1
|
Vemuri GN, Hughes JR, Iovine PM. Synthesis and characterization of terpene-derived cationic bolaamphiphiles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Lee H, Kim H, Lee SY. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomater Sci Eng 2021; 7:3545-3572. [PMID: 34309378 DOI: 10.1021/acsbiomaterials.1c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.
Collapse
Affiliation(s)
- Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:481. [PMID: 33668665 PMCID: PMC7917665 DOI: 10.3390/nano11020481] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Omar El Hamoui
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Bruno Alies
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
| |
Collapse
|
4
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Jia N, Ma J, Gao Y, Hu H, Chen D, Zhao X, Yuan Y, Qiao M. HA-Modified R8-Based Bola-Amphiphile Nanocomplexes for Effective Improvement of siRNA Delivery Efficiency. ACS Biomater Sci Eng 2020; 6:2084-2093. [DOI: 10.1021/acsbiomaterials.0c00231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Jia
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Jingjing Ma
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yan Gao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| |
Collapse
|
6
|
Sharma K, Joseph JP, Sahu A, Yadav N, Tyagi M, Singh A, Pal A, Kartha KPR. Supramolecular gels from sugar-linked triazole amphiphiles for drug entrapment and release for topical application. RSC Adv 2019; 9:19819-19827. [PMID: 35519397 PMCID: PMC9065371 DOI: 10.1039/c9ra02868d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 01/11/2023] Open
Abstract
A simple molecular framework obtained by cross-linking a hydrophobic chain with S,S- and R,R-tetritol by the copper-catalysed azide-alkyne cycloaddition reaction is found to serve as an excellent bioisostere for self-assembly. The hexadecyl-linked triazolyl tetritol composite spontaneously self-assembles in n-hepane and methanol to form hierarchical organogels. Microscopic analyses and X-ray diffraction studies demonstrate eventual formation of nanotubes through lamellar assembly of the amphiphiles. A rheological investigation shows solvent-dictated mechanical properties that obey power law behavior similar to other low molecular weight gelators (LMOGs). The gel network was then utilized for the entrapment of drugs e.g. ibuprofen and 5-fluorouracil, with tunable mechanical behaviour under applied stress. The differential release profiles of the drugs over a period of a few hours as a result of the relative spatio-temporal location in the supramolecular network can be utilized for topical formulations.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Jojo P Joseph
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - Adarsh Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Narender Yadav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Mohit Tyagi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| | - Ashmeet Singh
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - Asish Pal
- Institute of Nano Science and Technology Phase 10, Sector 64 Mohali Punjab-160062 India http://www.twitter.com/pal_asish
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S. A. S. Nagar Punjab-160062 India
| |
Collapse
|
7
|
|
8
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
9
|
Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes. Biomaterials 2018; 178:458-466. [PMID: 29705001 DOI: 10.1016/j.biomaterials.2018.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Obesity is a major risk factor for diabetes, heart disease and other health problems. Adipose tissue plays a central role in the development of obesity and obesity-associated diseases. Gene therapy targeting adipose tissue may provide a promising strategy for obesity treatment. However, nucleic acid delivery to adipose tissue or even cultured adipocytes is challenging due to low delivery efficacy and high toxicity of the current cationic lipid based delivery systems, or monoamphiphiles. Herein, we report using dendritic peptide bolaamphiphiles (bolas) to deliver siRNA to primary adipocytes and hepatocytes. The bola consists of two l-Lysine dendrons connected to a fluorocarbon core through disulfide linkages. The Lysine dendrons are functionalized with l-histidine and l-tryptophan to promote endosomal escape and cellular uptake. The bola exhibited over 70% knockdown of GAPDH gene in both primary adipocytes and hepatocytes. Importantly, different from Lipofectamine that significantly reduced genes involved in lipolysis, lipogenesis, fatty acid oxidation and ketogenesis, the bolas had little to no effect on these genes. These results demonstrate the bola as a promising new vector for clinical and experimental applications for delivery of siRNA to metabolic organs.
Collapse
|
10
|
Sarkar S, Chakraborty S, Roy S. Phase diagram of self-assembled sophorolipid morphologies from mesoscale simulations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Huang Z, Zhao DM, Deng X, Zhang J, Zhang YM, Yu XQ. Functionalized Asymmetric Bola-Type Amphiphiles for Efficient Gene and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E115. [PMID: 29462991 PMCID: PMC5853746 DOI: 10.3390/nano8020115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
The studies of bolaamphiphile-based nanoparticles as delivery vectors are still rudimentary and under development. In this study, several asymmetric bolaamphiphiles containing lysine and another moiety with special functions, such as pH-sensitive or cell-targeting property, were designed and synthesized. The potentials of these bolaamphiphile-based nanoparticles as versatile vectors for both nucleic acids and chemical drugs were studied. With the presence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), these amphiphiles could be prepared into bolasomes, which showed good DNA binding ability and could condense plasmid DNA into nanoparticles with appropriate size and surface potential. Lys-His, which has a pH-sensitive histidine on one head, exhibited higher transfection efficiency than the symmetric counterpart and comparable efficiency to commercially available transfection reagent. Mechanism studies confirmed that the bolaplexes formed from Lys-His might induce the highest cellular uptake and the best endosomal escape ability. On the other hand, these bolaamphiphiles also exhibited good drug loading ability. The self-assembly vesicles could efficiently encapsulate the hydrophobic anti-cancer drug doxorubicin (DOX) in aqueous solution with high drug loading content and encapsulation efficiency. Confocal laser scanning microscopy (CLSM) experiment and cell viability assay exhibited a controlled release of the drug with the assistance of bolasomes. It was shown that such bolaamphiphiles have great potential as nano-vectors for both drug and gene or their co-delivery.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dong-Mei Zhao
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuan Deng
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Huang Z, Zhang YM, Cheng Q, Zhang J, Liu YH, Wang B, Yu XQ. Structure–activity relationship studies of symmetrical cationic bolasomes as non-viral gene vectors. J Mater Chem B 2016; 4:5575-5584. [DOI: 10.1039/c6tb00870d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bolalipids based on lysine or cyclen headgroups were synthesized and their structure–activity relationship as gene delivery vectors was studied.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Cheng
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
13
|
Berchel M, Le Gall T, Lozach O, Haelters JP, Montier T, Jaffrès PA. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties. Org Biomol Chem 2016; 14:2846-53. [DOI: 10.1039/c5ob02512e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of cationic bipolar amphiphiles were readily prepared by thiol–ene click reaction. These compounds were formulated in liposomal solutions and assessed as vector for gene delivery.
Collapse
Affiliation(s)
- Mathieu Berchel
- UMR CNRS 6521 Université de Brest
- IBSAM
- Faculté des Sciences
- 29238 Brest
- France
| | - Tony Le Gall
- Unité INSERM 1078
- IBSAM
- Université de Bretagne Occidentale
- Faculté de Médecine et des Sciences de la Santé
- 29328 Brest
| | - Olivier Lozach
- UMR CNRS 6521 Université de Brest
- IBSAM
- Faculté des Sciences
- 29238 Brest
- France
| | | | - Tristan Montier
- Unité INSERM 1078
- IBSAM
- Université de Bretagne Occidentale
- Faculté de Médecine et des Sciences de la Santé
- 29328 Brest
| | - Paul-Alain Jaffrès
- UMR CNRS 6521 Université de Brest
- IBSAM
- Faculté des Sciences
- 29238 Brest
- France
| |
Collapse
|
14
|
Zeng H, Johnson ME, Oldenhuis N, Tiambeng TN, Guan Z. Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery. ACS CENTRAL SCIENCE 2015; 1:303-312. [PMID: 26436138 PMCID: PMC4582325 DOI: 10.1021/acscentsci.5b00233] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 05/21/2023]
Abstract
Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of novel dendritic peptide bolaamphiphile vectors that demonstrate high efficiency for the delivery of small interfering RNA (siRNA) while exhibiting low cytotoxicity and hemolytic activity. Systematic investigation into structure-property relationships revealed an important correlation between molecular design, self-assembled nanostructure, and biological activity. The unique bolaamphiphile architecture proved a key factor for improved complex stability and transfection efficiency. The optimal vector contains a fluorocarbon core and exhibited enhanced delivery efficiency to a variety of cell lines and improved serum resistance when compared to hydrocarbon analogues and lipofectamine RNAiMAX. In addition to introducing a promising new vector system for siRNA delivery, the structure-property relationships and "fluorocarbon effect" revealed herein offer critical insight for further development of novel materials for nucleic acid delivery and other biomaterial applications.
Collapse
|
15
|
Paiva D, Markowski T, Dobner B, Brezesinski G, Möhwald H, do Carmo Pereira M, Rocha S. Synthesis and study of the complex formation of a cationic alkyl-chain bola amino alcohol with DNA: in vitro transfection efficiency. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3710-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C, Chassande O, Barthélémy P. Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew Chem Int Ed Engl 2015; 54:4517-21. [PMID: 25693962 DOI: 10.1002/anie.201409134] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/05/2014] [Indexed: 11/12/2022]
Abstract
Controlling the behavior of stem cells through the supramolecular architecture of the extracellular matrix remains an important challenge in the culture of stem cells. Herein, we report on a new generation of low-molecular-weight gelators (LMWG) for the culture of isolated stem cells. The bola-amphiphile structures derived from nucleolipids feature unique rheological and biological properties suitable for tissue engineering applications. The bola-amphiphile-based hydrogel scaffold exhibits the following essential properties: it is nontoxic, easy to handle, injectable, and features a biocompatible rheology. The reported glycosyl-nucleoside bola-amphiphiles (GNBA) are the first examples of LMWG that allow the culture of isolated stem cells in a gel matrix. The results (TEM observations and rheology) suggest that the supramolecular organizations of the matrix play a role in the behavior of stem cells in 3D environments.
Collapse
|
17
|
Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C, Chassande O, Barthélémy P. Control of Stem-Cell Behavior by Fine Tuning the Supramolecular Assemblies of Low-Molecular-Weight Gelators. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Fariya M, Jain A, Dhawan V, Shah S, Nagarsenker MS. Bolaamphiphiles: a pharmaceutical review. Adv Pharm Bull 2014; 4:483-91. [PMID: 25671179 PMCID: PMC4312395 DOI: 10.5681/apb.2014.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/04/2014] [Accepted: 10/19/2014] [Indexed: 01/10/2023] Open
Abstract
The field of drug discovery is ever growing and excipients play a major role in it. A novel class of amphiphiles has been discussed in the review. The review focuses on natural as well as synthetic bolaamphiphiles, their chemical structures and importantly, their ability to self assemble rendering them of great use to pharmaceutical industry. Recent reports on their ability to be used in fabrication of suitable nanosized carriers for drug as well as genes to target site, has been discussed substantially to understand the potential of bolaamphiphiles in field of drug delivery.
Collapse
Affiliation(s)
- Mayur Fariya
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai – 400098, India
| | - Ankitkumar Jain
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai – 400098, India
| | - Vivek Dhawan
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai – 400098, India
| | - Sanket Shah
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai – 400098, India
| | - Mangal S. Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai – 400098, India
| |
Collapse
|
19
|
TACN-based cationic lipids with amino acid backbone and double tails: Materials for non-viral gene delivery. Bioorg Med Chem Lett 2014; 24:1771-5. [DOI: 10.1016/j.bmcl.2014.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
|
20
|
Li X, Qin Z, Wu Y, Liu W, Li L, Guo L, Li Y, Yin L, Pu Y. Improvement of transfection efficiency by galactosylated N-3-guanidinopropyl methacrylamide-co-poly (ethylene glycol) methacrylate copolymers. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
|