1
|
Batur E, Özdemir S, Durgun ME, Özsoy Y. Vesicular Drug Delivery Systems: Promising Approaches in Ocular Drug Delivery. Pharmaceuticals (Basel) 2024; 17:511. [PMID: 38675470 PMCID: PMC11054584 DOI: 10.3390/ph17040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ocular drug delivery poses unique challenges due to the complex anatomical and physiological barriers of the eye. Conventional dosage forms often fail to achieve optimal therapeutic outcomes due to poor bioavailability, short retention time, and off-target effects. In recent years, vesicular drug delivery systems have emerged as promising solutions to address these challenges. Vesicular systems, such as liposome, niosome, ethosome, transfersome, and others (bilosome, transethosome, cubosome, proniosome, chitosome, terpesome, phytosome, discome, and spanlastics), offer several advantages for ocular drug delivery. These include improved drug bioavailability, prolonged retention time on the ocular surface, reduced systemic side effects, and protection of drugs from enzymatic degradation and dilution by tears. Moreover, vesicular formulations can be engineered for targeted delivery to specific ocular tissues or cells, enhancing therapeutic efficacy while minimizing off-target effects. They also enable the encapsulation of a wide range of drug molecules, including hydrophilic, hydrophobic, and macromolecular drugs, and the possibility of combination therapy by facilitating the co-delivery of multiple drugs. This review examines vesicular drug delivery systems, their advantages over conventional drug delivery systems, production techniques, and their applications in management of ocular diseases.
Collapse
Affiliation(s)
- Eslim Batur
- Health Science Institute, Istanbul University, 34126 Istanbul, Türkiye;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, 34500 Istanbul, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Samet Özdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, 34445 Istanbul, Türkiye;
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| |
Collapse
|
2
|
Liu X, Kong X, Xu L, Su Y, Xu S, Pang X, Wang R, Ma Y, Tian Q, Han L. Synergistic therapeutic effect of ginsenoside Rg3 modified minoxidil transfersomes (MXD-Rg3@TFs) on androgenic alopecia in C57BL/6 mice. Int J Pharm 2024; 654:123963. [PMID: 38430952 DOI: 10.1016/j.ijpharm.2024.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.
Collapse
Affiliation(s)
- Xiaxia Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xia Kong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yonghui Su
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shanshan Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoya Pang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruifen Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yihan Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Qingping Tian
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Liwen Han
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
3
|
Touitou E, Natsheh H. The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin. Pharmaceutics 2024; 16:267. [PMID: 38399321 PMCID: PMC10892037 DOI: 10.3390/pharmaceutics16020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on nanovesicular carriers for enhanced delivery of molecules into and across the skin, from their design to recent emerging technologies. During the last four decades, several approaches have been used aiming to design new nanovesicles, some of them by altering the properties of the classic phospholipid vesicle, the liposome. Phospholipid nanovesicular systems, including the phospholipid soft vesicles as well as the non-phospholipid vesicular carries, are reviewed. The altered nanovesicles have served in the manufacture of various cosmetic products and have been investigated and used for the treatment of a wide variety of skin conditions. The evolution and recent advances of these nanovesicular technologies are highlighted in this review.
Collapse
Affiliation(s)
- Elka Touitou
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12065, Jerusalem 9112102, Israel;
| | | |
Collapse
|
4
|
Simrah, Hafeez A, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:639-673. [PMID: 37597094 DOI: 10.1007/s00210-023-02670-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
The application of nanotechnology with integration of chemical sciences is increasing continuously in the management of diseases. The drug's physicochemical and pharmacological characteristics are enhanced by application of nanotechnological principles. Several nanotechnology-based formulations are being investigated to improve patient compliance. One such novel nanocarrier system is transfersome (TFS) and is composed of natural biocompatible phospholipids and edge activators. Morphologically, TFS are similar to liposomes but functionally, these are ultra-deformable vesicles which can travel through pores smaller than their size. Because of their amphipathic nature, TFS have the potential to deliver the drugs through sensitive biological membranes, especially the blood-brain barrier, skin layers, and nasal epithelium. Different molecular weight drugs can be transferred inside the cell by encapsulation into the TFS. Knowing the tremendous potentiality of TFS, the present work provides an in-depth and detailed account (pharmaceutical and preclinical characteristics) of TFS incorporating different categories of therapeutic moieties (anti-diabetic, anti-inflammatory, anti-cancer, anti-viral, anti-fungal, anti-oxidant, cardiovascular drugs, CNS acting drugs, vaccine delivery, and miscellaneous applications). It also includes information about the methods of preparation employed, significance of excipients used in the preparation, summary of clinical investigations performed, patent details, latest investigations, routes of administration, challenges, and future progresses related to TFS.
Collapse
Affiliation(s)
- Simrah
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | | | | |
Collapse
|
5
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
6
|
Nanospanlastics as a Novel Approach for Improving the Oral Delivery of Resveratrol in Lipopolysaccharide-Induced Endotoxicity in Mice. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose
Resveratrol (RSV) is a natural polyphenolic compound that has numerous biological effects. Owing to its poor bioavailability, only trace concentrations of RSV could be found at the site of action. Therefore, the present study was aimed at developing RSV-loaded nanospanlastics to improve its oral delivery and therapeutic activity.
Methods
RSV-loaded nanospanlastics were prepared using the thin film hydration technique. The developed formulations were characterized via vesicular size (VS), polydispersity index (PDI), zeta potential (ZP) measurements, fourier transform infrared (FT-IR) spectroscopy analysis and transmission electron microscopy (TEM). In vitro release profile was carried out using dialysis bag diffusion technique. In vivo study was carried out using lipopolysaccharide (LPS)-induced endotoxicity model in mice to evaluate the formulations activity.
Results
The results revealed the successful development of RSV-loaded nanospanlastics which exhibited EE% ranging from 45 to 85%, particle sizes ranging from 260.5 to 794.3 nm; negatively charged zeta potential (≤ − 20 mV) and TEM revealed their spherical shape. An in vitro release study showed biphasic pattern with sustained release of drug up to 24 h. In vivo results showed the superiority of RSV-loaded nanospanlastics over conventional niosomes in attenuating serum levels of liver and kidney functions (aspartate transaminase (AST), alanine transaminase (ALT), and creatinine) in LPS-induced endotoxic mice. Furthermore, both of them suppressed the elevated oxidative stress and inflammatory markers (malondialdehyde (MDA), nitric oxide (NO), and interleukin-1beta (IL-1β)) estimated in the liver and kidney tissues. However, the nanospanlastics showed a prevalence effect over conventional niosomes in kidney measurements and the histopathological examinations.
Conclusions
These findings reveal the potential of nanospanlastics in improving the oral delivery and therapeutic efficacy of RSV.
Collapse
|
7
|
Impact of quercetin spanlastics on livin and caspase-9 expression in the treatment of psoriasis vulgaris. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Diversifying the skin cancer-fighting worthwhile frontiers: How relevant are the itraconazole/ascorbyl palmitate nanovectors? NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102561. [PMID: 35417773 DOI: 10.1016/j.nano.2022.102561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Fighting malignant neoplasms via repurposing existing drugs could be a welcome move for prosperous cancer remediations. In the current work, nanovehiculation and optimization of the repositioned itraconazole (ITZ) utilizing ascorbyl palmitate (AP) aspasomes would be an auspicious approach. Further, the optimized aspasomes were incorporated in a cream and tracked for skin deposition. The in vivo efficacy of aspasomal cream on mice subcutaneous Ehrlich carcinoma model was also assessed. The optimized aspasomes revealed nano size (67.83 ± 6.16 nm), negative charge (-79.40 ± 2.23 mV), > 95% ITZ entrapment and high colloidal stability. AP yielded substantial antioxidant capacity and pushed the ITZ cytotoxicity forward against A431 cells (IC50 = 5.3±0.27 μg/mL). An appealing privilege was the aspasomal cream that corroborated spreadability, contemplated skin permeation and potentiated in vivo anticancer competence, reflected in 62.68% reduction in the tumor weight. Such synergistic tumor probes set the foundation for futuristic clinical translation and commercialization.
Collapse
|
9
|
Li Z, Fang X, Yu D. Transdermal Drug Delivery Systems and Their Use in Obesity Treatment. Int J Mol Sci 2021; 22:12754. [PMID: 34884558 PMCID: PMC8657870 DOI: 10.3390/ijms222312754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.
Collapse
Affiliation(s)
| | | | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Z.L.); (X.F.)
| |
Collapse
|
10
|
Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release 2021; 337:589-611. [PMID: 34364919 DOI: 10.1016/j.jconrel.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
Skin-cancer is the commonest malignancy affecting huge proportion of the population, reaching heights in terms of morbidity. The treatment strategies are presently focusing on surgery, radiation and chemotherapy, which eventually cause destruction to unaffected cells. To overcome this limitation, wide range of nanoscaled materials have been recognized as potential carriers for delivering selective response to cancerous cells and neoplasms. Nanotechnological approach has been tremendously exploited in several areas, owing to their functional nanometric dimensions. The alarming incidence of skin cancer engenders burdensome effects worldwide, which is further awakening innovational medicinal approaches, accompanying target specific drug delivery tools for coveted benefits to provide reduced toxicity and tackle proliferative episodes of skin cancer. The developed nanosystems for anti-cancer agents include liposomes, ethosomes, nanofibers, solid lipid nanoparticles and metallic nanoparticles, which exhibit pronounced outcomes for skin carcinoma. In this review, skin cancer with its sub-types is explained in nutshell, followed by compendium of specific nanotechnological tools presented, in addition to therapeutic applications of drug-loaded nano systems for skin cancer.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Taymouri S, Shahnamnia S, Mesripour A, Varshosaz J. In vitro and in vivo evaluation of an ionic sensitive in situ gel containing nanotransfersomes for aripiprazole nasal delivery. Pharm Dev Technol 2021; 26:867-879. [PMID: 34193009 DOI: 10.1080/10837450.2021.1948571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, a composite in-situ gel formulation containing aripiprazole (APZ) loaded transfersomes (TFS) was developed for the intranasal brain targeting of APZ. APZ loaded TFS were prepared by applying the film hydration method and optimized using an irregular factorial design. The prepared formulations were optimized based on different parameters including particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE) and release efficiency (RE). The optimized APZ-TFS were distributed in an ion-triggered deacetylated gellan gum solution (APZ-TFS-Gel) and evaluated in terms of pH, gelling time, rheological properties and in-vitro release study. The therapeutic efficacy of the best APZ-TFS-Gel was then tested in the mice model of schizophrenia induced by ketamine by evaluating various behavioral parameters. The optimized formulation showed the particle size of 72.12 ± 0.72 nm, the PdI of 0.19 ± 0.07, the zeta potential of -55.56 ± 1.9 mV, the EE of 97.06 ± 0.10%, and the RE of 70.84 ± 1.54%. The in-vivo results showed that compared with the other treatment groups, there was a considerable increase in swimming and climbing time and a decrease in locomotors activity and immobility time in the group receiving APZ-TFS-Gel. Thus, APZ-TFS-Gel was found to have desirable characteristics for therapeutic improvement.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shabnam Shahnamnia
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Mesripour
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Duong TT, Isomäki A, Paaver U, Laidmäe I, Tõnisoo A, Yen TTH, Kogermann K, Raal A, Heinämäki J, Pham TMH. Nanoformulation and Evaluation of Oral Berberine-Loaded Liposomes. Molecules 2021; 26:molecules26092591. [PMID: 33946815 PMCID: PMC8125214 DOI: 10.3390/molecules26092591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.
Collapse
Affiliation(s)
- Thuan Thi Duong
- Faculty of Pharmacy, Duy Tan University, 03 Quang Trung Street, Da Nang 550000, Vietnam;
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoan Kiem District, Hanoi 110403, Vietnam; (T.T.H.Y.); (T.-M.-H.P.)
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
| | - Antti Isomäki
- Biomedicum Imaging Unit, University of Helsinki, 8 Haartmaninkatu, 00014 Helsinki, Finland;
| | - Urve Paaver
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
| | - Arvo Tõnisoo
- Institute of Physics, University of Tartu, 1 W. Ostwaldi Street, 50411 Tartu, Estonia;
| | - Tran Thi Hai Yen
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoan Kiem District, Hanoi 110403, Vietnam; (T.T.H.Y.); (T.-M.-H.P.)
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 1 Nooruse Street, 50411 Tartu, Estonia; (U.P.); (I.L.); (K.K.); (A.R.)
- Correspondence: ; Tel.: +372-737-5281
| | - Thi-Minh-Hue Pham
- Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong Street, Hoan Kiem District, Hanoi 110403, Vietnam; (T.T.H.Y.); (T.-M.-H.P.)
| |
Collapse
|
13
|
Subedi L, Song SY, Jha SK, Lee SH, Pangeni R, Koo KT, Kim BJ, Cho SS, Park JW. Preparation of Topical Itraconazole with Enhanced Skin/Nail Permeability and In Vivo Antifungal Efficacy against Superficial Mycosis. Pharmaceutics 2021; 13:pharmaceutics13050622. [PMID: 33925457 PMCID: PMC8145258 DOI: 10.3390/pharmaceutics13050622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a stable and highly skin-permeable topical delivery system for itraconazole (ITZ) was designed to provide effective treatment against superficial mycosis. Herein, ITZ was incorporated into a solution composed of ethanol, benzyl alcohol, hydrochloric acid, Transcutol P, and cyclomethicone as a delivery vehicle, solubilizer, protonating agent, permeation enhancer, and spreading agent, respectively. At 72 h, the optimal topical ITZ formulation (ITZ–TF#11) exhibited 135% enhanced skin permeability, which led to increases in drug deposition in the stratum corneum, epidermis, and dermis of 479%, 739%, and 2024%, respectively, compared with the deposition of 1% ITZ in ethanol (control). Moreover, on day 7, ITZ–TF#11 demonstrated 2.09- and 2.30-fold enhanced nail flux and drug deposition, compared with the control. At a dose of 40 mg/kg/day, ITZ–TF#11 showed 323% greater lesion recovery, a 165% lower mean erythema severity score, and a 37% lower mean logarithm of viable fungal cells in skin in the treated area, compared with mice that received oral ITZ at the same dose. Overall, the findings imply that ITZ–TF#11 is a superior alternative to oral ITZ for treatment of superficial mycosis.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Seung-Yub Song
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Sung-Ho Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
| | - Rudra Pangeni
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
| | | | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
- Correspondence: (S.-S.C.); (J.W.P.); Tel.: +82-61-450-2687 (S.-S.C.); +82-61-450-2704 (J.W.P.)
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Korea; (L.S.); (S.-Y.S.); (S.K.J.); (S.-H.L.)
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea;
- Correspondence: (S.-S.C.); (J.W.P.); Tel.: +82-61-450-2687 (S.-S.C.); +82-61-450-2704 (J.W.P.)
| |
Collapse
|
14
|
Patel D, Chatterjee B. Identifying Underlying Issues Related to the Inactive Excipients of Transfersomes based Drug Delivery System. Curr Pharm Des 2021; 27:971-980. [PMID: 33069192 DOI: 10.2174/1381612826666201016144354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Transfersomes are bilayer vesicles composed of phospholipid and edge activators, which are mostly surfactant. Transfersomes based drug delivery system has gained a lot of interest of the pharmaceutical researchers for their ability to improve drug penetration and permeation through the skin. Transdermal drug delivery via transfersomes has the potential to overcome the challenge of low systemic availability. However, this complex vesicular system has different issues to consider for developing a successful transdermal delivery system. One of the major ingredients, phospholipid, has versatile sources and variable effect on the vesicle size and drug entrapment in transfersomes. The other one, termed as edge activators or surfactant, has some crucial consideration of skin damage and toxicity depending upon its type and concentration. A complex interaction between type and concentration of phospholipid and surfactant was observed, which affect the physicochemical properties of transfersomes. This review focuses on the practical factors related to these two major ingredients, such as phospholipid and surfactant. The origin, purity, desired concentration, the susceptibility of degradation, etc. are the important factors for selecting phospholipid. Regarding surfactants, the major aspects are type and desired concentration. A successful development of transfersomes based drug delivery system depends on the proper considerations of these factors and practical aspects.
Collapse
Affiliation(s)
- Drashti Patel
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
15
|
Ali AA, Hassan AH, Eissa EM, Aboud HM. Response Surface Optimization of Ultra-Elastic Nanovesicles Loaded with Deflazacort Tailored for Transdermal Delivery: Accentuated Bioavailability and Anti-Inflammatory Efficacy. Int J Nanomedicine 2021; 16:591-607. [PMID: 33531803 PMCID: PMC7846863 DOI: 10.2147/ijn.s276330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of the present study was to develop deflazacort (DFZ) ultra-elastic nanovesicles (UENVs) loaded gel for topical administration to evade gastrointestinal adverse impacts accompanying DFZ oral therapy. METHODS UENVs were elaborated according to D-optimal mixture design employing different edge activators as Span-60, Tween-85 and sodium cholate which were incorporated into the nanovesicles to improve the deformability of vesicles bilayer. DFZ-UENVs were formulated by thin-film hydration technique followed by characterization for different parameters including entrapment efficiency (%EE), particle size, in vitro release and ex vivo permeation studies. The composition of the optimized DFZ-UENV formulation was found to be DFZ (10 mg), Span-60 (30 mg), Tween-85 (30 mg), sodium cholate (3.93 mg), L-α phosphatidylcholine (60 mg) and cholesterol (30 mg). The optimum formulation was incorporated into hydrogel base then characterized in terms of physical parameters, in vitro drug release, ex vivo permeation study and pharmacodynamics evaluation. Finally, pharmacokinetic study in rabbits was performed via transdermal application of UENVs gel in comparison to oral drug. RESULTS The optimum UENVs formulation exhibited %EE of 74.77±1.33, vesicle diameter of 219.64±2.52 nm, 68.88±1.64% of DFZ released after 12 h and zeta potential of -55.57±1.04 mV. The current work divulged successful augmentation of the bioavailability of DFZ optimum formulation by about 1.37-fold and drug release retardation compared to oral drug tablets besides significant depression of edema, cellular inflammation and capillary congestion in carrageenan-induced rat paw edema model. CONCLUSION The transdermal DFZ-UENVs can achieve boosted bioavailability and may be suggested as an auspicious non-invasive alternative platform for oral route.
Collapse
Affiliation(s)
- Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amira H Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Essam M Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Formulation and Optimization of Nanospanlastics for Improving the Bioavailability of Green Tea Epigallocatechin Gallate. Pharmaceuticals (Basel) 2021; 14:ph14010068. [PMID: 33467631 PMCID: PMC7831059 DOI: 10.3390/ph14010068] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to investigate the potential of nanospanlastics for boosting the bioavailability of epigallocatechin gallate (EGCG). EGCG has valuable effects like anti-inflammation, anti-oxidation, and anti-tumorigenesis. Unfortunately, it has a low oral bioavailability due to its limited permeation and poor stability. To overcome these pitfalls, EGCG was fabricated as a nanospanlastic. Nanospanlastics are flexible nanovesicles that are composed of surfactants and edge activators (EAs). EAs improve the deformability of spanlastics by acting as a destabilizing factor of their vesicular membranes. EGCG-loaded spanlastics were prepared by an ethanol injection method, according to 23 factorial design, to explore the impact of different independent variables on entrapment efficiency (EE%), % drug released after 12 h (Q12h), and particle size (PS). In vitro characterization, ex vivo intestinal permeation test, and pharmacokinetic study of the optimized formula were performed. A newly developed RP-HPLC technique was adopted for the estimation of EGCG. The optimized formula (F4) demonstrated more prolonged drug release and a significant improvement in the EE%, permeability, deformability and stability than the corresponding niosomes. The pharmacokinetic study investigated that F4 had a more sustained drug release and a higher bioavailability than the conventional niosomes and free drugs. Nanospanlastics could be a promising approach for improving the bioavailability of EGCG.
Collapse
|
17
|
Nasal Gel Loaded with Amphotericin Nanotransferosomes as Antifungal Treatment for Fungal Sinusitis. Pharmaceutics 2020; 13:pharmaceutics13010035. [PMID: 33379314 PMCID: PMC7824183 DOI: 10.3390/pharmaceutics13010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
On the basis of fungal involvement, rhinosinusitis is categorized into allergic, mycetoma, chronic, and acute invasive types. The aim of the current study was to evaluate the efficacy of an amphotericin gel in situ loaded with nanotransferosomes against Aspergillus flavus, which causes allergic rhinosinusitis. A Box–Behnken design was utilized to study the interaction among the nanotransferosomes and optimize independent variables in formulating them, in order to match the prerequisites of selected responses. The optimal formulation was determined to be 300 mg/mL soybean lecithin, 200 mg/mL amphotericin B (AMP), and 150 mg/mL clove oil, resulting in a particle size of 155.09 nm, 84.30% entrapment efficacy (EE), inhibition zone of 16.0 mm, and 0.1197 mmol serum creatinine. The optimized batch was further prepared into an in situ gel and evaluated for various parameters. The optimized formulation released 79.25% AMP and enhanced permeation through the nasal membrane, while the other formulations did not achieve complete absorption. According to in vivo tests using rabbits as animal models, the optimized AMP-nanotransferosomal formulations (NT) in in situ gel result in a non-significant difference among the various kidney function parameters. In conclusion, nasal in situ gel loaded with AMP-clove oil nanotreansfersomes can act as a promising novel carrier that enhances antifungal activity and decreases AMP nephrotoxicity.
Collapse
|
18
|
Balata GF, Faisal MM, Elghamry HA, Sabry SA. Preparation and Characterization of Ivabradine HCl Transfersomes for Enhanced Transdermal Delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Sahu SK, Raj R, Raj PM, Alpana R. Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885513666181112153213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of skin ailments through systemic administration is limited due to toxicity and
patients discomfort. Hence, lower risk of systemic side effects from topical dosage forms like ointments,
creams, emulsions and gels is more preferred for the treatment of skin disease. Application
of lipid based carriers in drug delivery in topical formulations has recently become one of the major
approaches to improve drug permeation, safety, and effectiveness. These delivery systems include
liposomes, ethosomes, transfersomes, Nanoemulsions (NEs), Solid Lipid Nanoparticles (SLNs)
Nanostructured Lipid Carriers (NLCs) and micelles. Most of the liposomes and SLNs based products
are in the market while some are under investigation. Transcutaneous delivery of therapeutics
to the skin layer by novel lipid based carriers has enhanced topical therapy for the treatment of skin
ailments. This article covers an overview of the lipid-based carriers for topical uses to alleviate skin
diseases.
Collapse
Affiliation(s)
- Suresh Kumar Sahu
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Rakesh Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Pooja Mongia Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Ram Alpana
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| |
Collapse
|
20
|
Sousa F, Ferreira D, Reis S, Costa P. Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources. Pharmaceuticals (Basel) 2020; 13:ph13090248. [PMID: 32942693 PMCID: PMC7558771 DOI: 10.3390/ph13090248] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023] Open
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal;
- Correspondence: (F.S.); (P.C.)
| |
Collapse
|
21
|
Sundralingam U, Muniyandy S, Radhakrishnan AK, Palanisamy UD. Ratite oils for local transdermal therapy of 4-OH tamoxifen: development, characterization, and ex vivo evaluation. J Liposome Res 2020; 31:217-229. [PMID: 32648792 DOI: 10.1080/08982104.2020.1777155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-inflammatory property of ratite oils as well as its ability to act as a penetration enhancer makes it an ideal agent to be used in transdermal formulations. The present study aims to develop an effective transfersomal delivery of 4-hydroxytamoxifen (4-OHT), an anti-cancer drug, using ratite oil as a carrier agent for the treatment of breast cancer (BC). The 4-OHT transfersomes were prepared with and without ratite oils using soy phosphatidylcholine and three different edge activators (EAs) in five different molar ratios using the rotary evaporation-ultrasonication method. Optimal transfersome formulations were selected using physical-chemical characterization and ex vivo studies. Results from physical-chemical characterization of the developed formulations found sodium taurocholate to be the most suitable EA, which recorded highest entrapment efficiency of 95.1 ± 2.70% with 85:15, (w/w) and lowest vesicle size of 82.3 ± 0.02 nm with 75:25, (w/w) molar ratios. TEM and DSC studies showed that the vesicles were readily identified and present in a nearly perfect spherical shape. In addition, formulations with emu oil had better stability than formulations with ostrich oil. Physical stability studies at 4 °C showed that ratite oil transfersomes were stable up to 4 weeks, while transfersomes without ratite oils were stable for 8 weeks. Ex vivo permeability studies using porcine skin concluded that 4-OHT transfersomal formulations with (85:15, w/w) without emu oil have the potential to be used in transdermal delivery approach to enhance permeation of 4-OHT, which may be beneficial in the treatment of BC.
Collapse
Affiliation(s)
- Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | | | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| | - Uma D Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Subang Jaya, Malaysia
| |
Collapse
|
22
|
Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020; 25:molecules25132959. [PMID: 32605117 PMCID: PMC7412180 DOI: 10.3390/molecules25132959] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Collapse
|
23
|
Fabrication of Transgelosomes for Enhancing the Ocular Delivery of Acetazolamide: Statistical Optimization, In Vitro Characterization, and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050465. [PMID: 32443679 PMCID: PMC7284610 DOI: 10.3390/pharmaceutics12050465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acetazolamide (ACZ) is a potent carbonic anhydrase inhibitor that is used for the treatment of glaucoma. Its oral administration causes various undesirable side effects. This study aimed to formulate transgelosomes (TGS) for enhancing the ocular delivery of ACZ. ACZ-loaded transfersomes were formulated by the ethanol injection method, using phosphatidylcholine (PC) and different edge activators, including Tween 80, Span 60, and Cremophor RH 40. The effects of the ratio of lipid to surfactant and type of surfactant on % drug released after 8 h (Q8h) and entrapment efficiency (EE%) were investigated by using Design-Expert software. The optimized formula was formulated as TGS, using poloxamers as gelling agents. In vitro and in vivo characterization of ACZ-loaded TGS was performed. According to optimization study, F8 had the highest desirability value and was chosen as the optimized formula for preparing TGS. F8 appeared as spherical elastic nanovesicles with Q8h of 93.01 ± 3.76% and EE% of 84.44 ± 2.82. Compared to a free drug, TGS exhibited more prolonged drug release of 71.28 ± 0.46% after 8 h, higher ex vivo permeation of 66.82 ± 1.11% after 8 h and a significant lowering of intraocular pressure (IOP) for 24 h. Therefore, TGS provided a promising technique for improving the corneal delivery of ACZ.
Collapse
|
24
|
Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Hassan YA, Fathalla D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Piumitali B, Neeraj U, Jyotivardhan J. Transfersomes — A Nanoscience in Transdermal Drug Delivery and Its Clinical Advancements. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The convenient nanotransdermal delivery system is always likely to have some ideal and unique characteristics, predominantly for safety, desired actions, clinical efficacy, enriched with a therapeutic index with minimal adverse occurrence. One of the most challenging tasks for the formulators is to transfer the medicament, especially macromolecules, through the skin. Some of the ways to achieve this is the use of a painful needle or some other methods which also have economical constraints. A new technology has been developed, that is ultradeformable liposomes, also called as transfersomes. These are an elastic type of lipid vesicle aggregates capable of delivering wide range of active moieties including various biomolecules. It can be manufactured by evaporation, vortexing, reverse-phase evaporation, ethanol injection or freeze-thaw methods, where phospholipids and edge activators are the major ingredients that contribute the main role in their unique mechanism of permeation through less permeable stratum corneum. This review mainly focuses on the clinical trial studies and patents accessible on transfersomal products worldwide, highlights the recent work on transfersomes with various therapeutic agents. An effort to explain the deeper penetration of transfersomes across the epidermis layer by its pharmacokinetics and dynamic properties has been taken.
Collapse
Affiliation(s)
- Bera Piumitali
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Upmanyu Neeraj
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Jaiswal Jyotivardhan
- Alkem Research Center, MIDC Industrial Estate, Taloja, Navi Mumbai, Maharashtra 410208, India
| |
Collapse
|
26
|
Vasanth S, Dubey A, G S R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020; 21:61. [PMID: 31915948 DOI: 10.1208/s12249-019-1518-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Adapalene-loaded transfersome gel containing vitamin C as a combination therapy for the management of acne vulgaris was developed in the present study. The transfersome was prepared by reverse-phase evaporation, and the effect of various process parameters were investigated by the Design of Experiment (DOE) approach and optimized based on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The selected tranfersomes were further evaluated for their thermal behavior and morphology by transmission electron microscopy and turbidity measurements and incorporated into a gel with/without vitamin C. The gel was evaluated and compared with the marketed product (Adiff gel) for various physicochemical parameters, and in vivo studies in testosterone-induced rat models of acne. The prepared transfersomes had PS in the range of 280 to 400 nm, PDI values of 0.416 to 0.8, ZP of - 38 to - 20 mV, and % EE of 32 to 70%. DSC studies confirmed a positive interaction of the components in the transfersome. Surface morphology confirmed that the vesicles were spherical, unilamellar, and discrete. A relative deformability study showed higher elasticity of the transfersomes compared with Adiff aqs gel. Ascorbyl-6-palmitate in adapalene-loaded transfersome gel containing vitamin C (ADVTG) was found to have a good antioxidant free radical-scavenging activity. An in vitro drug release study showed that the sustained release of the transfersomal formulations was attributed to the flexibility of the vesicles by which penetration was increased. ADVTG was found to be promising in treating acne compared with the marketed product. Graphical Abstract.
Collapse
Affiliation(s)
- Sandhya Vasanth
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Akhilesh Dubey
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - Ravi G S
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy and Drug manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Srinivas Hebbar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India
| |
Collapse
|
27
|
Vasanth S, Dubey A, G.S. R, Lewis SA, Ghate VM, El-Zahaby SA, Hebbar S. Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 2020. [DOI: https://doi.org/10.1208/s12249-019-1518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv 2019; 16:1313-1331. [PMID: 31738622 DOI: 10.1080/17425247.2020.1693998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Skin and soft tissue infections are a significant clinical problem that can happen anywhere on the body. Bacteria are the most common cause of skin and soft tissue infections in humans. Despite the fact that there is a lot of antimicrobial agents and antibiotics for elucidating bacterial infections, the prevention and control of infectious diseases continue to be one of the greatest challenges for public health worldwide. At the present time, an alarming increase in multidrug resistance instantly requests to find suitable alternatives to current antibiotics. Therefore, drug resistance has been attempted to be resolved by the development of new classes of antimicrobial agents or targeted delivery systems for antibacterial drugs using nanotechnology.Area covered: The present review summarizes the emerging topical efforts to support the use of nano-sized materials as a new opportunity to combat today's skin infectious diseases.Expert opinion: Nano-sized materials can overcome the stratum corneum barrier and deliver drugs specifically to bacterial skin infections with trivial side effects. Depending on the physicochemical characteristics of nano-scaled materials, they can specifically be selected to target bacterial pathogens and also to get into the skin layers. These systems can overcome the antibiotic-resistance mechanisms and help us to the design of novel topical formulations that will make administration of antibacterial compounds safer, easier and more convenient.
Collapse
Affiliation(s)
- Sara Salatin
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J Microbiol Methods 2019; 161:87-95. [PMID: 30738109 DOI: 10.1016/j.mimet.2019.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/29/2023]
Abstract
Itraconazole (ITZ) loaded Poly-(D, L-lactic-co-glycolic acid, PLGA) nanoparticles (PLGA-NPs) stabilized by D-α-Tocopherol polyethylene-glycol succinate-1000 (TPGS) were developed by nanoprecipitation and single emulsion solvent evaporation methods to improve antifungal activity of ITZ by enhancing its solubility, and hence bioavailability. Encapsulation efficiency, drug loading, in-vitro release, ex-vivo permeation and antifungal activity were performed for the optimized PLGA-NPs. Characterization of PLGA-NPs were performed by scanning electron microscopy, dynamic light scattering, differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffractometry. We observed that nanoprecipitation method was more efficient in encapsulating ITZ by using 0.3% TPGS (stabilizer) than single emulsion solvent evaporation method. Our thermal analysis studies showed no characteristic peaks for crystalline ITZ, indicating drug efficiently encapsulated inside the nanoparticle with no compatibility issues. Drug loaded PLGA-NPs preserved the antifungal activity of ITZ against Candida albicans. Drug release profile from the NPs showed an initial burst release followed by an extended release phase suggesting the potential of NPs for sustained release applications. Furthermore, ITZ encapsulated in PLGA-NPs showed enhanced intestinal permeability in the ex-vivo study. In conclusion, the developed nano-system successfully encapsulated ITZ, yielding an increased permeation and consequential antifungal activity.
Collapse
|
30
|
Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Kumar P, Singh SK, Handa V, Kathuria H. Oleic Acid Nanovesicles of Minoxidil for Enhanced Follicular Delivery. MEDICINES 2018; 5:medicines5030103. [PMID: 30223446 PMCID: PMC6165169 DOI: 10.3390/medicines5030103] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Current topical minoxidil (MXD) formulations involve an unpleasant organic solvent which causes patient incompliance in addition to side effects in some cases. Therefore, the objective of this work was to develop an MXD formulation providing enhanced follicular delivery and reduced side effects. Oleic acid, being a safer material, was utilized to prepare the nanovesicles, which were characterized for size, entrapment efficiency, polydispersity index (PDI), zeta potential, and morphology. The nanovesicles were incorporated into the emugel Sepineo® P 600 (2% w/v) to provide better longer contact time with the scalp and improve physical stability. The formulation was evaluated for in vitro drug release, ex vivo drug permeation, and drug deposition studies. Follicular deposition of the vesicles was also evaluated using a differential tape stripping technique and elucidated using confocal microscopy. The optimum oleic acid vesicles measured particle size was 317 ± 4 nm, with high entrapment efficiency (69.08 ± 3.07%), narrow PDI (0.203 ± 0.01), and a negative zeta potential of −13.97 ± 0.451. The in vitro drug release showed the sustained release of MXD from vesicular gel. The skin permeation and deposition studies revealed superiority of the prepared MXD vesicular gel (0.2%) in terms of MXD deposition in the stratum corneum (SC) and remaining skin over MXD lotion (2%), with enhancement ratios of 3.0 and 4.0, respectively. The follicular deposition of MXD was 10-fold higher for vesicular gel than the control. Confocal microscopy also confirmed the higher absorption of rhodamine via vesicular gel into hair follicles as compared to the control. Overall, the current findings demonstrate the potential of oleic acid vesicles for effective targeted skin and follicular delivery of MXD.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical sciences, Guru Jambheshwar University of science & Technology, Hisar 125001, India.
| | - Shailendra Kumar Singh
- Department of Pharmaceutical sciences, Guru Jambheshwar University of science & Technology, Hisar 125001, India.
| | - Vandana Handa
- School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad 201206, India.
| | | |
Collapse
|
32
|
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O'Neill F, Roberts M. Surfactant Effects on Lipid-Based Vesicles Properties. J Pharm Sci 2018; 107:1237-1246. [DOI: 10.1016/j.xphs.2018.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
|
33
|
Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics 2018; 10:pharmaceutics10010026. [PMID: 29473897 PMCID: PMC5874839 DOI: 10.3390/pharmaceutics10010026] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022] Open
Abstract
Miconazole nitrate (MIC) is an antifungal drug used for treatment of superficial fungal infections. However, it has low skin permeability. Hence, the objective of this study was to prepare miconazole nitrate using Transfersomes to overcome the barrier function of the skin. MIC Transfersomes were prepared using a thin lipid film hydration technique. The prepared Transfersomes were evaluated with respect to entrapment efficiency (EE%), particle size, and quantity of in vitro drug released to obtain an optimized formulation. The optimized formulation of MIC Transfersomes was incorporated into a Carbapol 934 gel base which was evaluated in comparison with a marketed product (Daktarin® cream 2%) for drug content, pH, spreadability, viscosity, in vitro permeation, and in vitro and in vivo antifungal activity. The prepared MIC Transfersomes had a high EE% ranging from (67.98 ± 0.66%) to (91.47 ± 1.85%), with small particle sizes ranging from (63.5 ± 0.604 nm) to (84.5 ± 0.684 nm). The in vitro release study suggested that there was an inverse relationship between EE% and in vitro release. The kinetic analysis of all release profiles was found to follow Higuchi's diffusion model. All independent variables had a significant effect on the dependent variables (p-values < 0.05). The prepared MIC transfersomal gel showed higher antifungal activity than Daktarin® cream 2%. Therefore, miconazole nitrate in the form of Transfersomes has the ability to penetrate the skin, overcoming the stratum corneum barrier.
Collapse
|
34
|
Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed Pharmacother 2017; 96:1478-1490. [PMID: 29223551 DOI: 10.1016/j.biopha.2017.11.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Candidiasis is a fungal infection caused by yeasts that belong to the genus Candida. There are over twenty species of Candida yeasts that can cause infection in humans, the most common of which is Candida albicans. Candida yeasts normally reside in the intestinal tract and can be found on mucous membranes and skin without causing infection; however, overgrowth of these organisms can cause symptoms to develop. Presence of other diseases that compromises the patient's immunity makes it more difficult to treat. Candidiasis is majorly divided into superficial infections (oral or vaginal) and systemic infections, also known as invasive candidiasis. The conventional therapeutic modalities used to treat candidiasis are associated with several side effects that limits the dose and dosing frequency. Development of novel drug delivery systems for reduction in dose and alleviation of side effects is an important strategy to improve the clinical efficacy and patient acceptability. This review gives a bird's eye view of the classification and current therapeutic regime of candidiasis. It presents the varied types of drug delivery systems that have been exploited for delivery of antifungal agents with measurable benefits. It also touches upon echinocandins a relatively new class of drugs that are amenable for translation into novel dosage forms with application against biofilm producing and fluconazole resistant strains contributing to a better therapeutic management of candidiasis.
Collapse
|
35
|
Mandlik SK, Siras SS, Birajdar KR. Optimization and characterization of sertaconazole nitrate flexisomes embedded in hydrogel for improved antifungal activity. J Liposome Res 2017; 29:10-20. [DOI: 10.1080/08982104.2017.1402926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satish K. Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Shridhar S. Siras
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Kiran R. Birajdar
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| |
Collapse
|
36
|
Suksiriworapong J, Mingkwan T, Chantasart D. Enhanced transmucosal delivery of itraconazole by thiolated d -ɑ-tocopheryl poly(ethylene glycol) 1000 succinate micelles for the treatment of Candida albicans. Eur J Pharm Biopharm 2017; 120:107-115. [DOI: 10.1016/j.ejpb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 10/24/2022]
|
37
|
Mota AH, Rijo P, Molpeceres J, Reis CP. Broad overview of engineering of functional nanosystems for skin delivery. Int J Pharm 2017; 532:710-728. [DOI: 10.1016/j.ijpharm.2017.07.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
|
38
|
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 2017; 12:5087-5108. [PMID: 28761343 PMCID: PMC5522681 DOI: 10.2147/ijn.s138267] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Kausar Shafaat
- Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| |
Collapse
|
39
|
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. NANO REVIEWS & EXPERIMENTS 2017; 8:1325708. [PMID: 30410704 PMCID: PMC6167026 DOI: 10.1080/20022727.2017.1325708] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
Abstract
Introduction: The skin acts as a barrier and prevents transcutaneous delivery of therapeutic agents. Transfersomes are novel vesicular systems that are several times more elastic than other vesicular systems. These are composed of edge activator, phospholipids, ethanol, and sodium cholate and are applied in a non-occlusive manner. Areas covered: This article covers information such as merits/demerits of transfersomes, regulatory aspects of materials used in preparation, different methods of preparation, mechanism of action, review of clinical investigations performed, marketed preparations available, research reports, and patent reports related to transfersomes. Expert opinion: Research over the past few years has provided a better understanding of transfersomal permeation of therapeutic agents across stratum corneum barrier. Transfersomes provides an essential feature of their application to variety of compositions in order to optimize the permeability of a range of therapeutic molecules. This is evidenced by the fact that there are several Transfersome products being processed in advanced clinical trials. It is noteworthy that a number of Transfersome products for dermal and transdermal delivery will gain a global market success in near future.
Collapse
Affiliation(s)
- Shubhra Rai
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| | - Vikas Pandey
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| | - Gopal Rai
- Pharmaceutics, Guru Ramdas Khasla Institute of Science & Technology, Pharmacy, Jabalpur, India
| |
Collapse
|
40
|
Abdellatif AAH, Tawfeek HM. Transfersomal Nanoparticles for Enhanced Transdermal Delivery of Clindamycin. AAPS PharmSciTech 2016; 17:1067-74. [PMID: 26511937 DOI: 10.1208/s12249-015-0441-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to study the potential of delivering clindamycin phosphate, as an efficient antibiotic drug, into a more absorbed, elastic ultradeformable form, transfersomes (TRSs). These vesicles showed an enhanced penetration through ex vivo permeation characters. TRSs were prepared using thin-film hydration method. Furthermore, they were evaluated for their entrapment efficiency, size, zeta potential, and morphology. Also, the prepared TRSs were converted into suitable gel formulation using carbopol 934 and were evaluated for their gel characteristics like pH, viscosity, spreadability, homogeneity, skin irritation, in vitro release, stability, and ex vivo permeation studies in rats. TRSs were efficiently formulated in a stable bilayer vesicle structure. Furthermore, clindamycin phosphate showed higher entrapment efficiency within the TRSs reaching about 93.3% ± 0.8 and has a uniform particle size. Moreover, the TRSs surface had a high negative charge which indicated the stability of the produced vesicles and resistance of aggregation. Clindamycin phosphate showed a significantly higher in vitro release (p < 0.05; ANOVA/Tukey) compared with the control carbopol gel. Furthermore, the transfersomal gel showed a significantly higher (p < 0.05; ANOVA/Tukey) cumulative amount of drug permeation and flux than both the transfersomal suspension and the control carbopol gel. In conclusion, the produced results suggest that TRS-loaded clindamycin are promising carriers for enhanced dermal delivery of clindamycin phosphate.
Collapse
|
41
|
Khan NR, Wong TW. Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. Expert Opin Drug Deliv 2016; 13:1209-19. [DOI: 10.1080/17425247.2016.1193152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nauman Rahim Khan
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
42
|
Alomrani AH, Badran MM. Flexosomes for transdermal delivery of meloxicam: characterization and antiinflammatory activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:305-312. [DOI: 10.3109/21691401.2016.1147452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanomedicine Unit (NMU-KSU), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
43
|
Ling X, Huang Z, Wang J, Xie J, Feng M, Chen Y, Abbas F, Tu J, Wu J, Sun C. Development of an itraconazole encapsulated polymeric nanoparticle platform for effective antifungal therapy. J Mater Chem B 2016; 4:1787-1796. [DOI: 10.1039/c5tb02453f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schematic illustration of the construction andin vivotrafficking of ITZ-NPs.
Collapse
|
44
|
Enhanced antioxidation via encapsulation of isooctyl p-methoxycinnamate with sodium deoxycholate-mediated liposome endocytosis. Int J Pharm 2015; 496:392-400. [PMID: 26453790 DOI: 10.1016/j.ijpharm.2015.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/14/2015] [Accepted: 10/03/2015] [Indexed: 11/22/2022]
Abstract
Isooctyl p-methoxycinnamate(OMC) is a commonly used chemical ultraviolet B sunscreen that suffers rapid degradation with current delivery systems following sun exposure. In this study, deoxycholate-mediated liposome (DOC-LS) endocytosis was employed to improve the antioxidation effects of OMC following topical administration, and the in vitro cell uptake was investigated to understand the enhanced cutaneous absorption of the drug via this nanocarrier. Following topical application, structural changes in the stratum corneum were identified. With the increase of DOC content, the drug deposition in skin decreased; from this, a DOC-LS formulation was selected that showed significantly more drug delivery in skin than did the other preparations (P<0.05). DOC-LS decreased skin resistance, suggesting its ability to induce skin barrier disruption. In vitro HaCaT keratinocyte cell uptake of coumarin-6 incorporated in the two types of phosphatidylcholine (PC) vesicles (i.e., LS or DOC-LS) yielded similar fluorescence intensities following incubation for different periods (P<0.05). However, CCC-ESF-1 embryonic fibroblast cell uptake of the fluorescence revealed time-dependence, and the emitted light from DOC-LS incubated cells was stronger than that from cells incubated with LS (P<0.05). These findings might be associated with the endocytic pathway of HaCaT, which mainly exhibited adsorption or physical adhesion of the fluorescent vesicles, whereas CCC-ESF-1 markedly internalized the PC vesicles via the lysosomes, as shown by intracellular fluorescence co-location studies. Following loading with the same amount of OMC, the DOC-LS vesicles exhibited superior skin tissue antioxidative capacity among the preparations tested, corroborating the in vivo skin drug deposition results. Thus, our results suggest that DOC-LS is a promising system for OMC dermal delivery without promoting skin irritation, which is quite advantageous for therapeutic purposes.
Collapse
|
45
|
Alomrani AH, Al-Agamy MH, Badran MM. In vitro skin penetration and antimycotic activity of itraconazole loaded niosomes: Various non-ionic surfactants. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Shen S, Liu SZ, Zhang YS, Du MB, Liang AH, Song LH, Ye ZG. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement. Int J Nanomedicine 2015; 10:4239-53. [PMID: 26170661 PMCID: PMC4494185 DOI: 10.2147/ijn.s83402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.
Collapse
Affiliation(s)
- Shuo Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shu-Zhi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yu-Shi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Mao-Bo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ai-Hua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Li-Hua Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Zu-Guang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
47
|
Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:175. [PMID: 25825320 DOI: 10.1007/s10856-015-5487-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Liposomal carriers for topical drug delivery have been studied since the 1980s and have evoked a considerable interest. However, the conventional liposomes do not deeply penetrate into the skin and remain confined to the outer layer of SC. In order to increase skin targeting of ketoconazole (KCZ), a hydrophobic broad-spectrum antifungal agent, this study describes novel lipid vesicles as nano-carriers for topical delivery. In this paper, lipid vesicular systems including conventional liposomes (CL), ethosomes, deformable liposomes (DL) and ethanol-containing deformable liposomes (DEL) were prepared as nano-carriers for KCZ, respectively. Sodium dodecyl sulfate [SDS, 0.08 % (W/V)] was used as edge activator for DL and DEL preparation. Characterization of the vesicles was based on particle size, zeta potential, entrapment efficiency and transmission electron microscopy (TEM). In addition, in vitro permeation profile was obtained using vertical diffusion Franz cells by porcine skin. The in vivo accumulation of KCZ was also evaluated in rat skin. Confocal microscopy was performed to visualize the penetration of fluorescently labeled vesicles into skin. All of the lipid vesicles showed almost spherical structures with low polydispersity index (PDI < 0.3) and nano-metric size (no more than 160 nm). The results demonstrated that DEL dramatically improved both in vitro and in vivo skin deposition compared to the CLs (P < 0.05), which was further confirmed by confocal laser scanning microscopy study. In vivo pharmacodynamic studies showed DEL improved antifungal activity against Candida albicans in shorter duration of time. Therefore, based on present study, the novel nano-carrier DEL capable of enhancing skin target effect and forming a micro drug-depot could serve as an effective skin targeting delivery for KCZ as an anti-fungal agent in local therapy.
Collapse
Affiliation(s)
- Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Alomrani AH, Shazly GA, Amara AA, Badran MM. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf B Biointerfaces 2014; 121:74-81. [DOI: 10.1016/j.colsurfb.2014.05.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/07/2014] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
|
49
|
ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2014; 23:2115-2123. [DOI: 10.3109/10717544.2014.942811] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aliaa N. ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt and
| | - Amira M. Mohsen
- Department of Pharmaceutical Technology, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
50
|
Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm 2013; 454:367-80. [DOI: 10.1016/j.ijpharm.2013.07.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 11/22/2022]
|