1
|
Ren J, Liu T, Bi B, Sohail S, Din FU. Development and Evaluation of Tacrolimus Loaded Nano-Transferosomes for Skin Targeting and Dermatitis Treatment. J Pharm Sci 2024; 113:471-485. [PMID: 37898166 DOI: 10.1016/j.xphs.2023.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Tacrolimus (TRL) is used for the treatment of atopic dermatitis (AD) due to its T-cell stimulation effect. However, its significantly poor water solubility, low penetration and cytotoxicity have reduced its topical applications. Herein, tacrolimus loaded nano transfersomes (TRL-NTs) were prepared, followed by their incorporation into chitosan gel to prepare tacrolimus loaded nano transfersomal gel (TRL-NTsG). TEM analysis of the TRL-NTs was performed to check their morphology. DSC, XRD and FTIR analysis of the TRL-NTs were executed after lyophilization. Similarly, rheology, spreadability and deformability of the TRL-NTsG were investigated. In vitro release, ex vivo permeation and in vitro interaction of TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures were investigated along with their in vitro cell viability analysis. Moreover, in vivo skin deposition, ear thickness, histopathology and IgE level were also determined. Besides, 6 months stability study was also performed. Results demonstrated the uniformly distributed negatively charged nanovesicles with a mean particle size distribution of 163 nm and zeta potential of -27 mV. DSC and XRD exhibited the thermal stability and amorphous form of the drug, respectively. The TRL-NTsG showed excellent deformability, spreadability and rheological behavior. In vitro release studies exhibited an 8-fold better release of TRL from the TRL-NTsG. Similarly, 6-fold better permeation and stability of the TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures was observed. Furthermore, the ear thickness (0.6 mm) of the TRL-NTsG was found significantly reduced when compared with the untreated (1.7 mm) and TRL conventional gel treated mice (1.3 mm). The H&E staining showed no toxicity of the TRL-NTsG with significantly reduced IgE levels (120 ng/mL). The formulation was found stable for at least 6 months. These results suggested the efficacy of TRL in AD-induced animal models most importantly when incorporated in NTsG.
Collapse
Affiliation(s)
- Jingyu Ren
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Tao Liu
- Shanxi Provincial Inspection and Testing Center, Taiyuan City, Shanxi Province, 030001, China
| | - Bo Bi
- Department of Dermatology, Yangquan Coalmine Group General Hospital, Yangquan City, Shanxi Province, 045000, China.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
2
|
Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Roberton VH, Gregory HN, Angkawinitwong U, Mokrane O, Boyd AS, Shipley RJ, Williams GR, Phillips JB. Local delivery of tacrolimus using electrospun poly-ϵ-caprolactone nanofibres suppresses the T-cell response to peripheral nerve allografts. J Neural Eng 2023; 20. [PMID: 36538818 DOI: 10.1088/1741-2552/acad2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Objective.Repair of nerve gap injuries can be achieved through nerve autografting, but this approach is restricted by limited tissue supply and donor site morbidity. The use of living nerve allografts would provide an abundant tissue source, improving outcomes following peripheral nerve injury. Currently this approach is not used due to the requirement for systemic immunosuppression, to prevent donor-derived cells within the transplanted nerve causing an immune response, which is associated with severe adverse effects. The aim of this study was to develop a method for delivering immunosuppression locally, then to test its effectiveness in reducing the immune response to transplanted tissue in a rat model of nerve allograft repair.Approach.A coaxial electrospinning approach was used to produce poly-ϵ-caprolactone fibre sheets loaded with the immunosuppressant tacrolimus. The material was characterised in terms of structure and tacrolimus release, then testedin vivothrough implantation in a rat sciatic nerve allograft model with immunologically mismatched host and donor tissue.Main results.Following successful drug encapsulation, the fibre sheets showed nanofibrous structure and controlled release of tacrolimus over several weeks. Materials containing tacrolimus (and blank material controls) were implanted around the nerve graft at the time of allograft or autograft repair. The fibre sheets were well tolerated by the animals and tacrolimus release resulted in a significant reduction in lymphocyte infiltration at 3 weeks post-transplantation.Significance.These findings demonstrate proof of concept for a novel nanofibrous biomaterial-based targeted drug delivery strategy for immunosuppression in peripheral nerve allografting.
Collapse
Affiliation(s)
- V H Roberton
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - H N Gregory
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - U Angkawinitwong
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - O Mokrane
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - A S Boyd
- UCL Centre for Nerve Engineering, London, United Kingdom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - R J Shipley
- UCL Centre for Nerve Engineering, London, United Kingdom
- Department of Mechanical Engineering, UCL, London, United Kingdom
| | - G R Williams
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - J B Phillips
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| |
Collapse
|
4
|
Han Y, Jiang L, Shi H, Xu C, Liu M, Li Q, Zheng L, Chi H, Wang M, Liu Z, You M, Loh XJ, Wu YL, Li Z, Li C. Effectiveness of an ocular adhesive polyhedral oligomeric silsesquioxane hybrid thermo-responsive FK506 hydrogel in a murine model of dry eye. Bioact Mater 2022; 9:77-91. [PMID: 34820557 PMCID: PMC8586264 DOI: 10.1016/j.bioactmat.2021.07.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Dry eye is a common ocular disease that results in discomfort and impaired vision, impacting an individual's quality of life. A great number of drugs administered in eye drops to treat dry eye are poorly soluble in water and are rapidly eliminated from the ocular surface, which limits their therapeutic effects. Therefore, it is imperative to design a novel drug delivery system that not only improves the water solubility of the drug but also prolongs its retention time on the ocular surface. Herein, we develop a copolymer from mono-functional POSS, PEG, and PPG (MPOSS-PEG-PPG, MPEP) that exhibits temperature-sensitive sol-gel transition behavior. This thermo-responsive hydrogel improves the water solubility of FK506 and simultaneously provides a mucoadhesive, long-acting ocular delivery system. In addition, the FK506-loaded POSS hydrogel possesses good biocompatibility and significantly improves adhesion to the ocular surface. In comparison with other FK506 formulations and the PEG-PPG-FK506 (F127-FK506) hydrogel, this novel MPOSS-PEG-PPG-FK506 (MPEP-FK506) hydrogel is a more effective treatment of dry eye in the murine dry eye model. Therefore, delivery of FK506 in this POSS hydrogel has the potential to prolong drug retention time on the ocular surface, which will improve its therapeutic efficacy in the management of dry eye.
Collapse
Affiliation(s)
- Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lu Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Huihui Shi
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, 315201, China
| | - Chenfang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qingjian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lan Zheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Xian Jun Loh
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, 315201, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Zhang F, Mao J, Tian G, Jiang H, Jin Q. Preparation and Characterization of Furosemide Solid Dispersion with Enhanced Solubility and Bioavailability. AAPS PharmSciTech 2022; 23:65. [PMID: 35102461 DOI: 10.1208/s12249-022-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Furosemide (FMD), as a potent circulating diuretic, is commonly used for the treatment of hypertension and edema arising from cardiac, renal, and hepatic failure. However, the low solubility of furosemide restricts its dissolution and bioavailability. In this study, Polyvinylpyrrolidone K30 (PVP-K30), mesoporous (Syloid 244FP, Syloid XDP 3050), and non-mesoporous (Aeroperl 300, Aerosil 200) silica were chosen as combined carrier to develop novel amorphous solid dispersions of furosemide, and then its dissolution and bioavailability were evaluated. Characterization study included XRD, DSC, TGA, SEM, FT-IR, and molecular docking. We found that FMD:PVP-K30:244FP achieved its best performance in terms of dissolution at the ratio of 1:1:1 when PVP-K30 and mesoporous silica Syloid 244FP (244FP) were chosen as combined carrier. SEM, DSC, and XRD studies indicated that furosemide existed in an amorphous form in the solid dispersion. FT-IR and molecular docking analysis showed that there might be an intermolecular interaction between FMD and the carrier. Moreover, the in vivo pharmacokinetics study revealed that the bioavailability of solid dispersion in rats had significant improvement. In particular, Cmax and AUClast were greatly increased by 2.69- and 2.08-fold in the solid dispersion (FMD-PVP-K30-244FP) group, respectively, and the relative bioavailability was 208.00%. In conclusion, the solid dispersion (FMD-PVP-K30-244FP) can significantly improve the solubility and oral bioavailability of furosemide. Mesoporous silica can be used as an excellent carrier material for furosemide, which can provide new ideas and methods for improving the stability of solid dispersion and further improving the dissolution of insoluble drugs. Graphical Abstract.
Collapse
|
6
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|
7
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Pardhi VP, Flora S. Stable solid dispersion of lurasidone hydrochloride with augmented physicochemical properties for the treatment of schizophrenia and bipolar disorder. Biopharm Drug Dispos 2020; 41:334-351. [PMID: 33080060 DOI: 10.1002/bdd.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Crystalline solid dispersion of lurasidone hydrochloride (LH) was made with various polar and non-polar small molecules to overcome the poor aqueous solubility issue. LH-Glutathione (GSH) solid dispersion in 1:1 ratio was prepared by co-grinding method and characterized by using differential scanning calorimetry (DSC), powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. GSH acts as antioxidant and reported for anti-schizophrenic activity may provide synergistic action with LH or reduce the side effects. LH in LH-GSH solid dispersion (SD) has shown improvement in solubility by 7.9 folds than plain drug which translated in terms of improved dissolution rate by two-folds. The in vitro dissolution results showed maximum dissolution rate with LH-GSH SD (97.85 ± 2.40%) compared to plain drug (50.5 ± 3.02%) at 15 min (t15 min, %) and thus, satisfying criteria of immediate release dosage form. DSC and FTIR data confirmed the stability of LH-GSH SD for 3 months at accelerated stability condition (40 ± 2°C and 75 ± 5% RH). The prepared LH-GSH SD can be used as a tool to target dual problems that is, enhanced physicochemical properties along with possible management of disorder which could be due to synergism with co-administered GSH. This approach is thought to be efficiently providing the relief to the psychological patients.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Kato K, Ito K, Hoshino T. Anisotropic Amorphous X-ray Diffraction Attributed to the Orientation of Cyclodextrin. J Phys Chem Lett 2020; 11:6201-6205. [PMID: 32692182 DOI: 10.1021/acs.jpclett.0c01987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The beauty of cyclic molecules is reflected in their host-guest complexation reactions, as well as their unique X-ray diffraction patterns. Cyclodextrins, the longest known host molecules with rigid ring structures, show anisotropic X-ray diffraction characteristic of their single-molecule structure, rather than their intermolecular relationships. Amorphous derivatives of α-cyclodextrin exhibit broad and strong halo diffractions in the solid, melted, and dilute solution states. The diffraction angle corresponds to the intramolecular distance between neighboring glycosidic oxygen atoms located at the vertices of a regular hexagonal array. Because the hexagon is parallel to the aperture plane of the rigid cyclic molecule, the diffraction appears only in the direction parallel to this plane. The anisotropy was confirmed by stretching an amorphous thermoplastic polymer threaded through the inclusion cavities of a sequence of cyclodextrins. The resultant unique anisotropic X-ray diffraction suggests the possible use of rigid cyclic molecules as molecular orientation probes.
Collapse
Affiliation(s)
- Kazuaki Kato
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-noha, Kashiwa, Chiba 277-8561, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sen-gen, Tsukuba, Ibaraki 305-0047, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-noha, Kashiwa, Chiba 277-8561, Japan
| | - Taiki Hoshino
- RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
10
|
Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur J Pharm Sci 2020; 150:105343. [DOI: 10.1016/j.ejps.2020.105343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/21/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
|
11
|
Sun R, Shen C, Shafique S, Mustapha O, Hussain T, Khan IU, Mehmood Y, Anwer K, Shahzad Y, Yousaf AM. Electrosprayed Polymeric Nanospheres for Enhanced Solubility, Dissolution Rate, Oral Bioavailability and Antihyperlipidemic Activity of Bezafibrate. Int J Nanomedicine 2020; 15:705-715. [PMID: 32099359 PMCID: PMC6999775 DOI: 10.2147/ijn.s235146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Bezafibrate is a BCS class II drug as it presents very low solubility in water; therefore, its bioavailability after oral administration is very poor. The aim of this work was to enhance solubility and dissolution rate of bezafibrate in water in order to enhance its oral bioavailability. Methods Several formulations were prepared using PVP K30 and Cremophor ELP employing the solvent-evaporation method and the electrospraying technique. Solubility, release rate, bioavailability in male Sprague Dawley rats, and lipid profile attributes in Wistar rats were assessed in comparison with bezafibrate plain powder. Solid-state characterization was carried out using X-ray diffraction (XRD) analysis, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Results All the formulations exerted positive effect towards the desired goal. In particular, the optimized formulation furnished about 14-fold enhanced solubility and 85.48 ± 10.16% drug was released in 10 min as compared with bezafibrate alone (4.06 ± 2.59%). The drug existed in the amorphous state in the prepared sample as confirmed by XRD and DSC, whilst no drug-excipient interactions were observed through FTIR analysis. Moreover, SEM revealed smooth-surfaced spherical particles of the optimized formulation. A 5.5-fold higher oral bioavailability was achieved with the optimized formulation in comparison with bezafibrate plain powder. Also, TG, LDL and TC were decreased, and HDL was increased considerably in HFD-treated rats. Conclusion The optimized formulation consisting of bezafibrate, PVP K30 and cremophor ELP (1/12/1.5, w/w/w) might be a capable drug delivery system for orally administering poorly water-soluble bezafibrate with improved bioavailability and antihyperlipidemic effects.
Collapse
Affiliation(s)
- Ru Sun
- Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, People's Republic of China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, People's Republic of China
| | - Shumaila Shafique
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Omer Mustapha
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Khaleeq Anwer
- Office of Chief Executive Officer, District Health Authority, Pakpattan 57400, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore 54000, Pakistan
| |
Collapse
|
12
|
An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.
Collapse
|
13
|
Dheer D, Gupta R, Singh D, Magotra A, Singh G, Gupta PN, Shankar R. Hyaluronic Acid-Tacrolimus Bioconjugate: Synthesis, Characterization, and Pharmacokinetic Investigation of an Acid-Responsive Macromolecular Prodrug. ACS APPLIED BIO MATERIALS 2019; 2:4728-4736. [DOI: 10.1021/acsabm.9b00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Adu-Frimpong M, Qiuyu W, Firempong CK, Mukhtar YM, Yang Q, Omari-Siaw E, Lijun Z, Xu X, Yu J. Novel cuminaldehyde self-emulsified nanoemulsion for enhanced antihepatotoxicity in carbon tetrachloride-treated mice. J Pharm Pharmacol 2019; 71:1324-1338. [DOI: 10.1111/jphp.13112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Cuminaldehyde self-emulsified nanoemulsion (CuA-SEN) was prepared and optimised to improve its oral bioavailability and antihepatotoxicity.
Methods
Cuminaldehyde self-emulsified nanoemulsion was developed through the self-nanoemulsification method using Box–Behnken Design (BBD) tool while appropriate physicochemical indices were evaluated. The optimised CuA-SEN was characterised via droplet size (DS), morphology, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, in-vitro release, and pharmacokinetic studies while its antihepatotoxicity was evaluated.
Key findings
Cuminaldehyde self-emulsified nanoemulsion with acceptable characteristics (mean DS-48.83 ± 1.06 nm; PDI-0.232 ± 0.140; ZP-29.92 ± 1.66 mV; EE-91.51 ± 0.44%; and drug-loading capacity (DL)-9.77 ± 0.75%) was formulated. In-vitro drug release of CuA-SEN significantly increased with an oral relative bioavailability of 171.02%. Oral administration of CuA-SEN to CCl4-induced hepatotoxicity mice markedly increased the levels of superoxide dismutase, glutathione and catalase in serum. Also, CuA-SEN reduced the levels of tumour necrosis factor-alpha and interleukin-6 in both serum and liver tissues while aspartate aminotransferase, alanine aminotransferase and malonaldehyde levels were significantly decreased.
Conclusions
These findings showed that the improved bioavailability of cuminaldehyde via SEN provided an effective approach for enhancing antioxidation, anti-inflammation and antihepatotoxicity of the drug.
Collapse
Affiliation(s)
- Michael Adu-Frimpong
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
- Department of Basic and Biomedical Sciences, College of Health and Well-Being, Kintampo, Bono Region, Ghana
| | - Wei Qiuyu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Caleb Kesse Firempong
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Qiuxuan Yang
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Sciences, Kumasi Technical University, Kumasi, Ghana
| | - Zhen Lijun
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Park JH, Cho JH, Kim DS, Kim JS, Din FU, Kim JO, Yong CS, Youn YS, Oh KT, Kim DW, Choi HG. Revaprazan-loaded surface-modified solid dispersion: physicochemical characterization and in vivo evaluation. Pharm Dev Technol 2019; 24:788-793. [PMID: 30885016 DOI: 10.1080/10837450.2019.1597114] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this research was to develop a novel revaprazan-loaded surface-modified solid dispersion (SMSD) with improved drug solubility and oral bioavailability. The impact of carriers on aqueous solubility of revaprazan was investigated. HPMC and Cremophor A25 were selected as an appropriate polymer and surfactant, respectively, due to their high drug solubility. Numerous SMSDs were prepared with various concentrations of carriers, using distilled water, and the drug solubility of each was assessed. Moreover, the physicochemical properties, dissolution and pharmacokinetics of selected SMSD in rats were assessed in comparison to revaprazan powder. Of the SMSDs assessed, the SMSD composed of revaprazan/HPMC/Cremophor A25 at the weight ratio of 1:0.28:1.12 had the most enhanced drug solubility (∼6000-fold). It was characterized by particles with a relatively rough surface, suggesting that the carriers were attached onto the surface of the unchanged crystalline revaprazan powder. It had a significantly higher dissolution rate, AUC and Cmax, and a faster Tmax value in comparison to revaprazan powder, with a 5.3-fold improvement in oral bioavailability of revaprazan. Therefore, from an environmental perspective, this SMSD system prepared with water, and without organic solvents, should be recommended as a revaprazan-loaded oral pharmaceutical alternative.
Collapse
Affiliation(s)
- Jong Hyuck Park
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Jung Hyun Cho
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Jung Suk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Fakhar Ud Din
- b Department of Pharmacy , Quaid-I-Azam University , Islamabad , Pakistan
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Yu Seok Youn
- d School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Kyung Taek Oh
- e College of Pharmacy, Chung-Ang University , Seoul , South Korea
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea.,f College of Pharmacy, Kyungpook National University , Daegu , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
16
|
Yousaf AM, Malik UR, Shahzad Y, Mahmood T, Hussain T. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: Preparation and in vitro characterization. J Pharm Anal 2019; 9:34-39. [PMID: 30740255 PMCID: PMC6355470 DOI: 10.1016/j.jpha.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of this work was to develop, optimize and characterize a silymarin-laden polyvinylpyrrolidone (PVP)-polyethylene glycol (PEG) polymeric composite to resolve low aqueous solubility and dissolution rate problem of the drug. A number of silymarin-laden polymeric formulations were fabricated with different quantities of PVP K-30 and PEG 6000 by the solvent-evaporation method. The effect of PVP K-30 and PEG 6000 on the aqueous solubility and dissolution rate was investigated. The optimized formulation and its constituents were characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Both the PEG 6000 and PVP K-30 positively affected the aqueous solubility and dissolution rate of the drug. In particular, a formulation consisting of silymarin, PVP K-30 and PEG 6000 (0.25/1.5/1.5, w/w/w) furnished the highest solubility (24.39±2.95 mg/mL) and an excellent dissolution profile (~100% in 40 min). The solubility enhancement with this formulation was ~1150-fold as compared to plain silymarin powder. Moreover, all the constituents existed in the amorphous state in this silymarin-laden PVP-PEG polymeric composite. Accordingly, this formulation might be a promising tool to administer silymarin with an enhanced effect via the oral route.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Usman Rashid Malik
- Faculty of Pharmacy, University of Central Punjab, 1-Khayaban-e-Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab, 1-Khayaban-e-Jinnah, Johar Town, Lahore 54000, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
17
|
Melt-based screening method with improved predictability regarding polymer selection for amorphous solid dispersions. Eur J Pharm Sci 2018; 124:339-348. [DOI: 10.1016/j.ejps.2018.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/15/2022]
|
18
|
Kim JS, Park JH, Jeong SC, Kim DS, Yousaf AM, Din FU, Kim JO, Yong CS, Youn YS, Oh KT, Jin SG, Choi HG. Novel revaprazan-loaded gelatin microsphere with enhanced drug solubility and oral bioavailability. J Microencapsul 2018; 35:421-427. [PMID: 30136606 DOI: 10.1080/02652048.2018.1515997] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To develop a novel revaprazan-loaded gelatine microsphere with enhanced solubility and oral bioavailability, numerous gelatine microspheres were prepared using a spray-drying technique. The impact of gelatine amount on drug solubility in the gelatine microspheres was investigated. The physicochemical properties of the selected gelatine microsphere, such as shape, particle size and crystallinity, were evaluated. Moreover, its dissolution and pharmacokinetics in rats were assessed in comparison with revaprazan powder. Amongst the gelatine microspheres tested, the gelatine microsphere consisting of revaprazan and gelatine (1:2, w/w), which gave about 150-fold increased solubility, had the most enhanced drug solubility. It provided a spherical shape, amorphous drug and reduced particle size. Furthermore, it gave a higher dissolution rate and plasma concentration than did revaprazan powder. Particularly, it gave about 2.3-fold improved oral bioavailability in comparison with revaprazan powder. Therefore, this novel gelatine microsphere system is recommended as an oral pharmaceutical product of poorly water-soluble revaprazan.
Collapse
Affiliation(s)
- Jung Suk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea
| | - Jong Hyuck Park
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea
| | - Sung Chan Jeong
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea
| | - Abid Mehmood Yousaf
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea.,b Department of Pharmacy, COMSATS University Islamabad, Lahore Campus , Lahore , Pakistan
| | - Fakhar Ud Din
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea.,c Department of Pharmacy , Quaid-I-Azam University , Islamabad , Pakistan
| | - Jong Oh Kim
- d College of Pharmacy , Yeungnam University , Gyongsan , South Korea
| | - Chul Soon Yong
- d College of Pharmacy , Yeungnam University , Gyongsan , South Korea
| | - Yu Seok Youn
- e School of Pharmacy , Sungkyunkwan University , Jangan-gu , South Korea
| | - Kyung Taek Oh
- f College of Pharmacy , Chung-Ang University , Seoul , South Korea
| | - Sung Giu Jin
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea.,g Department of Pharmaceutical Engineering , Dankook University , Cheonan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Sangnok-gu, Ansan , South Korea
| |
Collapse
|
19
|
Halder S, Tabata A, Seto Y, Sato H, Onoue S. Amorphous solid dispersions of carvedilol along with pH-modifiers improved pharmacokinetic properties under hypochlorhydoria. Biopharm Drug Dispos 2018; 39:232-242. [PMID: 29607517 DOI: 10.1002/bdd.2129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Carvedilol (CAR) belongs to biopharmaceutics classification system class-II drugs, with poor aqueous solubility and pH-dependent solubility. The present study aimed to develop a novel amorphous solid dispersion (ASD) of CAR with acidic counter ions for pH modifications in microenvironment to improve the pharmacokinetic properties under hypochlorhydric conditions. CAR-ASD was prepared by freeze-drying in combination with counter ions and hydroxypropyl cellulose, and their physicochemical properties including dissolution behavior, storage stability, and photostability were characterized. Pharmacokinetic studies were carried out after oral administration of CAR samples in both normal and omeprazole-treated (30 mg/kg, p.o.) rats as a hypochlorhydria model. Among the tested six counter ions, citric acid (CA) was found to be a preferable pH-modifier of CAR with respect to the dissolution profile and photostability (both potency and colorimetric evaluation). In CAR-ASD formulation with 50% loading of CA (CAR-ASD/CA50), amorphization of CAR was observed during the preparation process. After the oral administration of crystalline CAR in rats under hypochlorhydric condition, there was a 34.4% reduction in the systemic exposure of CAR compared with that in normal rats. However, orally-dosed CAR-ASD/CA50 resulted in limited alterations of pharmacokinetic behavior between normal and omeprazole-treated rats. From these findings, addition of CA as pH-modifier in CAR-ASD might provide consistent pharmacokinetic behavior of CAR even under hypochlorhydric conditions.
Collapse
Affiliation(s)
- Shimul Halder
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Aiko Tabata
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
20
|
Yousaf AM, Ramzan M, Shahzad Y, Mahmood T, Jamshaid M. Fabrication and in vitro characterization of fenofibric acid-loaded hyaluronic acid–polyethylene glycol polymeric composites with enhanced drug solubility and dissolution rate. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Muhammad Ramzan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University, Lahore, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
21
|
Physical Stability of Amorphous Solid Dispersions: a Physicochemical Perspective with Thermodynamic, Kinetic and Environmental Aspects. Pharm Res 2018; 35:125. [PMID: 29687226 DOI: 10.1007/s11095-018-2408-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Amorphous solid dispersions (ASDs) have been widely used in the pharmaceutical industry for solubility enhancementof poorly water-soluble drugs. The physical stability, however, remainsone of the most challenging issues for the formulation development.Many factors can affect the physical stability via different mechanisms, and therefore an in-depth understanding on these factors isrequired. METHODS In this review, we intend to summarize the physical stability of ASDsfrom a physicochemical perspective whereby factors that can influence the physical stability areclassified into thermodynamic, kinetic and environmental aspects. RESULTS The drug-polymer miscibility and solubility are consideredas the main thermodynamicfactors which may determine the spontaneity of the occurrence of the physical instabilityof ASDs. Glass-transition temperature,molecular mobility, manufacturing process,physical stabilityof amorphous drugs, and drug-polymerinteractionsareconsideredas the kinetic factors which areassociated with the kinetic stability of ASDs on aging. Storage conditions including temperature and humidity could significantly affect the thermodynamicand kineticstabilityof ASDs. CONCLUSION When designing amorphous solid dispersions, it isrecommended that these thermodynamic, kinetic and environmental aspects should be completely investigatedand compared to establish rationale formulations for amorphous solid dispersions with high physical stability.
Collapse
|
22
|
Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, Kang MJ, Choi YW. Formulation and in vivo pharmacokinetic evaluation of ethyl cellulose-coated sustained release multiple-unit system of tacrolimus. Int J Biol Macromol 2018; 109:544-550. [DOI: 10.1016/j.ijbiomac.2017.12.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/15/2022]
|
23
|
Orlandi S, Priotti J, Diogo HP, Leonardi D, Salomon CJ, Nunes TG. Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly(Vinylpyrrolidone) over Drug Recrystallization and Dissolution. AAPS PharmSciTech 2018; 19:1274-1286. [PMID: 29313262 DOI: 10.1208/s12249-017-0946-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.
Collapse
|
24
|
Orally Disintegrating Tablets Containing Melt Extruded Amorphous Solid Dispersion of Tacrolimus for Dissolution Enhancement. Pharmaceutics 2018; 10:pharmaceutics10010035. [PMID: 29547585 PMCID: PMC5874848 DOI: 10.3390/pharmaceutics10010035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/16/2022] Open
Abstract
In order to improve the aqueous solubility and dissolution of Tacrolimus (TAC), amorphous solid dispersions of TAC were prepared by hot melt extrusion with three hydrophilic polymers, Polyvinylpyrrolidone vinyl acetate (PVP VA64), Soluplus® and Hydroxypropyl Cellulose (HPC), at a drug loading of 10% w/w. Molecular modeling was used to determine the miscibility of the drug with the carrier polymers by calculating the Hansen Solubility Parameters. Powder X-ray diffraction and differential scanning calorimetry (DSC) studies of powdered solid dispersions revealed the conversion of crystalline TAC to amorphous form. Fourier transform Infrared (FTIR) spectroscopy results indicated formation of hydrogen bond between TAC and polymers leading to stabilization of TAC in amorphous form. The extrudates were found to be stable under accelerated storage conditions for 3 months with no re-crystallization, indicating that hot melt extrusion is suitable for producing stable amorphous solid dispersions of TAC in PVP VA64, Soluplus® and HPC. Stable solid dispersions of amorphous TAC exhibited higher dissolution rate, with the solid dispersions releasing more than 80% drug in 15 min compared to the crystalline drug giving 5% drug release in two hours. These stable solid dispersions were incorporated into orally-disintegrating tablets in which the solid dispersion retained its solubility, dissolution and stability advantage.
Collapse
|
25
|
Dheer D, Jyoti, Gupta PN, Shankar R. Tacrolimus: An updated review on delivering strategies for multifarious diseases. Eur J Pharm Sci 2018; 114:217-227. [DOI: 10.1016/j.ejps.2017.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
|
26
|
Guo W, Du S, Lin Y, Lu B, Yang C, Wang J, Zeng Y. Structural and computational insights into the enhanced solubility of dipfluzine by complexation: salt and salt-cocrystal. NEW J CHEM 2018. [DOI: 10.1039/c8nj01576g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solubilization of two salts and one salt-cocrystal of dipfluzine was revealed by supramolecular structures combined with lattice energies.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- People's Republic of China
- Biological Post-doctoral Mobile Research Center
| | - Shuang Du
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- People's Republic of China
| | - Yulong Lin
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- People's Republic of China
| | - Bo Lu
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| | - Caiqin Yang
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- People's Republic of China
| | - Jing Wang
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- People's Republic of China
| | - Yanli Zeng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang 050024
- People's Republic of China
| |
Collapse
|
27
|
Park JH, Kim DS, Mustapha O, Yousaf AM, Kim JS, Kim DW, Yong CS, Youn YS, Oh KT, Lim SJ, Kim JO, Choi HG. Comparison of a revaprazan-loaded solid dispersion, solid SNEDDS and inclusion compound: Physicochemical characterisation and pharmacokinetics. Colloids Surf B Biointerfaces 2017; 162:420-426. [PMID: 29248606 DOI: 10.1016/j.colsurfb.2017.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
The aim of this research was to compare three strategies for enhancing the solubility of poorly water-soluble revaprazan hydrochloride: solid dispersion, solid SNEDDS and inclusion compound. The influence of polymers, surfactants and oils on the drug solubility was assessed, and via the chosen carriers, the three types of formulations were prepared utilising spray drying technique. Their physicochemical properties, solubility, dissolution and pharmacokinetics in rats were performed compared with revaprazan powder. Among the liquid SNEDDS formulations assessed, the compositions of revaprazan, peceol, Tween 80 and Labrasol (10:15:55:30, weight ratio) provided the smallest emulsion size. Moreover, this liquid SNEDDS and dextran were suspended/dissolved in distilled water, and spray-dried, producing an optimal revaprazan-loaded solid SNEDDS. The appropriate solid dispersion and inclusion compound were composed of revaprazan, hydroxypropylmethylcellulose and cremophor A25 (5:1.4:5.6) and drug and hydroxyl-β-cyclodextrin (2.5:8.77), respectively. The crystalline drug was converted to an amorphous state in all formulations. In the solid dispersion, the drug was attached to the hydrophilic carrier. The solid SNEDDS and inclusion compound contained aggregate microspheres and separate microspheres, respectively. All formulations significantly increased the drug solubility, dissolution, plasma concentration and AUC compared with revaprazan powder. These properties were ranked in the order solid dispersion ≥ solid SNEDDS > inclusion compound. Particularly, the solid dispersion improved about 9500-fold drug solubility and 10-fold oral bioavailability. Thus, the improved properties were considerably dependent upon these techniques, although all of the techniques employed similar mechanisms. Among the strategies checked, the solid dispersion system would be recommended as an oral revaprazan-loaded pharmaceutical product.
Collapse
Affiliation(s)
- Jong Hyuck Park
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Omer Mustapha
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea; Faculty of Pharmacy, Ziauddin University, 4/B, Shahrah-e-Ghalib, Clifton, Karachi, 75600, Pakistan
| | - Abid Mehmood Yousaf
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea; Faculty of Pharmacy, University of Central Punjab, 1-Khayaban-e-Jinnah, Johar, Lahore, 54000, Pakistan
| | - Jung Suk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea; College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| |
Collapse
|
28
|
Mustapha O, Kim KS, Shafique S, Kim DS, Jin SG, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Choi HG. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats. Colloids Surf B Biointerfaces 2017; 154:89-95. [DOI: 10.1016/j.colsurfb.2017.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
29
|
Cho JH, Kim JC, Kim HS, Kim DS, Kim KS, Kim YI, Yong CS, Kim JO, Youn YS, Oh KT, Woo JS, Choi HG. Novel dabigatran etexilate hemisuccinate-loaded polycap: Physicochemical characterisation and in vivo evaluation in beagle dogs. Int J Pharm 2017; 525:60-70. [DOI: 10.1016/j.ijpharm.2017.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/20/2017] [Accepted: 04/09/2017] [Indexed: 01/05/2023]
|
30
|
Beneš M, Pekárek T, Beránek J, Havlíček J, Krejčík L, Šimek M, Tkadlecová M, Doležal P. Methods for the preparation of amorphous solid dispersions – A comparative study. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Advances in hot-melt extrusion technology toward pharmaceutical objectives. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0309-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Cho HJ, Jee JP, Kang JY, Shin DY, Choi HG, Maeng HJ, Cho KH. Cefdinir Solid Dispersion Composed of Hydrophilic Polymers with Enhanced Solubility, Dissolution, and Bioavailability in Rats. Molecules 2017; 22:molecules22020280. [PMID: 28208830 PMCID: PMC6155681 DOI: 10.3390/molecules22020280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to develop cefdinir solid dispersions (CSDs) prepared using hydrophilic polymers with enhanced dissolution/solubility and in vivo oral bioavailability. CSDs were prepared with hydrophilic polymers such as hydroxypropyl-methylcellulose (HPMC; CSD1), carboxymethylcellulose-Na (CMC-Na; CSD2), polyvinyl pyrrolidone K30 (PVP K30; CSD3) at the weight ratio of 1:1 (drug:polymer) using a spray-drying method. The prepared CSDs were characterized by aqueous solubility, differential scanning calorimetry (DSC), powder X-ray diffraction (p-XRD), scanning electron microscopy (SEM), aqueous viscosity, and dissolution test in various media. The oral bioavailability of CSDs was also evaluated in rats and compared with cefdinir powder suspension. The cefdinir in CSDs was amorphous form, as confirmed in the DSC and p-XRD measurements. The developed CSDs commonly resulted in about 9.0-fold higher solubility of cefdinir and a significantly improved dissolution profile in water and at pH 1.2, compared with cefdinir crystalline powder. Importantly, the in vivo oral absorption (represented as AUCinf) was markedly increased by 4.30-, 6.77- and 3.01-fold for CSD1, CSD2, and CSD3, respectively, compared with cefdinir suspension in rats. The CSD2 prepared with CMC-Na would provide a promising vehicle to enhance dissolution and bioavailability of cefdinir in vivo.
Collapse
Affiliation(s)
- Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Korea.
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea.
| | - Ji-Ye Kang
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae 50834, Korea.
| | - Dong-Yeop Shin
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 16419, Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoei-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae 50834, Korea.
| |
Collapse
|
33
|
Obaidat RM, Tashtoush BM, Awad AA, Al Bustami RT. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions. AAPS PharmSciTech 2017; 18:481-493. [PMID: 27116202 DOI: 10.1208/s12249-016-0492-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/30/2016] [Indexed: 11/30/2022] Open
Abstract
Tacrolimus is an immunosuppressant agent that suffers from poor and variable bioavailability. This can be related to limited solubility and dissolution. The main objective of this study is to use SFT to prepare solid dispersions of tacrolimus in order to enhance its dissolution. SFT was selected since it offers several advantages over conventional techniques such as efficiency and stability. Several solid dispersions of tacrolimus were prepared using SFT to enhance its dissolution. The selected polymers included soluplus, PVP, HPMC, and porous chitosan. TPGS was used as a surfactant additive with chitosan, HPMC, and PVP. Soluplus dispersions were used to study the effect of processing parameters (time, temperature, and pressure) on loading efficiency (LE) and dissolution of the preparation. Physicochemical characterization was performed using DSC, X-ray diffraction, FTIR analysis, SEM, and in vitro drug release. Stability testing was evaluated after 3 months for selected dispersions. Significant improvement for the release profile was achieved for the prepared dispersions. Better release achieved in the soluplus dispersions which reached maximum cumulative release equal to 98.76% after 24 h. Drug precipitated in its amorphous form in all prepared dispersions except those prepared from chitosan. All dispersions were physically stable except for PVP preparations that contained TPGS which started to re-crystallize after one month. Prepared dispersions were proved to be affected by supercritical processing parameters. In conclusion, SFT was successfully used to prepare dispersions of tacrolimus that exhibited higher dissolution than raw drug. Dissolution rate and stability are affected by the type of the polymer.
Collapse
|
34
|
Lu T, Sun Y, Ding D, Zhang Q, Fan R, He Z, Wang J. Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies. AAPS PharmSciTech 2017; 18:473-480. [PMID: 27116201 DOI: 10.1208/s12249-016-0531-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.
Collapse
|
35
|
Biswas N, Kuotsu K. Chronotherapeutically Modulated Pulsatile System of Valsartan Nanocrystals-an In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2017; 18:349-357. [PMID: 26961969 DOI: 10.1208/s12249-016-0511-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022] Open
Abstract
The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.
Collapse
|
36
|
Luciani-Giacobbe LC, Ramírez-Rigo MV, Garro-Linck Y, Monti GA, Manzo RH, Olivera ME. Very fast dissolving acid carboxymethylcellulose-rifampicin matrix: Development and solid-state characterization. Eur J Pharm Sci 2017; 96:398-410. [DOI: 10.1016/j.ejps.2016.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/23/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022]
|
37
|
Liu L, Li J, Zhao MH, Xu H, Li LS, Wang SN. Loading of tacrolimus containing lipid based drug delivery systems into mesoporous silica for extended release. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf B Biointerfaces 2016; 147:250-257. [DOI: 10.1016/j.colsurfb.2016.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 12/24/2022]
|
39
|
Development of novel prasugrel base microsphere-loaded tablet with enhanced stability: Physicochemical characterization and in vivo evaluation in beagle dogs. Colloids Surf B Biointerfaces 2016; 146:754-61. [DOI: 10.1016/j.colsurfb.2016.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
|
40
|
Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm 2016; 107:16-31. [DOI: 10.1016/j.ejpb.2016.06.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022]
|
41
|
Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharm Sci 2016; 105:2527-2544. [DOI: 10.1016/j.xphs.2015.10.008] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Kim DS, Choi JS, Kim DW, Kim KS, Seo YG, Cho KH, Kim JO, Yong CS, Youn YS, Lim SJ, Jin SG, Choi HG. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation. Int J Pharm 2016; 511:351-358. [PMID: 27397868 DOI: 10.1016/j.ijpharm.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.
Collapse
Affiliation(s)
- Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Jong Seo Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Youn Gee Seo
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Inje-ro 197, Gimhae 621-749, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| |
Collapse
|
43
|
Yousaf AM, Kim DW, Kim DS, Kim JO, Youn YS, Cho KH, Yong CS, Choi HG. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres. J Microencapsul 2016; 33:365-71. [PMID: 27283260 DOI: 10.1080/02652048.2016.1194906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea ;,b Faculty of Pharmacy , University of Central Punjab , Johar , Lahore , Pakistan
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Yu Seok Youn
- d School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Kwan Hyung Cho
- e College of Pharmacy, Inje University , Gimhae , South Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
44
|
Zidan AS. Taste-masked tacrolimus-phospholipid nanodispersions: dissolution enhancement, taste masking and reduced gastric complications. Pharm Dev Technol 2016; 22:173-183. [PMID: 26811031 DOI: 10.3109/10837450.2016.1138131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Through the integration of orthogonal central composite design and desirability function, this work aimed to explore the potential of quality by design in understanding the formulation of phospholipid-stabilized tacrolimus nanodispersions by microfluidization. The influence of homogenization pressure, microfluidization time and phospholipid concentration (X1-X3) on nanodispersion performance was studied. Nanodispersions were characterized by differential scanning calorimetric (DSC), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) analysis. Moreover, masking the unpalatable taste of tacrolimus and reducing the gastric complications were also evaluated. FTIR analysis indicated its interaction with phospholipid. DSC and XRD analysis revealed the amorphous transformation of tacrolimus within nanodispersions. The dissolution was enhanced by 35 folds and 15 folds after 0.5 and 2 h, respectively. Maximum tacrolimus content, yield, polydispersity index, percentages dissolved after 0.5 and 2 h of 99.3%, 100%, 0.864, 39.7% and 95.3%, respectively, with particle size of 160 nm were obtained at X1, X2 and X3 values of 20 000 psi, 6 min and 30%, respectively. The Euclidean distance values demonstrated masking the unpalatable taste and taste perversion to stimuli of tacrolimus in its optimized nanodispersion. Moreover, the ulcerative indices following raw tacrolimus and its optimized nanodispersion oral administration were 6.73 and 2.45, respectively, to indicate that nanodispersion was significantly less irritating to the gastric mucosa.
Collapse
Affiliation(s)
- Ahmed S Zidan
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, King Abdulaziz University , Jeddah , Saudi Arabia and.,b Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Zagazig University , Zagazig , Egypt
| |
Collapse
|
45
|
Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Rashid R, Kim DW, Yousaf AM, Mustapha O, Fakhar Ud Din, Park JH, Yong CS, Oh YK, Youn YS, Kim JO, Choi HG. Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe. Int J Nanomedicine 2015; 10:6147-59. [PMID: 26491288 PMCID: PMC4598224 DOI: 10.2147/ijn.s91216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The objective of this study was to compare the physicochemical characteristics, solubility, dissolution, and oral bioavailability of an ezetimibe-loaded solid self-nanoemulsifying drug delivery system (SNEDDS), surface modified solid dispersion (SMSD), and solvent evaporated solid dispersion (SESD) to identify the best drug delivery system with the highest oral bioavailability. Methods For the liquid SNEDDS formulation, Capryol 90, Cremophor EL, and Tween 80 were selected as the oil, surfactant, and cosurfactant, respectively. The nanoemulsion-forming region was sketched using a pseudoternary phase diagram on the basis of reduced emulsion size. The optimized liquid SNEDDS was converted to solid SNEDDS by spray drying with silicon dioxide. Furthermore, SMSDs were prepared using the spray drying technique with various amounts of hydroxypropylcellulose and Tween 80, optimized on the basis of their drug solubility. The SESD formulation was prepared with the same composition of optimized SMSD. The aqueous solubility, dissolution, physicochemical properties, and pharmacokinetics of all of the formulations were investigated and compared with the drug powder. Results The drug existed in the crystalline form in SMSD, but was changed into an amorphous form in SNEDDS and SESD, giving particle sizes of approximately 24, 6, and 11 µm, respectively. All of these formulations significantly improved the aqueous solubility and dissolution in the order of solid SNEDDS ≥ SESD > SMSD, and showed a total higher plasma concentration than did the drug powder. Moreover, SESD gave a higher area under the drug concentration time curve from zero to infinity than did SNEDDS and SMSD, even if they were not significantly different, suggesting more improved oral bioavailability. Conclusion Among the various formulations tested in this study, the SESD system would be strongly recommended as a drug delivery system for the oral administration of ezetimibe with poor water solubility.
Collapse
Affiliation(s)
- Rehmana Rashid
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Dong Wuk Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Abid Mehmood Yousaf
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Omer Mustapha
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Fakhar Ud Din
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Jong Hyuck Park
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|
47
|
Seo YG, Kim DW, Yousaf AM, Park JH, Chang PS, Baek HH, Lim SJ, Kim JO, Yong CS, Choi HG. Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J Microencapsul 2015; 32:503-10. [PMID: 26079598 DOI: 10.3109/02652048.2015.1057252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To develop a novel self-nanoemulsifying drug delivery system (solid SNEDDS) with better oral bioavailability of tacrolimus, the solid SNEDDS was obtained by spray-drying the solutions containing the liquid SNEDDS and colloidal silica. Its reconstitution properties were determined and correlated to solid state characterisation of the powder. Moreover, the dissolution and pharmacokinetics in rats was done in comparison to the commercial product. Among the liquid SNEDDS formulations tested, the liquid SNEDDS comprised of Capryol PGMC, Transcutol HP and Labrasol (10:15:75, v/v/v) presented the highest dissolution rate. In the solid SNEDDS, this liquid SNEDDS was absorbed in the pores and attached onto the surface of the colloidal silica. Drug was present in the amorphous state in it. The solid SNEDDS with 5% w/v tacrolimus produced the nanoemulsions and improved the oral bioavailability of tacrolimus in rats. Therefore, this solid SNEDDS would be a potential candidate for enhancing the oral bioavailability of tacrolimus.
Collapse
Affiliation(s)
- Youn Gee Seo
- College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rashid R, Kim DW, Din FU, Mustapha O, Yousaf AM, Park JH, Kim JO, Yong CS, Choi HG. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym 2015; 130:26-31. [PMID: 26076597 DOI: 10.1016/j.carbpol.2015.04.071] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
The purpose of this research was to evaluate the effect of the HPC (hydroxypropylcellulose) and Tween 80 on the physicochemical properties and oral bioavailability of ezetimibe-loaded solid dispersions. The binary solid dispersions were prepared with drug and various amounts of HPC. Likewise, ternary solid dispersions were prepared with different ratios of drug, HPC and Tween 80. Both types of solid dispersions were prepared using the solvent evaporation method. Their aqueous solubility, physicochemical properties, dissolution and oral bioavailability were investigated in comparison with the drug powder. All the solid dispersions significantly improved the drug solubility and dissolution. As the amount of HPC increased in the binary solid dispersions to 10-fold, the drug solubility and dissolution were increased accordingly. However, further increase in HPC did not result in significant differences among them. Similarly, up to 0.1-fold, Tween 80 increased the drug solubility in the ternary solid dispersions followed by no significant change. However, Tween 80 hardly affected the drug dissolution. The physicochemical analysis proved that the drug in binary and ternary solid dispersion was existed in the amorphous form. The particle-size measurements of these formulations were also not significantly different from each other, which showed that Tween 80 had no impact on physicochemical properties. The ezetimibe-loaded binary and ternary solid dispersions gave 1.6- and 1.8-fold increased oral bioavailability in rats, respectively, as compared to the drug powder; however, these values were not significantly different from each other. Thus, HPC greatly affected the solubility, dissolution and oral bioavailability of drug, but Tween 80 hardly did. Furthermore, this ezetimibe-loaded binary solid dispersion prepared only with HPC would be suggested as a potential formulation for oral administration of ezetimibe.
Collapse
Affiliation(s)
- Rehmana Rashid
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Fakhar Ud Din
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Omer Mustapha
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Abid Mehmood Yousaf
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Jong Hyuck Park
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan, 712-749, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan, 712-749, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 426-791, Sangnok-gu, South Korea.
| |
Collapse
|
49
|
Yousaf AM, Kim DW, Kim JK, Kim JO, Yong CS, Choi HG. Novel fenofibrate-loaded gelatin microcapsules with enhanced solubility and excellent flowability: Preparation and physicochemical characterization. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Yousaf AM, Kim DW, Oh YK, Yong CS, Kim JO, Choi HG. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation. Int J Nanomedicine 2015; 10:1819-30. [PMID: 25784807 PMCID: PMC4356686 DOI: 10.2147/ijn.s78895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Dong Wuk Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|