and biocompatible phosphatidylcholine (PC) was designed and examined as the nanovehicles for overcoming the major barriers of poor bioavailability related to CUR. The CUR-incorporated P123/F68/PC mixed nanomicellar formulation (CUR-PFPC) was fabricated by the thin film technique and investigated in vitro. The fabrication of CUR-PFPC was optimized through D-optimal design. CUR-PFPC morphology, size distribution, zeta potential, drug encapsulating and incorporation efficiency, compatibility, and crystallinity were characterized using DLS, TEM, FTIR, XRD, and DSC analysis. Moreover, the cumulative drug release, antioxidant assays, and antimicrobial properties of formulations were also examined. The CUR-PFPC formulation exhibited a micellar size of 67.43 nm, a zeta potential of −15.1 mV, a PDI of 0.528, and a spherical shape. The mixed micellar formulation showed excellent compatibility and stability. The in vitro release profile of the CUR-PFPC reached over 60% in comparison to the 95% release of CUR, indicating a slow and sustained release. The DPPH assay showed that the CUR-PFPC had 96% antioxidant activity. Results show that the CUR-PFPC has powerful antibacterial and antifungal properties, which separates it from the free CUR. These findings suggest that the fabricated CUR-PFPC mixed polymeric nanomicellar formulation is thermodynamically and kinetically stable and may be considered a novel nanovehicle for hydrophobic antimicrobial drugs like CUR. Graphical Abstract [Formula: see text]
Collapse
Affiliation(s)
- Hemil S Patel
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Anju Kunjadiya
- Indukaka Ipcowala Center for Interdisciplinary Studies in Science and Technology, Sardar Patel University, Anand, Gujarat, India
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Rakesh K Sharma
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
22
|
Gautam S, Marwaha D, Singh N, Rai N, Sharma M, Tiwari P, Urandur S, Shukla RP, Banala VT, Mishra PR. Self-Assembled Redox-Sensitive Polymeric Nanostructures Facilitate the Intracellular Delivery of Paclitaxel for Improved Breast Cancer Therapy. Mol Pharm 2023; 20:1914-1932. [PMID: 36848489 DOI: 10.1021/acs.molpharmaceut.2c00673] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A two-tier approach has been proposed for targeted and synergistic combination therapy against metastatic breast cancer. First, it comprises the development of a paclitaxel (PX)-loaded redox-sensitive self-assembled micellar system using betulinic acid-disulfide-d-α-tocopheryl poly(ethylene glycol) succinate (BA-Cys-T) through carbonyl diimidazole (CDI) coupling chemistry. Second, hyaluronic acid is anchored to TPGS (HA-Cys-T) chemically through a cystamine spacer to achieve CD44 receptor-mediated targeting. We have established that there is significant synergy between PX and BA with a combination index of 0.27 at a molar ratio of 1:5. An integrated system comprising both BA-Cys-T and HA-Cys-T (PX/BA-Cys-T-HA) exhibited significantly higher uptake than PX/BA-Cys-T, indicating preferential CD44-mediated uptake along with the rapid release of drugs in response to higher glutathione concentrations. Significantly higher apoptosis (42.89%) was observed with PX/BA-Cys-T-HA than those with BA-Cys-T (12.78%) and PX/BA-Cys-T (33.38%). In addition, PX/BA-Cys-T-HA showed remarkable enhancement in the cell cycle arrest, improved depolarization of the mitochondrial membrane potential, and induced excessive generation of ROS when tested in the MDA-MB-231 cell line. An in vivo administration of targeted micelles showed improved pharmacokinetic parameters and significant tumor growth inhibition in 4T1-induced tumor-bearing BALB/c mice. Overall, the study indicates a potential role of PX/BA-Cys-T-HA in achieving both temporal and spatial targeting against metastatic breast cancer.
Collapse
Affiliation(s)
- Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Preclinical South PCS 002/011, B.S. 10/1, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.,Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
23
|
Rani S, Sahoo RK, Kumar V, Chaurasiya A, Kulkarni O, Mahale A, Katke S, Kuche K, Yadav V, Jain S, Nakhate KT, Ajazuddin, Gupta U. N-2-Hydroxypropylmethacrylamide-Polycaprolactone Polymeric Micelles in Co-delivery of Proteasome Inhibitor and Polyphenol: Exploration of Synergism or Antagonism. Mol Pharm 2023; 20:524-544. [PMID: 36306447 DOI: 10.1021/acs.molpharmaceut.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years. Caffeic acid (CFA) (a natural polyphenol) has received growing attention because of its anticarcinogenic and antioxidant potential. Bortezomib (BTZ) is a proteasome inhibitor and may be explored for treating breast cancer. Despite its high anticancer activity, the low water solubility and chemical instability restrict its efficacy against solid tumors. In the present study, we designed and investigated a HP-PCL (N-2-hydroxypropylmethacrylamide-polycaprolactone) polymeric micellar (PMCs) system for the simultaneous delivery of BTZ and CFA in the treatment of breast cancer. The designed BTZ+CFA-HP-PCL PMCs were fabricated, optimized, and characterized for size, zeta potential, surface morphology, and in vitro drug release. Developed nanosized (174.6 ± 0.24 nm) PMCs showed enhanced cellular internalization and cell cytotoxicity in both MCF-7 and MDA-MB-231 cells. ROS (reactive oxygen species) levels were highest in BTZ-HP-PCL PMCs, while CFA-HP-PCL PMCs significantly (p < 0.001) scavenged the ROS generated in 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. The mitochondrial membrane potential (MMP) assay revealed intense and significant green fluorescence in both types of cancer cells when treated with BTZ-HP-PCL PMCs (p < 0.001) indicating apoptosis or cell death. The pharmacokinetic studies revealed that BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs exhibited the highest bioavailability, enhanced plasma half-life, decreased volume of distribution, and lower clearance rate than the pure combination of drugs. In the organ biodistribution studies, the combination of BTZ+CFA showed higher distribution in the spleen and the heart. Overall findings of in vitro studies surprisingly resulted in better therapeutic efficiency of BTZ-HP-PCL PMCs than BTZ+CFA-HP-PCL PMCs. However, the in vivo tumor growth inhibition study performed in tumor-induced mice concluded that the tumor growth was inhibited by both BTZ-HP-PCL PMCs and BTZ+CFA-HP-PCL PMCs (p < 0.0001) more efficiently than pure BTZ and the combination (BTZ+CFA), which may be due to the conversion of boronate ester into boronic acid. Henceforth, the combination of BTZ and CFA provides further indications to be explored in the future to support the hypothesis that BTZ may work with polyphenol (CFA) in the acidic environment of the tumor.
Collapse
Affiliation(s)
- Sarita Rani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Vinay Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Medchal District, Hyderabad, Telangana500078, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab160062, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra424001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh490024, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan305817, India
| |
Collapse
|
24
|
Quercetin Loaded Cationic Solid Lipid Nanoparticles in a Mucoadhesive In Situ Gel-A Novel Intravesical Therapy Tackling Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14112527. [PMID: 36432718 PMCID: PMC9695231 DOI: 10.3390/pharmaceutics14112527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The study aim was to develop an intravesical delivery system of quercetin for bladder cancer management in order to improve drug efficacy, attain a controlled release profile and extend the residence time inside the bladder. Either uncoated or chitosan coated quercetin-loaded solid lipid nanoparticles (SLNs) were prepared and evaluated in terms of colloidal, morphological and thermal characteristics. Drug encapsulation efficiency and its release behaviour were assessed. Furthermore, cytotoxicity of SLNs on T-24 cells was evaluated. Ex vivo studies were carried out using bovine bladder mucosa. Spherical SLNs (≈250 nm) ensured good entrapment efficiencies (EE > 97%) and sustained drug release up to 142 h. Cytotoxicity profile revealed concentration-dependent toxicity recording an IC50 in the range of 1.6−8.9 μg/mL quercetin. SLNs were further dispersed in in situ hydrogels comprising poloxamer 407 (20%) with mucoadhesive polymers. In situ gels exhibited acceptable gelation temperatures (around 25 °C) and long erosion time (24−27 h). SLNs loaded gels displayed remarkably enhanced retention on bladder tissues relative to SLNs dispersions. Coated SLNs exhibited better penetration abilities compared to uncoated ones, while coated SLNs dispersed in gel (G10C-St-QCT-SLNs-2) showed the highest penetration up to 350 μm. Hence, G10C-St-QCT-SLNs-2 could be considered as a platform for intravesical quercetin delivery.
Collapse
|
25
|
Statistically developed docetaxel-laden mixed micelles for improved therapy of breast cancer. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Mesoporous silica gated mixed micelle for the targeted co-delivery of doxorubicin and paclitaxel. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Patil KS, Hajare AA, Manjappa AS, More HN, Disouza JI. Design, Development, In Silico, and In Vitro Characterization of Camptothecin-Loaded Mixed Micelles: In Vitro Testing of Verapamil and Ranolazine for Repurposing as Coadjuvant Therapy in Cancer. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, Varade D, Rahdar A, Sharma RK. Structural transitions in mixed Phosphatidylcholine/Pluronic micellar systems and their in vitro therapeutic evaluation for poorly water-soluble drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Arafa WM, Elkomy MH, Aboud HM, Ali MI, Abdel Gawad SS, Aboelhadid SM, Mahdi EA, Alsalahat I, Abdel-Tawab H. Tunable Polymeric Mixed Micellar Nanoassemblies of Lutrol F127/Gelucire 44/14 for Oral Delivery of Praziquantel: A Promising Nanovector against Hymenolepis nana in Experimentally-Infected Rats. Pharmaceutics 2022; 14:pharmaceutics14102023. [PMID: 36297459 PMCID: PMC9608995 DOI: 10.3390/pharmaceutics14102023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Hymenolepiasis represents a parasitic infection of common prevalence in pediatrics with intimidating impacts, particularly amongst immunocompromised patients. The present work aimed to snowball the curative outcomes of the current mainstay of hymenolepiasis chemotherapy, praziquantel (PRZ), through assembly of polymeric mixed micelles (PMMs). Such innovative nano-cargo could consolidate PRZ hydrosolubility, extend its circulation time and eventually upraise its bioavailability, thus accomplishing a nanoparadigm for hymenolepiasis tackling at lower dose levels. For consummating this goal, PRZ-PMMs were tailored via thin-film hydration technique integrating a binary system of Lutrol F127 and Gelucire 44/14. Box-Behnken design was planned for optimizing the nanoformulation variables employing Design-Expert® software. Also, in Hymenolepis nana-infected rats, the pharmacodynamics of the optimal micellar formulation versus the analogous crude PRZ suspension were scrutinized on the 1st and 3rd days after administration of a single oral dose (12.5 or 25 mg/kg). Moreover, in vitro ovicidal activity of the monitored formulations was estimated utilizing Fuchsin vital stain. Furthermore, the in vivo pharmacokinetics were assessed in rats. The optimum PRZ-PMMs disclosed conciliation between thermodynamic and kinetic stability, high entrapment efficiency (86.29%), spherical nanosized morphology (15.18 nm), and controlled-release characteristics over 24 h (78.22%). 1H NMR studies verified PRZ assimilation within the micellar core. Additionally, the in vivo results highlighted a significant boosted efficacy of PRZ-PMMs manifested by fecal eggs output and worm burden reduction, which was clearly evident at the lesser PRZ dose, besides a reversed effect for the intestinal histological disruptions. At 50 µg/mL, PRZ-PMMs increased the percent of non-viable eggs to 100% versus 47% for crude PRZ, whilst shell destruction and loss of embryo were only clear with the applied nano-cargo. Moreover, superior bioavailability by 3.43-fold with elongated residence time was measured for PRZ-PMMs compared to PRZ suspension. Practically, our results unravel the potential of PRZ-PMMs as an oral promising tolerable lower dose nanoplatform for more competent PRZ mass chemotherapy.
Collapse
Affiliation(s)
- Waleed M. Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (M.H.E.); (I.A.)
| | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mona Ibrahim Ali
- Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samah S. Abdel Gawad
- Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M. Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Emad A. Mahdi
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK
- Correspondence: (M.H.E.); (I.A.)
| | - Heba Abdel-Tawab
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
30
|
Garg S, Peeters M, Mahajan RK, Singla P. Loading of hydrophobic drug silymarin in pluronic and reverse pluronic mixed micelles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. MATERIALS 2022; 15:ma15155387. [PMID: 35955322 PMCID: PMC9369513 DOI: 10.3390/ma15155387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Chemotherapy drugs are mainly administered via intravenous injection or oral administration in a very a high dosage. If there is a targeted drug vehicle which can be deployed on the tumor, the medical treatment is specific and precise. Binary mixing of biocompatible Pluronic® F127 and Pluronic® L121 was used in this study for a drug carrier of pluronic biomedical hydrogels (PBHs). Based on the same PBH ingredients, the addition of fluorouracil (5-FU) was separated in three ways when it was incorporated with pluronics: F127-L121-(5-FU), F127-(5-FU), and L121-(5-FU). Small angle X-ray scattering experiments were performed to uncover the self-assembled structures of the PBHs. Meanwhile, the expected micelle and lamellar structural changes affected by the distribution of 5-FU were discussed with respect to the corresponding drug release monitoring. PBH-all with the mixing method of F127-L121-(5-FU) has the fastest drug release rate owing to the undulated amphiphilic boundary. In contrast, PBH-2 with the mixing method of L121-(5-FU) has a prolonged drug release rate at 67% for one month of the continuous drug release experiment because the flat lamellar amphiphilic boundary of PBH-2 drags the migration of 5-FU from the hydrophobic core. Therefore, the PBHs developed in the study possess great potential for targeted delivery and successfully served as a microenvironment model to elucidate the diffusion pathway of 5-FU.
Collapse
|
32
|
Kim J, Ju J, Kim SD, Shin M. Plant-inspired Pluronic-gallol micelles with low critical micelle concentration, high colloidal stability, and protein affinity. Biomater Sci 2022; 10:3739-3746. [PMID: 35708628 DOI: 10.1039/d2bm00630h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric micelles are the most common carriers used for hydrophobic drug delivery. However, they are vulnerable to physiological barriers, such as temperature changes and enzymatic degradation, and can be easily disassembled upon dilution below the critical micelle concentration (CMC) by body fluids after an intravenous injection. Here, we report that Pluronic® micelles with octyl gallate, which is a surfactant containing gallol moieties widely found in antioxidative plant polyphenols, have a low CMC, which improves their colloidal stability without the need for covalent crosslinking. Furthermore, the incorporated gallol moieties provide enzymatic degradation resistance to the micelles owing to their protein affinity, maintaining the hydrophobic cavity of unmodified Pluronic®. Thus, plant-inspired polymeric micelles with low CMC and bioavailability are promising multifunctional vehicles for drug delivery.
Collapse
Affiliation(s)
- Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jaewon Ju
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|
33
|
Wang C, Wang J, Han X, Liu J, Ma M, Tian S, Zhang L, Tang J. Ultra-small lipid carriers with adjustable release profiles for synergistic treatment of drug-resistant ovarian cancer. NANOTECHNOLOGY 2022; 33:355102. [PMID: 34325420 DOI: 10.1088/1361-6528/ac18d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Multidrug resistance has dramatically compromised the effectiveness of paclitaxel (PTX). The combined application of PTX and tetrandrine (TET) is a promising avenue in drug-resistant cancer therapy. However, poor drug release and limited intracellular drug accumulation greatly impede this combinational antitumor therapy. To address this problem, we successfully developed a tunable controlled release lipid platform (PT@usNLC) for coordinated drug delivery. The drug release rate of PT@usNLC can be tuned by varying the lipid ratio, which has potential to maximize the therapeutic effects of combined drugs. The TET release rate from PT@usNLC was faster than PTX, which could restore the sensitivity of tumor cells to PTX and exert a synergistic antitumor effect. The appropriate size of PT@usNLC could effectively increase the intracellular drug accumulation. Bothin vitroandin vivostudies revealed that PT@usNLC significantly enhanced the therapeutic effect compared to conventional therapies. This study provides a new strategy for resistant ovarian cancer therapy.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Xinyu Han
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Mengchao Ma
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Siyu Tian
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, 150086, People's Republic of China
| |
Collapse
|
34
|
He XH, Zhao M, Tian XY, Lu YJ, Yang SY, Peng QR, Yang M, Jiang WW. Redox-responsive nano-micelles containing trisulfide bonds to enhance photodynamic efficacy of zinc naphthalocyanine. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022; 17:e0267257. [PMID: 35560136 PMCID: PMC9106168 DOI: 10.1371/journal.pone.0267257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Silibinin (SB) is shown to have an anticancer properties. However, its clinical therapeutic effects have been restricted due to its low water solubility and poor absorption after oral administration. The aim of this study was to develop SB-loaded PCL/Pluronic F68 nanoparticles for pulmonary delivery in the treatment of lung cancer. A modified solvent displacement process was used to make nanoparticles, which were then lyophilized to make inhalation powder, Nanoparticles were characterized with DSC, FTIR,SEM and In vitro release study. Further, a validated HPLC method was developed to investigate the Biodistribution study, pharmacokinetic parameters. Poly Caprolactone PCL / Pluronic F68 NPs showed the sustained release effect up to 48 h with an emitted (Mass median Aerodynamic diameter)MMAD and (Geometric size distribution)GSD were found to be 4.235 ±0.124 and 1.958±1.23 respectively. More specifically, the SB Loaded PCL/Pluronic F 68 NPs demonstrated long circulation and successful lung tumor-targeting potential due to their cancer-targeting capabilities. SB Loaded PCL/Pluronic F68 NPs significantly inhibited tumour growth in lung cancer-induced rats after inhalable administration. In a pharmacokinetics study, PCL/ Pluronic F68 NPs substantially improved SB bioavailability, with a more than 4-fold rise in AUC when compared to IV administration. These findings indicate that SB-loaded PCL/PluronicF68 nanoparticles may be a successful lung cancer therapy delivery system.
Collapse
|
36
|
Tumpa NF, Kang M, Yoo J, Kim S, Kwak M. Rylene Dye-Loaded Polymeric Nanoparticles for Photothermal Eradication of Harmful Dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum. Bioengineering (Basel) 2022; 9:170. [PMID: 35447730 PMCID: PMC9026783 DOI: 10.3390/bioengineering9040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the era of climate changes, harmful dinoflagellate outbreaks that produce potent algal toxins, odor, and water discoloration in aquatic environments have been increasingly reported. Thus, various treatments have been attempted for the mitigation and management of harmful blooms. Here, we report engineered nanoparticles that consist of two different types of rylene derivatives encapsulated in polymeric micelles. In addition, to avoid dissociation of the aggregate, the core of micelle was stabilized via semi-interpenetrating network (sIPN) formation. On two types of the marine red-tide dinoflagellates, Akashiwo sanguinea and Alexandrium pacificum, the nanoparticle uptake followed by fluorescence labeling and photothermal effect was conducted. Firstly, fluorescence microscopy enabled imaging of the dinoflagellates with the ultraviolet chromophore, Lumogen Violet. Lastly, near-infrared (NIR) laser irradiation was exposed on the Lumogen IR788 nanoparticle-treated Ak. Sanguinea. The irradiation resulted in reduced cell survival due to the photothermal effect in microalgae. The results suggested that the nanoparticle, IR788-sIPN, can be applied for potential red-tide algal elimination.
Collapse
Affiliation(s)
- Naz Fathma Tumpa
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
| | - Mingyeong Kang
- Industry 4.0 Convergence Bionics Engineering, New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Korea;
| | - Jiae Yoo
- Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea;
| | - Sunju Kim
- Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea;
- Department of Oceanography, Pukyong National University, Busan 48513, Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
- Industry 4.0 Convergence Bionics Engineering, New-Senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
37
|
Nguyen NT, Bui QA, Huynh PD, Nguyen QH, Tran NQ, Viet NT, Nguyen DT. Curcumin and Paclitaxel co-Loaded Heparin and Poloxamer P403 Hybrid Nanocarrier for Improved Synergistic Efficacy in Breast Cancer. Curr Drug Deliv 2022; 19:966-979. [DOI: 10.2174/1567201819666220401095923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Introduction:
Multi-drug nanosystem has been employed in several therapeutic models due to the synergistic effect of the drugs and/or bioactive compounds, which help in tumor-targeting and limit usual side effects of chemotherapy.
Methods:
In this research, we developed the amphiphilic Heparin-Poloxamer P403 (HSP) nanogel that can load curcumin (CUR) and Paclitaxel (PTX) through the hydrophobic core of Poloxamer P403. The features of HSP nanogel are assessed through Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), differential light scattering (DLS), and critical micelle concentration (CMC). Nanogel and its duel-loaded platform show high stability and spherical morphology.
Results:
The drug release profile indicates fast release at pH 5.5, suggesting effective drug distribution at the tumor site. In vitro research confirms lower cytotoxicity of HSP@CUR@PTX compared with free PTX and higher inhibition effect with MCF-7 than HSP@PTX. These results support the synergism between PTX and CUR.
Conclusion,:
HSP@CUR@PTX suggests a prominent strategy for achieving the synergistic effect of PTX and CUR to circumvent undesirable effects in breast cancer treatment.
Collapse
Affiliation(s)
- Ngoc The Nguyen
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | - Quynh Anh Bui
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phuong Duy Huynh
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | | | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Nguyen Thanh Viet
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
38
|
Singh A, Ujjwal RR, Kumar A, Verma RK, Shukla R. Formulation and Optimization of Silymarin Encapsulated Binary Micelles for Enhanced Amyloid Disaggregation Activity. Drug Dev Ind Pharm 2022; 47:1775-1785. [PMID: 35343354 DOI: 10.1080/03639045.2022.2059498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose-Silymarin (SLY) is natural hydrophobic polyphenol which possess antioxidant and amyloid fibril (Aβ1-42) inhibition activity, but its activity hinders due to low aqueous solubility. In this study, SLY is encapsulated in Binary micelle (SLY-BM) that have been utilized to enhance the Aβ1-42 fibril disaggregation. To enhance the aqueous solubility and SLY payload in micelles were optimized using Box Behnken Design (BBD) to increase the efficiency of Aβ1-42 fibril disaggregation. BBD was employed to investigate the effect of ratio of Solutol HS15: Poloxamer-188, amount of acetone and hydration volume on critical quality attributes (CQA), particle size and entrapment efficiency for SLY-BM. Further SLY-BM was characterized for its physical and drug release properties. The Aβ1-42 fibril disaggregation and antioxidant studies was monitored using spectroscopic and microscopic techniques. BBD optimized the particle size <50 nm with % EE >80% and solubility factor of SLY-BM was enhanced to 460 folds than free SLY. Inhibitory concentration 50% (IC50) value of SLY-BM was (19.67 µg/mL) compared to free SLY (30.06 µg/mL) in diphenylpicrahydrazyl (DPPH) assay. SLY-BM increased the Aβ 1-42 disaggregation compared to free SLY observed via thioflavin -T (ThT) assay, photon correlation spectroscopy (PCS), and Circular dichorism (CD). Further morphological evaluation of Aβ1-42 disaggregation was monitored microscopy which showed SLY-BM disaggregated the fibrils in 48h. According to our findings, we concluded that SLY-BM micelles potential candidates for delivery of neuroprotective agents.
Collapse
Affiliation(s)
- Ajit Singh
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Rewati Raman Ujjwal
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ashish Kumar
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Rahul K Verma
- Institute of Nano Science and Technology (INST), Phase X, Sector 64. Mohali, Punjab 160062, INDIA
| | - Rahul Shukla
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| |
Collapse
|
39
|
Sakhi M, Khan A, Iqbal Z, Khan I, Raza A, Ullah A, Nasir F, Khan SA. Design and Characterization of Paclitaxel-Loaded Polymeric Nanoparticles Decorated With Trastuzumab for the Effective Treatment of Breast Cancer. Front Pharmacol 2022; 13:855294. [PMID: 35359855 PMCID: PMC8964068 DOI: 10.3389/fphar.2022.855294] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to design and formulate an antibody-mediated targeted, biodegradable polymeric drug delivery system releasing drug in a controlled manner to achieve a therapeutic goal for the effective treatment of breast cancer. Antibody-mediated paclitaxel-loaded PLGA polymeric nanoformulations were prepared by the solvent evaporation method using different experimental parameters and compatibility studies. The optimized formulations were selected for in vitro and in vivo evaluation and cytotoxicity studies. The in vitro drug release studies show a biphasic release pattern for the paclitaxel-loaded PLGA nanoparticles showing a burst release for 24 h followed by an extended release for 14 days; however, a more controlled and sustained release was observed for antibody-conjugated polymeric nanoparticles. The cytotoxicity of reference drug and paclitaxel-loaded PLGA nanoparticles with and without antibody was determined by performing MTT assay against MCF-7 cells. Rabbits were used as experimental animals for the assessment of various in vivo pharmacokinetic parameters of selected formulations. The pharmacokinetic parameters such as Cmax (1.18–1.33 folds), AUC0-t (39.38–46.55 folds), MRT (10.04–12.79 folds), t1/2 (3.06–4.6 folds), and Vd (6.96–8.38 folds) have been increased significantly while clearance (4.34–4.61 folds) has been decreased significantly for the selected nanoformulations as compared to commercially available paclitaxel formulation (Paclixil®). The surface conjugation of nanoparticles with trastuzumab resulted in an increase in in vitro cytotoxicity as compared to plain nanoformulations and commercially available conventional brand (Paclixil®). The developed PLGA-paclitaxel nanoformulations conjugated with trastuzumab have the desired physiochemical characteristics, surface morphology, sustained release kinetics, and enhanced targeting.
Collapse
Affiliation(s)
- Mirina Sakhi
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abad Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| | - Zafar Iqbal
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Ismail Khan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Abida Raza
- National Institute of LASER and Optronics, Nilore, Pakistan
| | - Asmat Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
- *Correspondence: Abad Khan, ; Saeed Ahmad Khan,
| |
Collapse
|
40
|
Abo El-Enin HA, Ahmed MF, Naguib IA, El-Far SW, Ghoneim MM, Alsalahat I, Abdel-Bar HM. Utilization of Polymeric Micelles as a Lucrative Platform for Efficient Brain Deposition of Olanzapine as an Antischizophrenic Drug via Intranasal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15020249. [PMID: 35215361 PMCID: PMC8877317 DOI: 10.3390/ph15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Schizophrenia is a mental disorder characterized by alterations in cognition, behavior and emotions. Oral olanzapine (OZ) administration is extensively metabolized (~up to 40% of the administrated dose). In addition, OZ is a P-glycoproteins substrate that impairs the blood–brain barrier (BBB) permeability. To direct OZ to the brain and to minimize its systemic side effects, the nasal pathway is recommended. OZ-loaded polymeric micelles nano-carriers were developed using suitable biodegradable excipients. The developed micelles were physicochemically investigated to assess their appropriateness for intranasal delivery and the potential of these carriers for OZ brain targeting. The selected formula will be examined in vivo for improving the anti-schizophrenic effects on a schizophrenia rat model. The binary mixture of P123/P407 has a low CMC (0.001326% w/v), which helps in maintaining the formed micelles’ stability upon dilution. The combination effect of P123, P407 and TPGS led to a decrease in micelle size, ranging between 37.5–47.55 nm and an increase in the EE% (ranging between 68.22–86.84%). The selected OZ–PM shows great stability expressed by a suitable negative charge zeta potential value (−15.11 ± 1.35 mV) and scattered non-aggregated spherical particles with a particle size range of 30–40 nm. OZ–PM maintains sustained drug release at the application site with no nasal cytotoxicity. In vivo administration of the selected OZ–PM formula reveals improved CNS targeting and anti-schizophrenia-related deficits after OZ nasal administration. Therefore, OZ–PM provided safe direct nose-to-brain transport of OZ after nasal administration with an efficient anti-schizophrenic effect.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
- Correspondence:
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia; (M.F.A.); (I.A.N.)
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia; (M.F.A.); (I.A.N.)
| | - Shaymaa W. El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| |
Collapse
|
41
|
Senthilkumar M, Dash S, Vigneshwari R, Paulraj E. Aceclofenac-loaded pluronic F108/L81 mixed polymeric micelles: effect of HLB on solubilization. Des Monomers Polym 2022; 25:1-11. [PMID: 35110968 PMCID: PMC8803101 DOI: 10.1080/15685551.2022.2028373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pluronic block copolymers have phase behavioural characteristics which are extensively studied for drug delivery applications. In this study, we explored hydrophilic pluronic F108 (HLB = 27), hydrophobic pluronic L81 (HLB = 2) and their mixed micelles acting as solubilising mediums for model drug aceclofenac. The drug solubilisation and interactions have been analysed using UV-visible spectroscopy, Fluorescence spectroscopy, Rheology studies, Fourier-transform infrared spectroscopy, Scanning electron microscope, Dynamic light scattering, Cloud point and partition coefficient measurements. The investigation from UV-spectrophotometry demonstrated that mixed pluronic entrapped greater number of aceclofenac molecules than both the neat pluronics at same concentration. Excimer formation was evidenced from fluorescence spectra with pyrene as a probe. The rheological studies showed difference in viscosity over low shear range. Studies on FTIR demonstrated probable bonding between the aceclofenac and mixed pluronic molecules. The DLS studies on mixed pluronic showed swelling of micellar diameter from 317.6 nm to 413.5 nm. Thermodynamic parameters of the above system revealed higher partition coefficient value for mixed pluronic and spontaneity in drug solubilisation. This study can be exploited to use a hydrophobic copolymeric micelle in mixed pluronic formulation for better drug solubilisation.
Collapse
Affiliation(s)
- M Senthilkumar
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - Sasmita Dash
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - R Vigneshwari
- Department of Chemistry, Annamalai University, Chidambaram, India
| | - E Paulraj
- Department of Chemistry, Annamalai University, Chidambaram, India
| |
Collapse
|
42
|
Banik S, Sato H, Onoue S. Self-micellizing solid dispersion of atorvastatin with improved physicochemical stability and oral absorption. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Pluronic F127/Doxorubicin microemulsions: Preparation, characterization, and toxicity evaluations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117028] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Marcos X, Méndez-Luna D, Fragoso-Vázquez M, Rosales-Hernández M, Correa-Basurto J. Anti-breast cancer activity of novel compounds loaded in polymeric mixed micelles: Characterization and in vitro studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Patel D, Patel D, Ray D, Kuperkar K, Aswal VK, Bahadur P. Single and mixed Pluronics® micelles with solubilized hydrophobic additives: Underscoring the aqueous solution demeanor and micellar transition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Kancharla S, Bedrov D, Tsianou M, Alexandridis P. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J Colloid Interface Sci 2021; 609:456-468. [PMID: 34815085 DOI: 10.1016/j.jcis.2021.10.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.
Collapse
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA.
| |
Collapse
|
47
|
Niu D, He J, Qin X, Liu Y, Liu H, Hu P, Li Y, Shi J. Superstable and Large-Scalable Organosilica-Micellar Hybrid Nanosystem via a Confined Gelation Strategy for Ultrahigh-Dosage Chemotherapy. NANO LETTERS 2021; 21:9388-9397. [PMID: 34747626 DOI: 10.1021/acs.nanolett.1c02342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although various drug nanocarriers have been developed for treating solid tumors, their clinical transformation is greatly limited by the difficulties in quantity production and unpredictable in vivo toxic effects. Herein, a facile "confined-gelation" strategy is developed to quantity-produce intelligent pluronic organosilica micelles (designated as IPOMs) with an undetectable critical micelle concentration (CMC), which features the self-assembly induced core confinement by block copolymers, the inner hydrolysis-condensation of silane to the oligomer skeleton, and oxidative cross-linking of disulfide skeleton to core gelation. The docetaxel-loaded IPOMs (DTX@IPOMs) with precise glutathione (GSH) responsiveness not only display an ultrahigh tolerated dose (360 mg/kg) in healthy Kunming mice model but also exhibit a remarkable tumor inhibition efficacy in both subcutaneous and orthotopic mice tumor models upon an extraordinarily large dosage (50 mg/kg). The present confined-gelation strategy provides a novel pathway to design and quantity-produce low-toxic and high-efficacy organic-inorganic hybrid nanodrugs in future clinical transformations.
Collapse
Affiliation(s)
- Dechao Niu
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianping He
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing Qin
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Hu
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yongsheng Li
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianlin Shi
- Low Dimensional Materials Chemistry Laboratory, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
48
|
Öztürk K, Arslan FB, Öztürk SC, Çalış S. Mixed micelles formulation for carvedilol delivery: In-vitro characterization and in-vivo evaluation. Int J Pharm 2021; 611:121294. [PMID: 34793934 DOI: 10.1016/j.ijpharm.2021.121294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
Carvedilol (CAR) is a widely studied, beta and alpha-1 blocker, antihypertensive drug due to its poor water solubility and low oral bioavailability (25-35%). The aim of this work is to improve poor water solubility and the pharmacokinetic parameters of carvedilol by using an optimized and self-assembly prepared micelle formulation. Optimized micelle formulation composed of Pluronic® F127, D-α-tocopheryl polyethylene glycol 1000 succinate, L-cysteine HCl in a ratio of 4:3:3. Micellar size, polydispersity index, zeta potential, morphology, critical micelle concentration, thermal behaviors, in-vitro dissolution of micelles and pharmacokinetic parameters in rats were characterized in this study. Carvedilol aqueous solubility increased (up to 271-fold) as a result of its encapsulation within a mixed micelle formulation. The measured micellar sizes of blank and carvedilol loaded mixed micelles are lower than 30 nm with size distributions of 26.69 ± 2.93 nm and 24.16 ± 4.89 nm, respectively. Transmission electron microscopy revealed that the micelles were spherically shaped. There is a significant enhancement of carvedilol dissolution compared to commercially available tablet formulation (f2 < 50). The in-vivo test demonstrated that the t1/2 and AUC0-∞ values of micelles were approximately 10.89- and 2.65-fold greater than that of the commercial tablets, respectively. Based on our study, bring such applications into being may provide effective new drugs for treatment armamentarium of cardiovascular diseases and hypertension in near future.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| | - Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Süleyman Can Öztürk
- Centre for Laboratory Animals Research and Application, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
49
|
Park SC, Sharma G, Kim JC. Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Soo Chan Park
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
50
|
Shaikh S, Patel H, Ray D, Aswal VK, Sharma RK. Mixed Poloxamer Nanomicelles for the Anticonvulsant Lamotrigine Drug: Solubility, Micellar Characterization, and In-Vitro Release Studies. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5723-5735. [PMID: 33980386 DOI: 10.1166/jnn.2021.19490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm Dh sizes. The In-Vitro release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.
Collapse
Affiliation(s)
- Sofiya Shaikh
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Hemil Patel
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Debes Ray
- State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Vinod K Aswal
- State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Rakesh K Sharma
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| |
Collapse
|