1
|
Camaj A, Leone PP, Colombo A, Vinayak M, Stone GW, Mehran R, Dangas G, Kini A, Sharma SK. Drug-Coated Balloons for the Treatment of Coronary Artery Disease: A Review. JAMA Cardiol 2025; 10:189-198. [PMID: 39714903 DOI: 10.1001/jamacardio.2024.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Importance Drug-coated balloon (DCB) angioplasty has emerged as an alternative to drug-eluting stent (DES) implantation for percutaneous coronary intervention (PCI) in patients with coronary in-stent restenosis (ISR) as well as de novo coronary artery disease. Observations DCBs are balloons coated with antiproliferative agents and excipients, whose aim is to foster favorable vessel healing after appropriate lesion preparation. By providing homogeneous antiproliferative drug delivery in the absence of permanent foreign body implantation, DCBs offer multiple advantages over DES, including preservation of vessel anatomy and function and positive vessel remodeling. As such, DCBs have become appealing for treatment of ISR, small-vessel disease, long lesions, simplification of bifurcation procedures, and treatment of diffuse distal disease after recanalization of chronic total occlusions. In addition, patients with high bleeding risk, diabetes, and acute coronary syndrome might also stand to benefit from DCB angioplasty. Conclusions and Relevance Although commercially available in numerous countries now for more than a decade, DCB only recently obtained US Food and Drug Administration approval for the treatment of coronary ISR. Moreover, preliminary results from newer generation devices tested in different clinical scenarios have raised the interest of the international community. Accordingly, an up-to-date review is timely particularly with the anticipated wave of research on the matter. Herein, this review encompasses DCB technologies, their worldwide usage, details on relevant indications, and key procedural aspects of DCB angioplasty.
Collapse
Affiliation(s)
- Anton Camaj
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pier Pasquale Leone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Cardio Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonio Colombo
- Cardio Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Manish Vinayak
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gregg W Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Associate Editor, JAMA Cardiology
| | - George Dangas
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Annapoorna Kini
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samin K Sharma
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
2
|
Shen M, Zheng L, Koole LH. Polymeric Microspheres Designed to Carry Crystalline Drugs at Their Surface or Inside Cavities and Dimples. Pharmaceutics 2023; 15:2146. [PMID: 37631360 PMCID: PMC10460081 DOI: 10.3390/pharmaceutics15082146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Injectable polymer microparticles with the ability to carry and release pharmacologically active agents are attracting more and more interest. This study is focused on the chemical synthesis, characterization, and preliminary exploration of the utility of a new type of injectable drug-releasing polymer microparticle. The particles feature a new combination of structural and physico-chemical properties: (i) their geometry deviates from the spherical in the sense that the particles have a cavity; (ii) the particles are porous and can therefore be loaded with crystalline drug formulations; drug crystals can reside at both the particle's surfaces and inside cavities; (iii) the particles are relatively dense since the polymer network contains covalently bound iodine (approximately 10% by mass); this renders the drug-loaded particles traceable (localizable) by X-ray fluoroscopy. This study presents several examples. First, the particles were loaded with crystalline voriconazole, which is a potent antifungal drug used in ophthalmology to treat fungal keratitis (infection/inflammation of the cornea caused by penetrating fungus). Drug loading as high as 10% by mass (=mass of immobilized drug/(mass of the microparticle + mass of immobilized drug) × 100%) could be achieved. Slow local release of voriconazole from these particles was observed in vitro. These findings hold promise regarding new approaches to treat fungal keratitis. Moreover, this study can help to expand the scope of the transarterial chemoembolization (TACE) technique since it enables the use of higher drug loadings (thus enabling higher local drug concentration or extended therapy duration), as well as application of hydrophobic drugs that cannot be used in combination with existing TACE embolic particles.
Collapse
Affiliation(s)
| | | | - Leo H. Koole
- Innovative Bioengineering Laboratory for Ocular Drug Delivery, School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou 325027, China; (M.S.); (L.Z.)
| |
Collapse
|
3
|
Shaheen‐Mualim M, Kutner N, Farah S. The emerging potential of crystalline drug‐polymer combination for medical applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Merna Shaheen‐Mualim
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Neta Kutner
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
| | - Shady Farah
- The Laboratory for Advanced Functional/Medicinal Polymers & Smart Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering Technion‐Israel Institute of Technology Haifa Israel
- The Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
4
|
Zhang L, Wang W, Xie B, Sun P, Wei S, Wu H, Zhang C, Li J, Li Z, Bai H. PLGA Nanoparticle Rapamycin- or Necrostatin-1-Coated Sutures Inhibit Inflammatory Reactions after Arterial Closure in Rats. ACS APPLIED BIO MATERIALS 2022; 5:1501-1507. [PMID: 35297594 DOI: 10.1021/acsabm.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Wang Wang
- Department of Physiology, Medical School of Zhengzhou University, Henan 450001, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Henan 450001, China
| | - Zhuo Li
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China.,Department of Neurology, First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan 450052, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| |
Collapse
|
5
|
Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020; 12:E349. [PMID: 32294908 PMCID: PMC7238261 DOI: 10.3390/pharmaceutics12040349] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the most distributed cause of death worldwide. Stenting of arteries as a percutaneous transluminal angioplasty procedure became a promising minimally invasive therapy based on re-opening narrowed arteries by stent insertion. In order to improve and optimize this method, many research groups are focusing on designing new or improving existent stents. Since the beginning of the stent development in 1986, starting with bare-metal stents (BMS), these devices have been continuously enhanced by applying new materials, developing stent coatings based on inorganic and organic compounds including drugs, nanoparticles or biological components such as genes and cells, as well as adapting stent designs with different fabrication technologies. Drug eluting stents (DES) have been developed to overcome the main shortcomings of BMS or coated stents. Coatings are mainly applied to control biocompatibility, degradation rate, protein adsorption, and allow adequate endothelialization in order to ensure better clinical outcome of BMS, reducing restenosis and thrombosis. As coating materials (i) organic polymers: polyurethanes, poly(ε-caprolactone), styrene-b-isobutylene-b-styrene, polyhydroxybutyrates, poly(lactide-co-glycolide), and phosphoryl choline; (ii) biological components: vascular endothelial growth factor (VEGF) and anti-CD34 antibody and (iii) inorganic coatings: noble metals, wide class of oxides, nitrides, silicide and carbide, hydroxyapatite, diamond-like carbon, and others are used. DES were developed to reduce the tissue hyperplasia and in-stent restenosis utilizing antiproliferative substances like paclitaxel, limus (siro-, zotaro-, evero-, bio-, amphi-, tacro-limus), ABT-578, tyrphostin AGL-2043, genes, etc. The innovative solutions aim at overcoming the main limitations of the stent technology, such as in-stent restenosis and stent thrombosis, while maintaining the prime requirements on biocompatibility, biodegradability, and mechanical behavior. This paper provides an overview of the existing stent types, their functionality, materials, and manufacturing conditions demonstrating the still huge potential for the development of promising stent solutions.
Collapse
Affiliation(s)
- Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Muhammad Saqib
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | | | - Łukasz Wasyluk
- Balton Sp. z o.o. Modlińska 294, 03-152 Warsaw, Poland; (H.K.); (Ł.W.)
| | - Oleg Kuzmin
- VIP Technologies, Prospect Academicheskiy 8/2, 634055 Tomsk, Russia;
| | - Oana Cristina Duta
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Zeno Ghizdavet
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Alexandru Marin
- Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Faculty of Power Engineering, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| | - Zhilei Sun
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Vladimir F. Pichugin
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
7
|
Farah S, Doloff JC, Müller P, Sadraei A, Han HJ, Olafson K, Vyas K, Tam HH, Hollister-Lock J, Kowalski PS, Griffin M, Meng A, McAvoy M, Graham AC, McGarrigle J, Oberholzer J, Weir GC, Greiner DL, Langer R, Anderson DG. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. NATURE MATERIALS 2019; 18:892-904. [PMID: 31235902 PMCID: PMC7184801 DOI: 10.1038/s41563-019-0377-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/16/2019] [Indexed: 05/02/2023]
Abstract
Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.
Collapse
Affiliation(s)
- Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Müller
- X-Ray Diffraction Facility, MIT Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hye Jung Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katy Olafson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ashley Meng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malia McAvoy
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Abstract
Cardiovascular complications are leading causes of most fatalities. Coronary artery disease and surgical failures contribute to the death of the majority of patients. Advanced research in the field of medical devices like stents has efficiently resolved these problems. Clinically, drug-eluting stents have proven their efficacy and safety compared to bare metal stents, which have problems of in-stent restenosis. However, drug-loaded stents coated with polymers have shown adverse effects related to the stability and deterioration of the polymer coating over time. This results in late stent thrombosis and immunogenicity. These reasons laid the foundation for the development of non-polymeric drug-eluting stents. This review focuses on non-polymer drug-eluting stents loaded with different drugs like anti-inflammatory agents, anti-thrombotic, anti-platelet agents, immune suppressants and others. Surface modification techniques on stents like crystalline coating; microporous, macroporous, and nanoporous coatings; and chemically modified self-assembled monolayers are described in detail. There is also an update on clinically approved products and those under development.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Raju Saka
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
9
|
Farah S. Protective Layer Development for Enhancing Stability and Drug-Delivery Capabilities of DES Surface-Crystallized Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9010-9022. [PMID: 29436817 DOI: 10.1021/acsami.7b18733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carrier-free drug-eluting stents (DES)-based crystalline coatings are gaining prominence because of their function, skipping many limitations and clinical complications of the currently marketed DES. However, their usage has been humbled by inflexibility of the crystalline coating and limited mechanical and physical properties. This study reports for the first time the development of a protective top coating for enhancing the merits and delivery capabilities of the crystalline coating. Flexible and water-soluble polysaccharide top coating was developed and applied onto rapamycin (RM) crystalline carpet. The top coating prevented crystalline coating delamination during stent crimping and expansion without affecting its release profile. Crystalline coating strata and its interfaces with the metallic substrate and top coating were fully studied and characterized. The crystalline top-coated stents showed significant physical, mechanical, and chemical stability enhancement with ∼2% RM degradation after 1 year under different storage conditions. Biocompatibility study of the top-coated stents implanted subcutaneously for 1 month into SD rats did not provoke any safety concerns. Incorporating RM into the top coating to develop a bioactive protective coating for multilayer release purposes was also investigated. The developed protective coating had wide applicability and may be further implemented for various drugs and implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
10
|
Bukka M, Rednam PJ, Sinha M. Drug-eluting balloon: design, technology and clinical aspects. ACTA ACUST UNITED AC 2018; 13:032001. [PMID: 29227279 DOI: 10.1088/1748-605x/aaa0aa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A drug-eluting balloon is a non-stent technology in which the effective homogenous delivery of anti-proliferative drugs is processed by the vessel wall through an inflated balloon. This is done to restore luminal vascularity in order to treat atherosclerosis, in-stent restenosis and reduce the risk of late thrombosis without implanting a permanent foreign object. The balloon technology relies on the concept of targeted drug delivery, which helps in the rapid healing of the vessel wall and prevents the proliferation of smooth muscle cells. Several drug eluting devices in the form of coated balloons are currently in clinical use, namely DIOR®, PACCOCATH®, SeQuent®Please and IN.PACT™. The device varies in terms of the material used for making the balloon, the coating techniques, the choice of coated drug and the release pattern of the drug at the site. This review gives an insight into the evolution, rationale and comparison of the marketed drug-eluting balloons. Here, different coating techniques have been analysed for the application and critical analysis of available DEB technologies, and a technical comparison has been done.
Collapse
Affiliation(s)
- Meenasree Bukka
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A) Palaj, Opp. Air Force Station, Gandhinagar-382355, Gujarat, India
| | | | | |
Collapse
|
11
|
Farah S, Domb AJ. Crystalline paclitaxel coated DES with bioactive protective layer development. J Control Release 2018; 271:107-117. [PMID: 29289571 DOI: 10.1016/j.jconrel.2017.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Drug eluting stents (DES) based on polymeric-carriers currently lead the market, however, reports on clinical complications encourage the development of safer and more effective DES. We recently reported on carrier-free DES based on rapamycin crystalline coating as a potential therapeutic solution. Here, we report for the first time surface crystallization of paclitaxel (PT) onto metallic stents. The physicochemical principles of crystallization and key process parameters were extensively studied for fabrication of controllable and homogeneous crystalline coatings on stent scaffolds. Stents loaded with nearly 100μg PT were chosen as a potential therapeutic device with a multilayer coating of 4-7μm thickness. In vitro PT release from these coated stents shows constant release for at least 28days with 10% cumulatively released. The effect of fast dissolving top coating on the physical stability of the coated stent was determined. The top coating enhances the mechanical stability of the crystalline coating during deployment and expansion simulations. Also, incorporating PT in the protective top coating for developing bioactive top coating for multilayer controlled release purpose was intensively studied. This process has wide applications that can be further implemented for other drugs for effective local drug delivery from implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
12
|
Hsiao HM, Lin CH, Shen YK, Chou TY, Hsu YY. Rhombic-Shaped Channel Stent with Enhanced Drug Capacity and Fatigue Life. MICROMACHINES 2017; 9:mi9010003. [PMID: 30393280 PMCID: PMC6187719 DOI: 10.3390/mi9010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023]
Abstract
A drug-eluting stent with rhombic-shaped drug reservoirs is proposed, aimed at providing long-term drug delivery and enhanced fatigue life. Unique rhombic-shaped reservoirs or channels on the stent struts can increase the total drug capacity and improve the stress distribution for longer fatigue life, without compromising other important clinical attributes. Our rhombic-shaped channel stent increases the total drug capacity by multiple times. Its fatigue safety factor, even with the large rhombic cutouts on the stent struts, could be 50% higher than that of the conventional drug-eluting stent. A pulsed fiber-optic laser and a series of expansions and heat treatments were used to make the first prototype of our rhombic-shaped channel stent. This new concept may open up a wide variety of new treatment options and opportunities for the medical industry in the future.
Collapse
Affiliation(s)
- Hao-Ming Hsiao
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Han Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Kang Shen
- Research Center for Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tzu-Yun Chou
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Yu Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
13
|
Xiong GM, Ang H, Lin J, Lui YS, Phua JL, Chan JN, Venkatraman S, Foin N, Huang Y. Materials technology in drug eluting balloons: Current and future perspectives. J Control Release 2016; 239:92-106. [DOI: 10.1016/j.jconrel.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
14
|
Chen W, Habraken TCJ, Hennink WE, Kok RJ. Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjug Chem 2015; 26:1277-88. [PMID: 26041505 DOI: 10.1021/acs.bioconjchem.5b00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clinical evaluations have proven the efficacy of drug-elution stents (DES) in reduction of in-stent restenosis rates as compared to drug-free bare metal stents (BMS). Typically, DES are metal stents that are covered with a polymer film loaded with anti-inflammatory or antiproliferative drugs that are released in a sustained manner. However, although favorable effects of the released drugs have been observed, the polymer coating as such has been associated with several adverse clinical effects, such as late stent thrombosis. Elimination of the polymeric carrier of DES may therefore potentially lead to safer DES. Several technologies have been developed to design polymer-free DES, such as the use of microporous stents and inorganic coatings that can be drug loaded. Several drugs, including sirolimus, tacrolimus, paclitaxel, and probucol have been used in the design of carrier-free stents. Due to the function of the polymeric coating to control the release kinetics of a drug, polymer-free stents are expected to have a faster drug elution rate, which may affect the therapeutic efficacy. However, several polymer-free stents have shown similar efficacy and safety as the first-generation DES, although the superiority of polymer-free DES has not been established in clinical trials.
Collapse
Affiliation(s)
- Weiluan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tom C J Habraken
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Katiyar SS, Muntimadugu E, Rafeeqi TA, Domb AJ, Khan W. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv 2015; 23:2608-2616. [DOI: 10.3109/10717544.2015.1039667] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sameer S. Katiyar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India,
| | - Eameema Muntimadugu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India,
| | - Towseef Amin Rafeeqi
- Central Research Institute of Unani Medicine (CRIUM), Hyderabad, Telangana, India, and
| | - Abraham J. Domb
- Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem College of Engineering (JCE), Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India,
| |
Collapse
|
16
|
Eluting combination drugs from stents. Int J Pharm 2013; 454:4-10. [DOI: 10.1016/j.ijpharm.2013.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 11/23/2022]
|