1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Shetty K, Yadav KS. Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells. Drug Dev Ind Pharm 2024; 50:420-431. [PMID: 38502031 DOI: 10.1080/03639045.2024.2332906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The study was aimed at formulating temozolomide (TMZ) loaded gelatin nanoparticles (GNPs) encapsulated into polyvinyl alcohol (PVA) nanofibers (TMZ-GNPs-PVA NFs) as the nano-in-nanofiber delivery system. The secondary objective was to explore the sustained releasing ability of this system and to assess its enhanced cellular uptake against U87MG glioma cells in vitro. SIGNIFICANCE Nano-in-nanofibers are the emerging drug delivery systems for treating a wide range of diseases including cancers as they overcome the challenges experienced by nanoparticles and nanofibers alone. METHODS The drug-loaded GNPs were formulated by one-step desolvation method. The Design of Experiments (DoE) was used to optimize nanoparticle size and entrapment efficiency. The optimized drug-loaded nanoparticles were then encapsulated within nanofibers using blend electrospinning technique. The U87MG glioma cells were used to investigate the uptake of the formulation. RESULTS A 32 factorial design was used to optimize the mean particle size (145.7 nm) and entrapment efficiency (87.6%) of the TMZ-loaded GNPs which were subsequently ingrained into PVA nanofibers by electrospinning technique. The delivery system achieved a sustained drug release for up to seven days (in vitro). The SEM results ensured that the expected nano-in-nanofiber delivery system was achieved. The uptake of TMZ-GNPs-PVA NFs by cells was increased by a factor of 1.964 compared to that of the pure drug. CONCLUSION The nano-in-nanofiber drug delivery system is a potentially useful therapeutic strategy for the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
3
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
4
|
Ferreira NN, Miranda RR, Moreno NS, Pincela Lins PM, Leite CM, Leite AET, Machado TR, Cataldi TR, Labate CA, Reis RM, Zucolotto V. Using design of experiments (DoE) to optimize performance and stability of biomimetic cell membrane-coated nanostructures for cancer therapy. Front Bioeng Biotechnol 2023; 11:1120179. [PMID: 36815878 PMCID: PMC9932601 DOI: 10.3389/fbioe.2023.1120179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells. Methods: Important physicochemical features of the extracted cell membrane from tumoral cells were assessed by mass spectrometry-based proteomics. PLGA-based nanoparticles encapsulating temozolomide (TMZ NPs) were successfully developed. The coating technology applying the isolated U251 cell membrane (MB) was optimized using a fractional two-level three-factor factorial design. All the formulation runs were systematically characterized regarding their diameter, polydispersity index (PDI), and zeta potential (ZP). Experimental conditions generated by DoE were also subjected to morphological studies using negative-staining transmission electron microscopy (TEM). Its short-time stability was also assessed. MicroRaman and Fourier-Transform Infrared (FTIR) spectroscopies and Confocal microscopy were used as characterization techniques for evaluating the NP-MB nanostructures. Internalization studies were carried out to evaluate the homotypic targeting ability. Results and Discussion: The results have shown that nearly 80% of plasma membrane proteins were retained in the cell membrane vesicles after the isolation process, including key proteins to the homotypic binding. DoE analysis considering acquired TEM images reveals that condition run five should be the best-optimized procedure to produce the biomimetic cell-derived membrane-coated nanostructure (NP-MB). Storage stability for at least two weeks of the biomimetic system is expected once the original characteristics of diameter, PDI, and ZP, were maintained. Raman, FTIR, and confocal characterization results have shown the successful encapsulation of TMZ drug and provided evidence of the effective coating applying the MB. Cell internalization studies corroborate the proteomic data indicating that the optimized NP-MB achieved specific targeting of homotypic tumor cells. The structure should retain the complex biological functions of U251 natural cell membranes while exhibiting physicochemical properties suitable for effective homotypic recognition. Conclusion: Together, these findings provide coverage and a deeper understanding regarding the dynamics around extracted cell membrane and polymeric nanostructures interactions and an in-depth insight into the cell membrane coating technology and the development of optimized biomimetic and bioinspired nanostructured systems.
Collapse
Affiliation(s)
- Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil,*Correspondence: Natália Noronha Ferreira, ; Valtencir Zucolotto,
| | - Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Natália Sanchez Moreno
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Celisnolia Morais Leite
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Ana Elisa Tognoli Leite
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Thales Rafael Machado
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil
| | - Thaís Regiani Cataldi
- Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Max Feffer Laboratory of Plant Genetics, Department of Genetics, ESALQ, University of São Paulo, Piracicaba, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, São Carlos, Brazil,*Correspondence: Natália Noronha Ferreira, ; Valtencir Zucolotto,
| |
Collapse
|
5
|
Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The greatest obstacle to using drugs to treat brain tumors is the blood-brain barrier (BBB), making it difficult for conventional drug molecules to enter the brain. Therefore, how to safely and effectively penetrate the BBB to achieve targeted drug delivery to brain tumors has been a challenging research problem. With the intensive research in micro- and nanotechnology in recent years, nano drug-targeted delivery technologies have shown great potential to overcome this challenge, such as inorganic nanocarriers, organic polymer-carriers, liposomes, and biobased carriers, which can be designed in different sizes, shapes, and surface functional groups to enhance their ability to penetrate the BBB and targeted drug delivery for brain tumors. In this review, the composition and overcoming patterns of the BBB are detailed, and then the hot research topics of drug delivery carriers for brain tumors in recent years are summarized, and their mechanisms of action on the BBB and the factors affecting drug delivery are described in detail, and the effectiveness of targeted therapy for brain tumors is evaluated. Finally, the challenges and dilemmas in developing brain tumor drug delivery systems are discussed, which will be promising in the future for targeted drug delivery to brain tumors based on micro-nanocarriers technology.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Youyuan Shi
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jingzhen Jiang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chan Li
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xinhui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
6
|
Dutra JAP, Luiz MT, Tavares Junior AG, Di Filippo LD, Carvalho SG, Chorilli M. Temozolomide: an Overview of Biological Properties, Drug Delivery Nanosystems, and Analytical Methods. Curr Pharm Des 2022; 28:2073-2088. [PMID: 35658888 DOI: 10.2174/1381612828666220603152918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical prop-erties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Because of this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dos-ing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the phys-icochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spec-trophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sen-sitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different ma-trices.
Collapse
Affiliation(s)
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Bra-zil
| | | | | | - Suzana Gonçalves Carvalho
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| |
Collapse
|
7
|
Petrenko D, Chubarev V, Syzrantsev N, Ismail N, Merkulov V, Sologova S, Grigorevskikh E, Smolyarchuk E, Alyautdin R. Temozolomide Efficacy and Metabolism: The Implicit Relevance of Nanoscale Delivery Systems. Molecules 2022; 27:3507. [PMID: 35684445 PMCID: PMC9181940 DOI: 10.3390/molecules27113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The most common primary malignant brain tumors in adults are gliomas. Glioblastoma is the most prevalent and aggressive tumor subtype of glioma. Current standards for the treatment of glioblastoma include a combination of surgical, radiation, and drug therapy methods. The drug therapy currently includes temozolomide (TMZ), an alkylating agent, and bevacizumab, a recombinant monoclonal IgG1 antibody that selectively binds to and inhibits the biological activity of vascular endothelial growth factor. Supplementation of glioblastoma radiation therapy with TMZ increased patient survival from 12.1 to 14.6 months. The specificity of TMZ effect on brain tumors is largely determined by special aspects of its pharmacokinetics. TMZ is an orally bioavailable prodrug, which is well absorbed from the gastrointestinal tract and is converted to its active alkylating metabolite 5-(3-methyl triazen-1-yl)imidazole-4-carbozamide (MTIC) spontaneously in physiological condition that does not require hepatic involvement. MTIC produced in the plasma is not able to cross the BBB and is formed locally in the brain. A promising way to increase the effectiveness of TMZ chemotherapy for glioblastoma is to prevent its hydrolysis in peripheral tissues and thereby increase the drug concentration in the brain that nanoscale delivery systems can provide. The review discusses possible ways to increase the efficacy of TMZ using nanocarriers.
Collapse
Affiliation(s)
- Daria Petrenko
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Vladimir Chubarev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nikita Syzrantsev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nafeeza Ismail
- Department of Pharmacology, University Technology MARA, Kuala Lumpur 50450, Malaysia;
| | - Vadim Merkulov
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Ekaterina Grigorevskikh
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Renad Alyautdin
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| |
Collapse
|
8
|
Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 2022; 491:240-270. [PMID: 35395355 DOI: 10.1016/j.neuroscience.2022.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.
Collapse
|
9
|
Senturk F, Cakmak S, Gumusderelioglu M, Ozturk GG. Hydrolytic instability and low-loading levels of temozolomide to magnetic PLGA nanoparticles remain challenging against glioblastoma therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Seko I, Tonbul H, Tavukçuoğlu E, Şahin A, Akbas S, Yanık H, Öztürk SC, Esendagli G, Khan M, Capan Y. Development of curcumin and docetaxel co-loaded actively targeted PLGA nanoparticles to overcome blood brain barrier. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Rabha B, Bharadwaj KK, Pati S, Choudhury BK, Sarkar T, Kari ZA, Edinur HA, Baishya D, Atanase LI. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers (Basel) 2021; 13:polym13234114. [PMID: 34883617 PMCID: PMC8659151 DOI: 10.3390/polym13234114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Brain cancers, mainly high-grade gliomas/glioblastoma, are characterized by uncontrolled proliferation and recurrence with an extremely poor prognosis. Despite various conventional treatment strategies, viz., resection, chemotherapy, and radiotherapy, the outcomes are still inefficient against glioblastoma. The blood–brain barrier is one of the major issues that affect the effective delivery of drugs to the brain for glioblastoma therapy. Various studies have been undergone in order to find novel therapeutic strategies for effective glioblastoma treatment. The advent of nanodiagnostics, i.e., imaging combined with therapies termed as nanotheranostics, can improve the therapeutic efficacy by determining the extent of tumour distribution prior to surgery as well as the response to a treatment regimen after surgery. Polymer nanoparticles gain tremendous attention due to their versatile nature for modification that allows precise targeting, diagnosis, and drug delivery to the brain with minimal adverse side effects. This review addresses the advancements of polymer nanoparticles in drug delivery, diagnosis, and therapy against brain cancer. The mechanisms of drug delivery to the brain of these systems and their future directions are also briefly discussed.
Collapse
Affiliation(s)
- Bijuli Rabha
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Kaushik Kumar Bharadwaj
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-Association for Biodiversity Conservation and Research (ABC), Balasore 756001, India;
- NatNov Bioscience Private Limited, Balasore, 756001, India
| | | | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda 732102, India;
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Debabrat Baishya
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
- Correspondence: (D.B.); (L.I.A.)
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Correspondence: (D.B.); (L.I.A.)
| |
Collapse
|
12
|
Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods. NANOMATERIALS 2021; 11:nano11102723. [PMID: 34685164 PMCID: PMC8541650 DOI: 10.3390/nano11102723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies.
Collapse
|
13
|
Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021; 336:549-571. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is abnormal cell proliferation of glial cells. GBM is the grade IV glioma brain cancer which is life-threatening to many individuals affected by this cancer. The DNA alkylating agent Temozolomide (TMZ) has the distinctiveness of being FDA approved anticancer drug for the first line treatment for GBM. However, treatment of GBM still remains a challenge. This is attributed to TMZ's toxic nature, severe side effects, and fast degradation in vivo. In addition, the lack of targeting ability increases the chances of systemic toxicities. A nano enabled targeted delivery system not only improves the efficiency of TMZ by making it cross the blood brain barrier, have specificity to target, but also reduces toxicity to healthy tissues. Over the last decade the significant advances in the area of nanotechnology applied to medicine have developed many multifunctional therapeutics. In this context, the present review article comprehends the significant progress in the field of TMZ loaded nanocarriers showing promise for futuristic nanomedicine therapies in treating GBM.
Collapse
|
14
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
15
|
Perini G, Giulimondi F, Palmieri V, Augello A, Digiacomo L, Quagliarini E, Pozzi D, Papi M, Caracciolo G. Inhibiting the Growth of 3D Brain Cancer Models with Bio-Coronated Liposomal Temozolomide. Pharmaceutics 2021; 13:pharmaceutics13030378. [PMID: 33809262 PMCID: PMC7999290 DOI: 10.3390/pharmaceutics13030378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Erica Quagliarini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Correspondence: (M.P.); (G.C.)
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
- Correspondence: (M.P.); (G.C.)
| |
Collapse
|
16
|
Guigou C, Lalande A, Millot N, Belharet K, Bozorg Grayeli A. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sci 2021; 11:358. [PMID: 33799690 PMCID: PMC7998448 DOI: 10.3390/brainsci11030358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Drug delivery and distribution in the central nervous system (CNS) and the inner ear represent a challenge for the medical and scientific world, especially because of the blood-brain and the blood-perilymph barriers. Solutions are being studied to circumvent or to facilitate drug diffusion across these structures. Using superparamagnetic iron oxide nanoparticles (SPIONs), which can be coated to change their properties and ensure biocompatibility, represents a promising tool as a drug carrier. They can act as nanocarriers and can be driven with precision by magnetic forces. The aim of this study was to systematically review the use of SPIONs in the CNS and the inner ear. A systematic PubMed search between 1999 and 2019 yielded 97 studies. In this review, we describe the applications of the SPIONS, their design, their administration, their pharmacokinetic, their toxicity and the methods used for targeted delivery of drugs into the ear and the CNS.
Collapse
Affiliation(s)
- Caroline Guigou
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Alain Lalande
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France;
| | - Karim Belharet
- Laboratoire PRISME, JUNIA Campus Centre, 36000 Châteauroux, France;
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| |
Collapse
|
17
|
Xu K, Zhang L, Gu Y, Yang H, Du B, Liu H, Li Y. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Tan J, Sun W, Lu L, Xiao Z, Wei H, Shi W, Wang Y, Han S, Shuai X. I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas. J Mater Chem B 2020; 7:6139-6147. [PMID: 31553351 DOI: 10.1039/c9tb01563a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glioma, the most severe primary brain malignancy, has very low survival rates and a high level of recurrence. Nowadays, conventional treatments for these patients are suffering a similar plight owing to the distinctive features of the malignant gliomas, for example chemotherapy is limited by the blood-brain barrier while surgery and radiation therapy are affected by the unclear boundaries of tumor from normal tissue. In the present study, a novel superparamagnetic iron oxide (SPIO) nanoprobe for enhanced T2-weighted magnetic resonance imaging (MRI) was developed. A frequently used MRI probe, SPIO nanoparticles, was coated with a silica outer layer and for the first time was covalently modified with interleukin-6 receptor targeting peptides (I6P7) to promote transportation through the blood-brain barrier and recognition of low-grade gliomas. The efficiency of transcytosis across the blood-brain barrier was examined in vitro using a transwell invasion model and in vivo in nude mice with orthotopic low-grade gliomas. The targeting nanoprobe showed significant MRI enhancement and has potential for use in the diagnosis of low-grade gliomas.
Collapse
Affiliation(s)
- Junyi Tan
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Background:
Drug delivery to cancerous brain is a challenging task as it is
surrounded by an efficient protective barrier. The main hurdles for delivery of bioactive
molecules to cancerous brain are blood brain barrier (BBB), the invasive nature of gliomas,
drug resistance, and difficult brain interstitium transportation. Therefore, treatment
of brain cancer with the available drug regimen is difficult and has shown little improvement
in recent years.
Methods:
We searched about recent advancements in the use of nanomedicine for effective
treatment of the brain cancer. We focused on the use of liposomes, nanoparticles,
polymeric micelles, and dendrimers to improve brain cancer therapy.
Results:
Nanomedicines are well suited for the treatment of brain cancer owing to their
highly acceptable biological, chemical, and physical properties. Smaller size of nanomedicines
also enhances their anticancer potential and penetration into blood brain barrier
(BBB).
Conclusion:
Recently, nanomedicine based approaches have been developed and investigated
for effective treatment of brain cancer. Some of these have been translated into
clinical practice, in order to attain therapeutic needs of gliomas. Future advancements in
nanomedicines will likely produce significant changes in methods and practice of brain
cancer therapy.
Collapse
Affiliation(s)
- Shivani Verma
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Puneet Utreja
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Lalit Kumar
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| |
Collapse
|
20
|
Sayiner O, Arisoy S, Comoglu T, Ozbay FG, Esendagli G. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Poh W, Ab Rahman N, Ostrovski Y, Sznitman J, Pethe K, Loo SCJ. Active pulmonary targeting against tuberculosis (TB) via triple-encapsulation of Q203, bedaquiline and superparamagnetic iron oxides (SPIOs) in nanoparticle aggregates. Drug Deliv 2020; 26:1039-1048. [PMID: 31691600 PMCID: PMC6844420 DOI: 10.1080/10717544.2019.1676841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis (TB) has gained attention over the past few decades by becoming one of the top ten leading causes of death worldwide. This infectious disease of the lungs is orally treated with a medicinal armamentarium. However, this route of administration passes through the body’s first-pass metabolism which reduces the drugs’ bioavailability and toxicates the liver and kidneys. Inhalation therapy represents an alternative to the oral route, but low deposition efficiencies of delivery devices such as nebulizers and dry powder inhalers render it challenging as a favorable therapy. It was hypothesized that by encapsulating two potent TB-agents, i.e. Q203 and bedaquiline, that inhibit the oxidative phosphorylation of the bacteria together with a magnetic targeting component, superparamagnetic iron oxides, into a poly (D, L-lactide-co-glycolide) (PDLG) carrier using a single emulsion technique, the treatment of TB can be a better therapeutic alternative. This simple fabrication method achieved a homogenous distribution of 500 nm particles with a magnetic saturation of 28 emu/g. Such particles were shown to be magnetically susceptible in an in-vitro assessment, viable against A549 epithelial cells, and were able to reduce two log bacteria counts of the Bacillus Calmette-Guerin (BCG) organism. Furthermore, through the use of an external magnet, our in-silico Computational Fluid Dynamics (CFD) simulations support the notion of yielding 100% deposition in the deep lungs. Our proposed inhalation therapy circumvents challenges related to oral and respiratory treatments and embodies a highly favorable new treatment regime.
Collapse
Affiliation(s)
- Wilson Poh
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nurlilah Ab Rahman
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Ostrovski
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Say Chye Joachim Loo
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
S J, M C, M B T, A Z, K GS, R A. Investigation of Combination Effect Between 6 MV X-Ray Radiation and Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles on U87-MG Cancer Cells. J Biomed Phys Eng 2020; 10:15-24. [PMID: 32158708 PMCID: PMC7036420 DOI: 10.31661/jbpe.v0i0.929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Background Radiosensitization using nanoparticles is proposed as a novel strategy for treatment of different cancers. Superparamagnetic iron oxide nanoparticles (SPIONs) have been reported to enhance effects of radiotherapy in several researches. Objective The objective of this research is to investigate the radiosensitization properties of polyglycerol coated SPIONs (PG-SPIONs) on U87-MG cancer cells. Material and Methods In this experimental study, polyglycerol coated SPIONs were synthesized by thermal decomposition method and characterized by FTIR, TEM and VSM analysis. Cellular uptake of nanoparticles by cells was examined via AAS. Cytotoxicity and radiosensitization of nanoparticles in combination with radiation were evaluated by MTT and colony assay, respectively. Results Mean size of nanoparticles was 17.9±2.85 nm. FTIR verified SPIONs coating by Polyglycerol and VSM showed that they have superparamagnetic behaviour. Viability significantly (P < 0.001) decreased at concentrations above 100µg/ml for SPIONs but not for PG-SPIONs (P > 0.05). Dose verification results by TLD for doses of 2 and 4 Gy were 2±0.19 and 4±0.12 Gy respectively. The combination index for all situations was less than 1 and the effect is antagonism. Conclusion However, PG-SPIONs combination with 6 MV X-ray reduced survival of U87-MG cells compared to radiation alone but the effect is antagonism.
Collapse
Affiliation(s)
- Jafari S
- PhD, Department of Radiology Technology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Cheki M
- PhD, Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tavakoli M B
- PhD, Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zarrabi A
- PhD, Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ghazikhanlu Sani K
- PhD, Department of Radiology Technology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afzalipour R
- PhD, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Abstract
Transport of drugs through the blood-brain barrier to the brain and the toxic effects of drugs on the healthy cells can limit the effectiveness of chemotherapeutic agents. In recent years, magnetic nanoparticles (MNPs) have received much attention as targeted therapeutic and diagnostic systems due to their simplicity, ease of preparation and ability to tailor their properties such as their composition, size, surface morphology, etc. for biomedical applications. MNPs are utilized in drug delivery, radio therapeutics, hyperthermia treatment, gene therapy, biotherapeutics and diagnostic imaging. The present review will address the challenges in brain tumor targeting and discuss the application and recent developments in brain tumor targeting using MNPs.
Collapse
|
24
|
Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2019; 25:1634-1641. [PMID: 30176744 PMCID: PMC6127843 DOI: 10.1080/10717544.2018.1494226] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Liuxiang Chu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Aiping Wang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Ling Ni
- b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Xiuju Yan
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Yina Song
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Mingyu Zhao
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Kaoxiang Sun
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Hongjie Mu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Sha Liu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Zimei Wu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Chunyan Zhang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| |
Collapse
|
25
|
Yang Y, Chen J, Yang Y, Xie Z, Song L, Zhang P, Liu C, Liu J. A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. NANOSCALE 2019; 11:7754-7760. [PMID: 30949651 DOI: 10.1039/c9nr00552h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window (especially at 1064 nm) has the benefits of low background signal, high spatial resolution and deep tissue penetration. Here we report a semiconducting polymer nanoparticle (PDPPTBZ NP) and demonstrate its potential as a contrast agent for PA imaging of orthotopic brain tumors, using a 1064 nm pulsed laser as a light source. PDPPTBZ NPs have maximum absorption at 1064 nm with a mass extinction coefficient of 43 mL mg-1 cm-1, which is the highest value reported so far in this region. The high photothermal conversion efficiency (67%) and near non-fluorescence impart PDPPTBZ NPs with excellent PA properties. We used PDPPTBZ NP-containing agar gel phantoms even at a low concentration (50 μg mL-1) to successfully image to a depth of 4 cm (of chicken-breast tissue), with an ultralow power fluence (4 mJ cm-2). Furthermore, we could clearly visualize a glioma tumor in a mouse at a depth of 3.8 mm below the skull. This study demonstrates that PDPPTBZ NPs display great potential as a NIR-II PA contrast agent for high quality deep tissue imaging.
Collapse
Affiliation(s)
- Yanqing Yang
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nianjing Tech), 30 South Puzhu Road, Nanjing 211800, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer. J Control Release 2019; 295:93-101. [DOI: 10.1016/j.jconrel.2018.12.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
|
27
|
Grillone A, Battaglini M, Moscato S, Mattii L, de Julián Fernández C, Scarpellini A, Giorgi M, Sinibaldi E, Ciofani G. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine (Lond) 2018; 14:727-752. [PMID: 30574827 PMCID: PMC6701990 DOI: 10.2217/nnm-2018-0436] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency. Materials & methods Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells. Results Nut-Mag-SLNs showed good colloidal stability, the ability to cross an in vitro blood–brain barrier model, and a superior pro-apoptotic activity toward glioblastoma cells with respect to the free drug. Conclusion Nut-Mag-SLNs represent a promising multifunctional nanoplatform for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Stefania Moscato
- Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Letizia Mattii
- Department of Clinical & Experimental Medicine, Università di Pisa, Via Savi 10, 56126 Pisa, Italy
| | - César de Julián Fernández
- Institute of Materials for Electronics & Magnetism, Consiglio Nazionale delle Ricerche-CNR, Parco area delle Scienza 37/A, 43124 Parma, Italy
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mario Giorgi
- Veterinary Clinics Department, Università di Pisa, Via Livornese 1, 56010 San Piero a Grado, Italy
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinado Piaggio 34, 56025 Pontedera, Italy.,Department of Mechanical & Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
28
|
Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 2018; 190-191:38-50. [PMID: 30391801 DOI: 10.1016/j.biomaterials.2018.10.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Natural killer (NK) cells are the key subset of innate-immunity lymphocytes; they possess antitumor activities and are used for cancer immunotherapy. In a previous study, extracellular vehicles (EVs) from NK-92MI cells were isolated and exploited for their ability to kill human cancer cells in vitro and in vivo (multiple injection methods). Here, the potential of NK-cell-derived EVs (NK-EVs) for immunotherapy was improved by priming with interleukin (IL)-15. METHODS NK-EVs were isolated from the culture medium without or with IL-15 (NK-EVsIL-15) by ultracentrifugation and were purified via density gradient ultracentrifugation. In addition, NK-EVs and NK-EVsIL-15 were characterized by transmission electron microscopy, nanoparticle-tracking analysis, and western blotting. Flow cytometry, bioluminescence imaging, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed for apoptosis, protein expression, cell proliferation, and cytotoxicity analyses. Furthermore, xenograft tumor-bearing mice were injected with PBS, NK-EVs, or NK-EVsIL-15 intravenously five times. Tumor growth was monitored using calipers and bioluminescence imaging. Toxicity of the nanoparticles was evaluated by measuring the body weight of the mice. RESULTS NK-EVsIL-15 showed significantly higher cytolytic activity toward human cancer cell lines (glioblastoma, breast cancer, and thyroid cancer) and simultaneously increased the expression of molecules associated with NK-cell cytotoxicity. When compared with NK-EVs, NK-EVsIL-15 significantly inhibited the growth of glioblastoma xenograft cells in mice. In addition, both NK-EVs and NK-EVsIL-15 were not significantly toxic to either normal cells or mice. CONCLUSION IL-15 may improve the immunotherapeutic effects of NK-EVs, thus improving the applications of NK-EVs in the future.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea.
| |
Collapse
|
29
|
Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, Santos-Martínez MJ, Ruiz-Hernández E. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E779. [PMID: 29751640 PMCID: PMC5978156 DOI: 10.3390/ma11050779] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood⁻brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood⁻brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.
Collapse
Affiliation(s)
- L Nam
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C Coll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - L C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - D Serrano
- Departamento de Farmacia Galenica y Tecnologia Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - R Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - M J Santos-Martínez
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
- School of Medicine, Trinity College Dublin (TCD), Dublin 2, Ireland.
| | - E Ruiz-Hernández
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| |
Collapse
|
30
|
Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, Chen J, Shen Y, Xiao Z, Weng J, Zhang X. Traceable Nanoparticles with Dual Targeting and ROS Response for RNAi-Based Immunochemotherapy of Intracranial Glioblastoma Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705054. [PMID: 29577457 DOI: 10.1002/adma.201705054] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/18/2018] [Indexed: 06/08/2023]
Abstract
The chemotherapy of glioblastoma is severely hindered by the immunosuppressive tumor microenvironment, especially the tumor growth factor β (TGF-β), an immunosuppressive cytokine. In this study, it is proposed to employ RNAi-based immunomodulation to modify the tumor immune microenvironment and improve the effect of chemotherapy. Herein, a nanotheranostic system (Angiopep LipoPCB(Temozolomide+BAP/siTGF-β), ALBTA) with dual targeting and ROS response is established for intracranial glioblastoma treatment. The traceable nanoparticles exhibit strong siRNA condensation, high drug loading efficiency, good serum stability, and magnetic property. They can efficiently cross the blood-brain barrier and target to glioblastoma cells via receptor-mediated transcytosis. The zwitterionic lipid (distearoyl phosphoethanol-amine-polycarboxybetaine lipid) in ALBTA promotes endosomal/lysosomal escape, and thus enhances the cytotoxicity of temozolomide and improves gene silencing efficiency of siTGF-β. ALBTA significantly improves the immunosuppressive microenvironment and prolongs the survival time of glioma-bearing mice. Moreover, ALBTA can be accurately traced by MRI in brain tumors. The study indicates that this immunochemotherapeutic platform can serve as a flexible and powerful synergistic system for treatment with brain tumors as well as other brain diseases in central nervous system.
Collapse
Affiliation(s)
- Chenmeng Qiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanhui Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanjie Shi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingli Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanqin Shen
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Shanghai Research Institute of Fragrance and Flavor Industry, Shanghai, 200232, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
31
|
Xu Y, Shen M, Li Y, Sun Y, Teng Y, Wang Y, Duan Y. The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells. Oncotarget 2018; 7:20890-901. [PMID: 26956046 PMCID: PMC4991499 DOI: 10.18632/oncotarget.7896] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
To get better chemotherapy efficacy, the optimal synergic effect of Paclitaxel (PTX) and Temozolomide (TMZ) on glioblastoma cells lines was investigated. A dual drug-loaded delivery system based on mPEG-PLGA nanoparticles (NPs) was developed to potentiate chemotherapy efficacy for glioblastoma. PTX/TMZ-NPs were prepared with double emulsification solvent evaporation method and exhibited a relatively uniform diameter of 206.3 ± 14.7 nm. The NPs showed sustained release character. Cytotoxicity assays showed the best synergistic effects were achieved when the weight ratios of PTX to TMZ were 1:5 and 1:100 on U87 and C6 cells, respectively. PTX/TMZ-NPs showed better inhibition effect to U87 and C6 cells than single drug NPs or free drugs mixture. PTX/TMZ-NPs (PTX: TMZ was 1:5(w/w)) significantly inhibited the tumor growth in the subcutaneous U87 mice model. These results indicate that coordinate administration of PTX and TMZ combined with NPs is an efficient method for glioblastoma.
Collapse
Affiliation(s)
- Yuanyuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yiming Li
- Department of Ultrasound, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yanwei Teng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Yi Wang
- Department of Ultrasound, Huashan Hospital, School of Medicine, Fudan University, Shanghai 200040, P. R. China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| |
Collapse
|
32
|
1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr Polym 2018; 180:365-375. [DOI: 10.1016/j.carbpol.2017.10.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
|
33
|
Lajous H, Riva R, Lelièvre B, Tétaud C, Avril S, Hindré F, Boury F, Jérôme C, Lecomte P, Garcion E. Hybrid Gd3+/cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomater Sci 2018; 6:2386-2409. [DOI: 10.1039/c8bm00346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New hybrid nanoparticles permitted MRI monitoring of a cisplatin infusion while enhancing drug accumulation and DNA adduct formation in glioblastoma cells.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Raphaël Riva
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance
- Laboratoire de pharmacologie-toxicologie
- CHU Angers
- F-49100 Angers
- France
| | - Clément Tétaud
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Sylvie Avril
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | | | - Frank Boury
- CRCINA
- INSERM
- Université de Nantes
- Université d'Angers
- Angers
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- University of Liège
- B-4000 Liège
- Belgium
| | | |
Collapse
|
34
|
Maritim S, Coman D, Huang Y, Rao JU, Walsh JJ, Hyder F. Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3849373. [PMID: 29362558 PMCID: PMC5736903 DOI: 10.1155/2017/3849373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.
Collapse
Affiliation(s)
- Samuel Maritim
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J. Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
35
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
36
|
Kim JS, Shin DH, Kim JS. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J Control Release 2017; 269:245-257. [PMID: 29162480 DOI: 10.1016/j.jconrel.2017.11.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023]
Abstract
Glioblastoma stem cells (GSCs), which are identified as subpopulation of CD133+/ALDH1+, are known to show resistance to the most of chemotherapy and radiation therapy, leading to the recurrence of tumor in glioblastoma multiforme (GBM) patients. Also, delivery of temozolomide (TMZ), a mainline treatment of GBM, to the GBM site is hampered by various barriers including the blood-brain barrier (BBB). A dual-targeting immunoliposome encapsulating TMZ (Dual-LP-TMZ) was developed by using angiopep-2 (An2) and anti-CD133 monoclonal antibody (CD133 mAb) for BBB transcytosis and specific delivery to GSCs, respectively. The size, zeta potential and drug encapsulation efficiency of Dual-LP-TMZ were 203.4nm in diameter, -1.6mV and 99.2%, respectively. The in vitro cytotoxicity of Dual-LP-TMZ against U87MG GSCs was increased by 425- and 181-folds when compared with that of free TMZ and non-targeted TMZ liposome (LP-TMZ) (10.3μM vs. 4380μM and 1869μM in IC50, respectively). Apoptosis and anti-migration ability of Dual-LP-TMZ in U87MG GSCs were also significantly enhanced comparing with those of free TMZ or LP-TMZ. In vivo study clearly showed a significant reduction in tumor size after intravenous administrations of Dual-LP-TMZ to the orthotopically-implanted brain tumor mice when compared with free TMZ or LP-TMZ. Increased life span (ILS) and median survival time (MST) of tumor-bearing mice were also increased when treated with Dual-LP-TMZ (211.2% in ILS and 49.2days in MST) than with free TMZ (0% in ILS and 23.3day in MST). These data indicate that conjugation of both An2 peptide and CD133 mAb to TMZ-encapsulating liposome is very effective in delivering the TMZ to GSCs via BBB, suggesting a potential use of Dual-LP-TMZ as a therapeutic modality for GBM.
Collapse
Affiliation(s)
- Jung Seok Kim
- Research Center for Cell Fate Control (RCCFC), Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jin-Seok Kim
- Research Center for Cell Fate Control (RCCFC), Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
37
|
Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, Kesharwani P. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm 2017; 529:506-522. [PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Abstract
Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
Collapse
Affiliation(s)
- Hira Choudhury
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Petalling Jaya, Selangor, Kuala Lumpur, 47301, Malaysia.
| | - Manisha Pandey
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Santosh Ashok Kumbhar
- Faculty of Pharmacy, GSMT'S Genba Sopanrao Moze College of Pharmacy, Wagholi, Pune, 411207, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Sarkhej - Gandhinagar Highway, Thaltej, Ahmedabad, 380054, Gujarat, India
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Prashant Kesharwani
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
38
|
Mosafer J, Teymouri M. Comparative study of superparamagnetic iron oxide/doxorubicin co-loaded poly (lactic-co-glycolic acid) nanospheres prepared by different emulsion solvent evaporation methods. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1146-1155. [DOI: 10.1080/21691401.2017.1362415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
39
|
Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar-Toupkanlou F, Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res A 2017. [PMID: 28639394 DOI: 10.1002/jbm.a.36145] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Application of many vital hydrophilic medicines have been restricted by blood-brain barrier (BBB) for treatment of brain diseases. In this study, a targeted drug delivery system based on dextran-spermine biopolymer was developed for drug transport across BBB. Drug loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared via ionic gelation followed by transferrin (Tf) conjugation as targeting moiety. The characteristics of Tf conjugated nanoparticles (TDS-NPs) were analyzed by different methods and their cytotoxicity effects on U87MG cells were tested. The superparamagnetic characteristic of TDS-NPs was verified by vibration simple magnetometer. Capecitabine loaded TDS-NPs exhibited pH-sensitive release behavior with enhanced cytotoxicity against U87MG cells, compared to DS-NPs and free capecitabine. Prussian-blue staining and TEM-imaging showed the significant cellular uptake of TDS-NPs. Furthermore, a remarkable increase of Fe concentrations in brain was observed following their biodistribution and histological studies in vivo, after 1 and 7 days of post-injection. Enhanced drug transport across BBB and pH-triggered cellular uptake of TDS-NPs indicated that these theranostic nanocarriers are promising candidate for the brain malignance treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2851-2864, 2017.
Collapse
Affiliation(s)
- Maryam Ghadiri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box 14115-114, Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box 14115-114, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
40
|
Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:44-50. [PMID: 29208287 DOI: 10.1016/j.msec.2017.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
Recently most of the researchers have turned their interest towards plant mediated synthesis of metal nanoparticles to avoid several environmental toxicants. In this manuscript, we have discussed the ecofriendly syntheses of zinc oxide nanoparticles (ZnO NPs) were achieved using Glycyrrhiza glabra (G. glabra) seed aqueous extract. The green synthesized ZnO NPs were characterized using analytical techniques like XRD, TEM, particle size histogram and Zeta potential. From the results, it was found that the green synthesized ZnO NPs were around 35nm in size with irregular spherical shape. The Zeta potential study of ZnO NPs was resulted to be high stabile with electronegative charge around -56.3mV. Further the G. glabra seed aqueous extract mediated synthesis of ZnO NPs were subjected to treat human glioblastoma cells with the help of temozolomide (TMZ) a commercially available drug by the method of MTT cell viability assay. The results stated that the ZnO NPs shows IC50 value around 30μg/mL results significantly. The plausible mechanism behind the mortality rate was also discussed in this manuscript.
Collapse
|
41
|
Kaffashi A, Lüle S, Bozdağ Pehlivan S, Sarısözen C, Vural İ, Koşucu H, Demir T, Buğdaycı KE, Söylemezoğlu F, Karlı Oğuz K, Mut M. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma. ACTA ACUST UNITED AC 2017; 69:1010-1021. [PMID: 28471040 DOI: 10.1111/jphp.12740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. METHOD Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. KEY FINDINGS Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. CONCLUSION Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments.
Collapse
Affiliation(s)
- Abbas Kaffashi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | - Sevda Lüle
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Can Sarısözen
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İmran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hüsnü Koşucu
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Taner Demir
- Bilkent University National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey
| | - Kadir Emre Buğdaycı
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oğuz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Melike Mut
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
42
|
Mosafer J, Abnous K, Tafaghodi M, Mokhtarzadeh A, Ramezani M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur J Pharm Biopharm 2017; 113:60-74. [PMID: 28012991 DOI: 10.1016/j.ejpb.2016.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/26/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Abstract
A superparamagnetic iron oxide nanoparticles (SPIONs)/doxorubicin (Dox) co-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeted with AS1411 aptamer (Apt) against murine C26 colon carcinoma cells is successfully developed via a modified multiple emulsion solvent evaporation method for theranostic purposes. The mean size of SPIO/Dox-NPs (NPs) was 130nm with a narrow particle size distribution and Dox loading of 3.0%. The SPIO loading of 16.0% and acceptable magnetic properties are obtained and analyzed using thermogravimetric and vibration simple magnetometer analysis, respectively. The best release profile from NPs was observed in PBS at pH 7.4, in which very low burst release was observed. Nucleolin is a targeting ligand to facilitate anti-tumor delivery of AS1411-targeted NPs. The Apt conjugation to NPs (Apt-NPs) enhanced cellular uptake of Dox in C26 cancer cells. Apt-NPs enhance the cytotoxicity effect of Dox followed by a significantly higher tumor inhibition and prolonged animal survival in mice bearing C26 colon carcinoma xenografts. Furthermore, Apt-NPs enhance the contrast of magnetic resonance images in tumor site. Altogether, these Apt-NPs could be considered as a powerful tumor-targeted delivery system for their potential as dual therapeutic and diagnostic applications in cancers.
Collapse
Affiliation(s)
- Jafar Mosafer
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahad Mokhtarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Sangtani A, Nag OK, Field LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28299903 DOI: 10.1002/wnan.1466] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/04/2017] [Accepted: 01/29/2017] [Indexed: 01/01/2023]
Abstract
With continued advancements in nanoparticle (NP) synthesis and in the interfacing of NPs with biological systems has come the exponential growth in the use of NPs for therapeutic drug delivery and imaging applications. In recent years, the advent of NP multifunctionality-the ability to perform multiple, disparate functions on a single NP platform-has garnered much excitement for the potential realization of highly functional NP-mediated drug delivery for use in the clinical setting. This Overview will survey the current state of the art (reports published within the last 5 years) of multifunctional NPs for therapeutic drug delivery, imaging or a combination thereof. We provide extensive examples of both soft (micelles, liposomes, polymeric NPs) and hard (noble metals, quantum dots, metal oxides) NP formulations that have been used for multimodal drug delivery and imaging. The criteria for inclusion, herein, is that there must be at least two therapeutic drug cargos or imaging agents or a combination of the two. We next offer an assessment of the cytotoxicity of therapeutic NP constructs in biological systems. We then conclude with a forward-looking perspective on how we expect this field to develop in the coming years. WIREs Nanomed Nanobiotechnol 2017, 9:e1466. doi: 10.1002/wnan.1466 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ajmeeta Sangtani
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,National Research Council, Washington, DC, USA
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
44
|
Mosafer J, Teymouri M, Abnous K, Tafaghodi M, Ramezani M. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:123-133. [PMID: 28024568 DOI: 10.1016/j.msec.2016.11.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
Magnetic nanoparticulate systems based on polymeric materials such as poly (lactic-co-glycolic acid) (PLGA1) are being studied for their potential applications in targeted therapy and imaging of malignant tumors. In the current study, superparamagnetic iron oxide nanocrystals (SPIONs2) and doxorubicin (Dox3) were entrapped in the PLGA-based nanoparticles via a modified multiple emulsion solvent evaporation method. Furthermore, SPIO/Dox-NPs4 were conjugated to anti-nucleolin AS1411 aptamer (Apt5) and their targeting ability was investigated in high nucleolin-expressing C6 glioma cells compared to low nucleolin-expressing L929 cells. The NPs exhibited a narrow size distribution with mean diameter of ~170nm and an appropriate SPION content (~18% of total polymer weight) with a sufficient saturation magnetization value of 5.9emu/g which is suitable for imaging objectives. They manifested an increased Dox release at pH5.5 compared to pH7.4, with initial burst release (within 24h) followed by sustained release of Dox for 36days. The Apt conjugation to NPs enhanced cellular uptake of Dox in C6 glioma cells compared to L929 cells. Similarly, the Apt-NPs increased the cytotoxicity effect of Dox compared with NPs and Dox solution (f-Dox) alone. In conclusion, the Apt-NPs were found to be a promising delivery system for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Jafar Mosafer
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Di Martino A, Kucharczyk P, Capakova Z, Humpolicek P, Sedlarik V. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:71. [PMID: 28260965 PMCID: PMC5313595 DOI: 10.1007/s11051-017-3756-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150-180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.
Collapse
Affiliation(s)
- Antonio Di Martino
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Pavel Kucharczyk
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Zdenka Capakova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Petr Humpolicek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
46
|
Mosafer J, Abnous K, Tafaghodi M, Jafarzadeh H, Ramezani M. Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe 3 O 4 nanoparticles for simultaneous diagnostic and therapeutic applications. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Abstract
Glioblastoma multiforme (GBM) may be one of the most challenging brain tumors to treat, as patients generally do not live more than 2 years. This review aimed to give a timely review of potential future treatments for GBM by looking at the latest strategies, involving mainly the use of temozolomide (TMZ). Although these studies were carried out either in vitro or in rodents, the findings collectively suggested that we are moving toward developing a more efficacious therapy for GBM patients. Nanoparticles preparation was, by far, the most extensively studied strategy for targeted brain delivery. Therefore, the first section of this review presents a treatment strategy using TMZ-loaded nanocarriers, which encompassed nanoparticles, nanoliposomes, and nanosponges. Besides nanocarriers, new complexes that were formed between TMZ and another chemical agent or molecule have shown increased cytotoxicity and antitumor activity. Another approach was by reducing GBM cell resistance to TMZ, and this was achieved either through the suppression of metabolic change occurring in the cells, inhibition of the DNA repair protein, or up-regulation of the protein that mediates autophagy. Finally, the review collates a list of substances that have demonstrated the ability to suppress tumor cell growth.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
48
|
Luo B, Wang S, Rao R, Liu X, Xu H, Wu Y, Yang X, Liu W. Conjugation Magnetic PAEEP-PLLA Nanoparticles with Lactoferrin as a Specific Targeting MRI Contrast Agent for Detection of Brain Glioma in Rats. NANOSCALE RESEARCH LETTERS 2016; 11:227. [PMID: 27119155 PMCID: PMC4848283 DOI: 10.1186/s11671-016-1421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/12/2016] [Indexed: 05/09/2023]
Abstract
The diagnosis of malignant brain gliomas is largely based on magnetic resonance imaging (MRI) with contrast agents. In recent years, nano-sized contrast agents have been developed for improved MRI diagnosis. In this study, oleylamine-coated Fe3O4 magnetic nanoparticles (OAM-MNPs) were synthesized with thermal decomposition method and encapsulated in novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer nanoparticles. The OAM-MNP-loaded PAEEP-PLLA nanoparticles (M-PAEEP-PLLA-NPs) were further conjugated with lactoferrin (Lf) for glioma tumor targeting. The Lf-conjugated M-PAEEP-PLLA-NPs (Lf-M-PAEEP-PLLA-NPs) were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average size of OAM-MNPs, M-PAEEP-PLLA-NPs, and Lf-M-PAEEP-PLLA-NPs were 8.6 ± 0.3, 165.7 ± 0.6, and 218.2 ± 0.4 nm, with polydispersity index (PDI) of 0.185 ± 0.023, 0.192 ± 0.021, and 0.224 ± 0.036, respectively. TEM imaging showed that OAM-MNPs were monodisperse and encapsulated in Lf-M-PAEEP-PLLA-NPs. TGA analysis showed that the content of iron oxide nanoparticles was 92.8 % in OAM-MNPs and 45.2 % in Lf-M-PAEEP-PLLA-NPs. VSM results indicated that both OAM-MNPs and Lf-M-PAEEP-PLLA-NPs were superparamagnetic, and the saturated magnetic intensity were 77.1 and 74.8 emu/g Fe. Lf-M-PAEEP-PLLA-NPs exhibited good biocompatibility in cytotoxicity assay. The high cellular uptake of Lf-M-PAEEP-PLLA-NPs in C6 cells indicated that Lf provided effective targeting for the brain tumor cells. The T 2 relaxation rate (r 2) of M-PAEEP-PLLA-NPs and Lf-M-PAEEP-PLLA-NPs were calculated to be 167.2 and 151.3 mM(-1) s(-1). In MRI on Wistar rat-bearing glioma tumor, significant contrast enhancement could clearly appear at 4 h after injection and last 48 h. Prussian blue staining of the section clearly showed the retention of Lf-M-PAEEP-PLLA-NPs in tumor tissues. The results from the in vitro and in vivo MRI indicated that Lf-M-PAEEP-PLLA-NPs possessed strong, long-lasting, tumor targeting, and enhanced tumor MRI contrast ability. Lf-M-PAEEP-PLLA-NPs represent a promising nano-sized MRI contrast agent for brain glioma targeting MRI.
Collapse
Affiliation(s)
- Binhua Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
49
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Lee CY, Ooi IH. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting-Ideal Versus Reality. Pharmaceuticals (Basel) 2016; 9:ph9030054. [PMID: 27618068 PMCID: PMC5039507 DOI: 10.3390/ph9030054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia.
| | - Ing Hong Ooi
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|