1
|
Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Synergistic pH-responsive MUC-1 aptamer-conjugated Ag/MSN Janus nanoparticles for targeted chemotherapy, photothermal therapy, and gene therapy in breast cancer. BIOMATERIALS ADVANCES 2025; 166:214081. [PMID: 39454415 DOI: 10.1016/j.bioadv.2024.214081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Drug resistance in cancer treatment, primarily attributed to the overexpression of the multidrug resistance (MDR) gene, significantly hampers the effectiveness of chemotherapy. This mechanism, driven by the increased production of P-glycoprotein (P-gp) efflux pumps, highlights the urgent need for innovative strategies to combat drug resistance in cancer patients. This study explores the application of antisense technology to suppress MDR gene expression, while addressing the challenges of instability and limited cellular uptake associated with antisense oligonucleotides. We synthesized Janus silver-mesoporous silica nanoparticles (Ag/MSN JNPs) using a sol-gel method, characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), revealing uniformly sized, dumbbell-shaped nanoparticles with an average size of 285 ± 5.12 nm. Doxorubicin (DOX) was loaded into the porous structure of the mesoporous silica, and JNPs were functionalized with chitosan (CS) to incorporate P-gp antisense and a MUC-1 aptamer, serving as a pH-responsive gatekeeper. Our findings indicate that the Ap-As-DOX-JNPs achieved a remarkable 89 ± 0.59 % cell death in drug-resistant MCF-7/ADR cells after 48 h, alongside an 80 % reduction in P-gp expression. The combination of DOX, antisense technology, and photothermal therapy utilizing these JNPs demonstrates a promising strategy to effectively overcome drug resistance. Notably, normal MCF-7 cells exhibited reduced viability from 39.11 ± 1.12 % to 30.05 ± 1.07 % when treated with DOX-JNPs under near-infrared (NIR) irradiation. These results underscore the potential of utilizing MUC-1 aptamer-conjugated Janus nanoparticles in conjunction with chitosan as a gatekeeper to enhance the efficacy of chemotherapy, photothermal therapy, and gene therapy in overcoming multidrug resistance in cancer treatment.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
3
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Misra R, Sanjana Sharath N. Red blood cells based nanotheranostics: A smart biomimetic approach for fighting against cancer. Int J Pharm 2024; 661:124401. [PMID: 38986966 DOI: 10.1016/j.ijpharm.2024.124401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The technique of engineering drug delivery vehicles continues to develop, which bring enhancements in working more efficiently and minimizing side effects to make it more effective and safer. The intense capability of therapeutic agents to remain undamaged in a harsh extracellular environment is helpful to the success of drug development efforts. With this in mind, alterations of biopharmaceuticals with enhanced stability and decreased immunogenicity have been an increasingly active focus of such efforts. Red blood cells (RBCs), also known as erythrocytes have undergone extensive scrutiny as potential vehicles for drug delivery due to their remarkable attributes over the years of research. These include intrinsic biocompatibility, minimal immunogenicity, flexibility, and prolonged systemic circulation. Throughout the course of investigation, a diverse array of drug delivery platforms based on RBCs has emerged. These encompass genetically engineered RBCs, non-genetically modified RBCs, and RBC membrane-coated nanoparticles, each devised to cater to a range of biomedical objectives. Given their prevalence in the circulatory system, RBCs have gained significant attention for their potential to serve as biomimetic coatings for artificial nanocarriers. By virtue of their surface emulation capabilities and customizable core materials, nanocarriers mimicking these RBCs, hold considerable promise across a spectrum of applications, spanning drug delivery, imaging, phototherapy, immunomodulation, sensing, and detection. These multifaceted functionalities underscore the considerable therapeutic and diagnostic potential across various diseases. Our proposed review provides the synthesis of recent strides in the theranostic utilization of erythrocytes in the context of cancer. It also delves into the principal challenges and prospects intrinsic to this realm of research. The focal point of this review pertains to accentuating the significance of erythrocyte-based theranostic systems in combating cancer. Furthermore, it precisely records the latest and the most specific methodologies for tailoring the attributes of these biomimetic nanoscale formulations, attenuating various discoveries for the treatment and management of cancer.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India.
| | - Naomi Sanjana Sharath
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain (Deemed-to-be University), JC Road, Bengaluru 560027, Karnataka, India
| |
Collapse
|
5
|
Singha A, Kalladka K, Harshitha M, Saha P, Chakraborty G, Maiti B, Satyaprasad AU, Chakraborty A, Sil SK. Green synthesis of chitosan gum acacia based biodegradable polymeric nanoparticles to enhance curcumin's antioxidant property: an in vivo zebrafish ( Danio rerio) study. J Microencapsul 2024; 41:390-401. [PMID: 38945157 DOI: 10.1080/02652048.2024.2362188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Green-synthesis of biodegradable polymeric curcumin-nanoparticles using affordable biodegradable polymers to enhance curcumin's solubility and anti-oxidative potential. The curcumin-nanoparticle was prepared based on the ionic-interaction method without using any chemical surfactants, and the particle-size, zeta-potential, surface-morphology, entrapmentefficiency, and in-vitro drug release study were used to optimise the formulation. The antioxidant activity was investigated using H2DCFDA staining in the zebrafish (Danio rerio) model. The mean-diameter of blank nanoparticles was 178.2 nm (±4.69), and that of curcuminnanoparticles was about 227.7 nm (±10.4), with a PDI value of 0.312 (±0.023) and 0.360 (±0.02). The encapsulation-efficacy was found to be 34% (±1.8), with significantly reduced oxidative-stress and toxicity (∼5 times) in the zebrafish model compared to standard curcumin. The results suggested that the current way of encapsulating curcumin using affordable, biodegradable, natural polymers could be a better approach to enhancing curcumin's water solubility and bioactivity, which could further be translated into potential therapeutics.
Collapse
Affiliation(s)
- Achinta Singha
- Cancer Biology, Cell Signalling and Molecular Genetics Lab, Department of Human Physiology, Tripura University, Suryamaninagar, India
| | - Krithika Kalladka
- Department of Molecular Genetics and Cancer, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Mave Harshitha
- Department of Bio & Nano Technology, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Partha Saha
- Cancer Biology, Cell Signalling and Molecular Genetics Lab, Department of Human Physiology, Tripura University, Suryamaninagar, India
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Biswajit Maiti
- Department of Bio & Nano Technology, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Akshath Uchangi Satyaprasad
- Department of Bio & Nano Technology, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, NITTE University Centre for Science Education and research, NITTE (Deemed to be University), Mangalore, India
| | - Samir Kumar Sil
- Cancer Biology, Cell Signalling and Molecular Genetics Lab, Department of Human Physiology, Tripura University, Suryamaninagar, India
| |
Collapse
|
6
|
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci 2024; 25:7477. [PMID: 39000584 PMCID: PMC11242665 DOI: 10.3390/ijms25137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.V.); (S.M.)
| |
Collapse
|
7
|
Misra R, Hazra S, Saleem S, Nehru S. Drug-loaded polymer-coated silver nanoparticles for lung cancer theranostics. Med Oncol 2024; 41:132. [PMID: 38687401 DOI: 10.1007/s12032-024-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Lung cancer is the leading cause of death in cancer across the globe. To minimize these deaths, the replacement of traditional chemotherapy with novel strategies is significant. We have developed a nanotheranostic approach using silver nanoparticles for imaging and treatment. Silver nanoparticles (AgNPs) are fabricated by chemical reduction method. The formulation of AgNPs was confirmed by different characterization techniques like stability test, UV-Visible spectroscopy, Confocal Raman Spectroscopy, and Energy-Dispersive X-ray analysis. Further, AgNPs are coated with poly lactic-co-glycolic acid (PLGA) and then loaded with paclitaxel (Pac). Then the drug-loaded PLGA-coated AgNPs were characterized for size and zeta potential measurement by zetasizer, surface morphology study by atomic force microscopy, Fourier transform infrared spectroscopy, and release kinetics study. The imaging and anticancer properties of these nanoformulations are investigated using lung cancer cell lines. The results proved that the particles are in the nanometer range with smooth surface morphology. Moreover, the drug-loaded NPs showed a sustained release of the drug for a longer period of time. Further the formulations showed imaging property with greater anticancer efficacy. Thus, the results suggest the effective use of these nanoformulation in both lung cancer imaging and treatment using a simple and efficient approach.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, Centre for Research in Pure and Applied Sciences, School of Sciences, Jain University, Bangalore, 560027, Karnataka, India.
| | - Subhenjit Hazra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Suraiya Saleem
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Sushmitha Nehru
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
8
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
10
|
Ma R, Nai J, Zhang J, Li Z, Xu F, Gao C. Co-delivery of CPP decorated doxorubicin and CPP decorated siRNA by NGR-modified nanobubbles for improving anticancer therapy. Pharm Dev Technol 2021; 26:634-646. [PMID: 33843423 DOI: 10.1080/10837450.2021.1912090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A combination of doxorubicin (DOX) and small interfering RNA (siRNA) is proven effective for the reverse of multidrug resistance. However, rapid degradation and poor cellular internalization of siRNA hinder their synergistic action. To improve the combination effect, asparagine-glycine-arginine peptide (NGR) -modified nanobubbles (NBs) containing cell-penetrating peptide (CPP) decorated DOX and CPP decorated c-myc siRNA were constructed. Diameters of these NBs were about 245 nm and zeta potentials were about -3 mV. Encapsulation efficiencies (EE) of DOX exceeded 80%. Release of DOX could be triggered by ultrasound (US) since above 80% DOX was released from NBs after sonication while less than 5% DOX was discharged without treatment of US. These NBs were considered stable during 24 h since the decrease of particle size was no more than 10 nm, variances of EE were less than 5%, and changes of transmission (ΔT) were less than 3%. More drugs in formulation decorated with CPP and NGR were accumulated in the tumor when combined with sonication. The evident synergistic action of DOX, siRNA, NBs, and US was verified in mice with strong antitumor efficacy. Taken together, NGR-modified NBs containing CPP-DOX and CPP-siRNA are able to realize time- and spatial-controlled drug delivery and show potential application prospects.
Collapse
Affiliation(s)
- Rui Ma
- Chinese PLA Medical School, Pharmaceutical Sciences Research Division, Beijing, China.,Department of Pharmacy, The 305 Hospital of PLA, Beijing, China
| | - Jingxue Nai
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jinbang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fenghua Xu
- Chinese PLA Medical School, Pharmaceutical Sciences Research Division, Beijing, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasure, Department of Pharmaceutics, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Pharmaceutical College, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Bessone F, Dianzani C, Argenziano M, Cangemi L, Spagnolo R, Maione F, Giraudo E, Cavalli R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:192-207. [PMID: 35582009 PMCID: PMC9019188 DOI: 10.20517/cdr.2020.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023]
Abstract
Aim: Resistance to chemotherapy is a major limiting factor that hamper the effectiveness of anticancer therapies. Doxorubicin is an antineoplastic agent used in the treatment of a wide range of cancers. However, it presents several limitations such as dose-dependent cardiotoxicity, lack of selectivity for tumor cells, and induced cell resistance. Nanotechnology represents a promising strategy to avoid these drawbacks. In this work, new albumin-based nanoparticles were formulated for the intracellular delivery of doxorubicin with the aim to overcome cancer drug resistance. Methods: Glycol chitosan-coated and uncoated albumin nanoparticles were prepared with a tuned coacervation method. The nanoformulations were in vitro characterized evaluating the physicochemical parameters, morphology, and in vitro release kinetics. Biological assays were performed on A2780res and EMT6 cells from human ovarian carcinoma and mouse mammary cell lines resistant for doxorubicin, respectively. Results: Cell viability assays showed that nanoparticles have higher cytotoxicity than the free drug. Moreover, at low concentrations, both doxorubicin-loaded nanoparticles inhibited the cell colony formation in a greater extent than drug solution. In addition, the cell uptake of the different formulations was investigated by confocal microscopy and by the HPLC determination of doxorubicin intracellular accumulation. The nanoparticles were rapidly internalized in greater extent compared to the free drug. Conclusion: Based on these results, doxorubicin-loaded albumin nanoparticles might represent a novel platform to overcome the mechanism of drug resistance in cancer cell lines and improve the drug efficacy.
Collapse
Affiliation(s)
- Federica Bessone
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.,Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Federica Maione
- Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Enrico Giraudo
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.,Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
12
|
Misra R, Patra B, Varadharaj S, Verma RS. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for Triple negative breast cancer therapy. ACTA ACUST UNITED AC 2020; 11:199-207. [PMID: 34336608 PMCID: PMC8314031 DOI: 10.34172/bi.2021.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/23/2022]
Abstract
![]()
Introduction: Triple-negative breast cancer (TNBC) is a lethal tumor with an advanced degree of metastasis and poor survivability as compared to other subtypes of breast cancer. TNBC which consists of 15 % of all types of breast cancer is categorized by the absence of expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER2). This is the main reason for the failure of current hormonal receptor-based therapies against TNBCs, thus leading to poor patient outcomes. Therefore, there is a necessity to develop novel therapies targeting this devastating disease. Methods: In this study, we have targeted TNBC by simultaneous activation of apoptosis through DNA damage via cytotoxic agent such as paclitaxel (PAC), inhibition of PARP activity via PARP inhibitor, olaparib (OLA) and inhibiting the activity of FOXM1 proto-oncogenic transcription factor by using RNA interference technology (FOXM1-siRNA) in nanoformulations. Experiments conducted in this investigation include cellular uptake, cytotoxicity and apoptosis study using MDA-MB-231 cells. Results: The present study validates that co-delivery of two drugs (PAC and OLA) along with FOXM1-siRNA by cationic NPs, enhances the therapeutic outcome leading to greater cytotoxicity in TNBC cells. Conclusion: The current investigation focuses on designing a multifunctional drug delivery platform for concurrent delivery of either PAC or PARP inhibitor (olaparib) and FOXM1 siRNA in chitosan-coated poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with the ability to emerge as a front runner therapeutic for TNBC therapy.
Collapse
Affiliation(s)
- Ranjita Misra
- Sathyabama Institute of Science and Technology, Centre for Nanoscience and Nanotechnology, Chennai, India
| | - Bamadeb Patra
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sudha Varadharaj
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Rama Shanker Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
13
|
Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors. Acta Biomater 2020; 103:247-258. [PMID: 31846802 DOI: 10.1016/j.actbio.2019.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
While drug resistance has been recognized as the main cause of unsuccessful chemotherapy, the efficient inhibition of highly drug-resistant tumors still remains a significant challenge, especially for in vivo treatments. Drug resistance has been associated with the high expression of the multi-drug resistance gene 1 (MDR1), which can encode an efflux transporter known as P-glycoprotein (P-gp) that is located in the cellular membrane. Therefore, the combined delivery of MDR1-inhibited genes and chemotherapeutic drugs is anticipated to enable the effective inhibition of drug-resistant tumors. Herein, highly paclitaxel (PTX)-resistant ovarian (OV) cancer with a drug resistance index reaching up to ~ 60 was chosen to evaluate the performance of an efficient gene/drug co-delivery nanocarrier. Inspired by the self-assembly that occurs in cells and exosomes, we designed a biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm to enhance the endocytosis and the efficiency of drug/gene release within the cells. This nanocarrier was fabricated via the frame-guided self-assembly of lipid amphiphiles on the surfaces of redox-cleavable dextran-based nanogels. The anionic MDR1-siRNA and the hydrophobic drug PTX were respectively loaded into the cationic lipid shell and the hydrophobic internal core of the hybrid nanocarriers. MDR1-siRNA can knock down MDR1, promoting the accumulation of PTX in cells, and thus is expected to achieve an efficient inhibitory effect against highly PTX-resistant cancer cells. Both in vitro and in vivo studies revealed that this dual-delivery system significantly enhanced the therapeutic effect in comparison with that provided by a PTX-only system. Thus, the construction of gene/chemo co-delivered lipid/dextran nanocarriers provides a new strategy to inhibit highly drug-resistant tumors both in vitro and in vivo. In addition, this work will contribute toward the development of urgently needed tumor nanotherapy that is able to overcome drug resistance while also offering an unmatched range of effective therapeutic nanocarriers. STATEMENT OF SIGNIFICANCE: The biomimetic lipid/dextran hybrid nanocarrier with a diameter of ~ 100 nm, which was fabricated via the frame-guided self-assembly of lipid amphiphiles onto the surface of redox-cleavable dextran-based nanogels, provides a model carrier to co-deliver MDR1-siRNA and PTX. The MDR1-siRNA/PTX co-loaded biomimetic lipid/dextran hybrid nanocarriers demonstrate good capability in overcoming the PTX-resistance in highly chemo-resistant human ovarian (OV) cancer cells both in vitro and in vivo.
Collapse
|
14
|
Daryabari SS, Fathi M, Mahdavi M, Moaddab Y, Hosseinpour Feizi MA, Shokoohi B, Safaralizadeh R. Overexpression of CFL1 in gastric cancer and the effects of its silencing by siRNA with a nanoparticle delivery system in the gastric cancer cell line. J Cell Physiol 2020; 235:6660-6672. [PMID: 31990066 DOI: 10.1002/jcp.29562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Gastric adenocarcinoma, like other cancers, is a multifactorial genetic disease, and metastasis of cancer cells is one of the main features of this illness. The expression levels of the CFL1 gene have been modulated in this pathway. Using small interfering RNA (siRNA) in the treatment of gastric cancer is considered a hopeful gene therapeutic approach. The present study reported the level of CFL1 genes between tumor and margin and healthy tissue of gastric cancer. Also, the features of a cationic nanoparticle with a polymer coating containing polyacrylic acid and polyethyleneimine that were used in the delivery of CFL1 siRNA, were shown. Then the cytotoxicity, cellular uptake, and gene silencing efficiency of this nanoparticle were evaluated with CFL1siRNA. METHOD In this study, the CFL1 gene expression was measured in 40 gastric adenocarcinoma, marginal and 15 healthy biopsy samples by a real-time polymerase chain reaction. Physicochemical characteristics, apoptosis, and inhibition of migration of the delivery of CFL1 siRNA by nanoparticle and lipofectamine were investigated in gastric cancer cells. RESULT The CFL1 expression was remarkably increased in gastric cancer tissues in comparison with the marginal samples and normal tissues (p < .05) and the biomarker index for CFL1 was obtained as 0.94, then this gene can be probably used as a biomarker for gastric cancer. After treatment of the AGS cell line by CFL1 siRNA, the CFL1 expression level of mRNA and migration in AGS cells were remarkably suppressed after transfection. Furthermore, the amount of apoptosis increased (p < .05). CONCLUSION Our results demonstrated that CFL1 downregulation in AGS cells can interdict cell migration. Finally, our outcomes propose that CFL1 can function as an oncogenic gene in gastric cancer and would be considered as a potential purpose of gene therapy for gastric cancer treatment.
Collapse
Affiliation(s)
| | - Marziyeh Fathi
- Research Center for Pharmaceuticals Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behrouz Shokoohi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
16
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Pradhan J, Mohanty C, Sahoo SK. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life Sci 2018; 216:39-48. [PMID: 30444987 DOI: 10.1016/j.lfs.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
Abstract
AIM This study is aimed to formulate crocetin-loaded lipid Nanoparticles (NPs) and to evaluate its antioxidant properties in a cyclosporine A-mediated toxicity in Human Embryonic Kidney (HEK-293) cells in vitro. MAIN METHODS Crocetin-loaded NPs were prepared followed by physicochemical characterization. In vitro protective efficacy of crocetin and crocetin loaded NPs was investigated in cyclosporine A-mediated toxicity in HEK-293 cells by assessing free radical scavenging, DNA Nicking, cytotoxicity, intracellular Reactive oxygen species (ROS) inhibition, Mitochondrial membrane potential (MMPs) loss and evaluating the activity and expression of antioxidant enzymes and non-enzyme level. Further, we have studied the mechanism of protective activity of crocetin either native or in NPs by studying the expression of phase II detoxifying proteins (HO-1) via Nrf2 mediated regulation. KEY FINDINGS Our results showed that pretreatment with crocetin and crocetin-loaded NPs attenuated the cyclosporine A-mediated toxicity, ROS production and exhibited enhance free radical scavenging ability and cytoprotective activity. Further, the treatment prevented MMPs loss by directly scavenging the ROS and restored the antioxidant enzyme network with normalization of heme oxygenase-1 (HO-1) expression by inhibiting nuclear translocation of Nrf2. SIGNIFICANCE Pretreatment of crocetin and crocetin-loaded NPs provided pronounce protective effect against cyclosporine A-mediated toxicity in HEK-293 cells by nullifying the ROS formation and restored antioxidant network through inhibition of Nrf2 translocation and followed by expression of HO-1. Such an approach may be anticipated to be beneficial for antioxidant therapy.
Collapse
Affiliation(s)
- Jyotsnarani Pradhan
- Institute of Life Sciences, Bhubaneswar, Odisha, India; P.G. Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
18
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
19
|
Borišev I, Mrđanovic J, Petrovic D, Seke M, Jović D, Srđenović B, Latinovic N, Djordjevic A. Nanoformulations of doxorubicin: how far have we come and where do we go from here? NANOTECHNOLOGY 2018; 29:332002. [PMID: 29798934 DOI: 10.1088/1361-6528/aac7dd] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology, focused on discovery and development of new pharmaceutical products is known as nanopharmacology, and one research area this branch is engaged in are nanopharmaceuticals. The importance of being nano has been particularly emphasized in scientific areas dealing with nanomedicine and nanopharmaceuticals. Nanopharmaceuticals, their routes of administration, obstacles and solutions concerning their improved application and enhanced efficacy have been briefly yet comprehensively described. Cancer is one of the leading causes of death worldwide and evergrowing number of scientific research on the topic only confirms that the needs have not been completed yet and that there is a wide platform for improvement. This is undoubtedly true for nanoformulations of an anticancer drug doxorubicin, where various nanocarrriers were given an important role to reduce the drug toxicity, while the efficacy of the drug was supposed to be retained or preferably enhanced. Therefore, we present an interdisciplinary comprehensive overview of interdisciplinary nature on nanopharmaceuticals based on doxorubicin and its nanoformulations with valuable information concerning trends, obstacles and prospective of nanopharmaceuticals development, mode of activity of sole drug doxorubicin and its nanoformulations based on different nanocarriers, their brief descriptions of biological activity through assessing in vitro and in vivo behavior.
Collapse
Affiliation(s)
- Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang J, Du Z, Pan S, Shi M, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21590-21600. [PMID: 29798663 DOI: 10.1021/acsami.8b01806] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The therapeutic efficacy of chemotherapy is dramatically hindered by multidrug resistance (MDR), which is induced by the overexpression of P-glycoprotein (P-gp). The codelivery of an antitumor drug and siRNA is an effective strategy recently applied in overcoming P-gp-related MDR. In this study, a multifunctional drug delivery system with both pH-sensitive feature and active targetability was designed, in which MDR1-siRNA and DOX were successfully loaded. The resulting carrier EphA10 antibody-conjugated pH-sensitive doxorubicin (DOX), MDR1-siRNA coloading lipoplexes (shortened as DOX + siRNA/ePL) with high serum stability had favorable physicochemical properties. DOX + siRNA/ePL exhibited an incremental cellular uptake, enhanced P-gp downregulation efficacy, as well as a better cell cytotoxicity in human breast cancer cell line/adriamycin drug-resistant (MCF-7/ADR) cells. The results of the intracellular colocalization study indicated that DOX + siRNA/ePL possessed the ability for pH-responsive rapid endosomal escape in a time-dependent characteristic. Meanwhile, the in vivo antitumor activities suggested that DOX + siRNA/ePL could prolong the circulation time as well as specifically accumulate in the tumor cells via receptor-mediated endocytosis after intravenous administration into the blood system. The histological study further demonstrated that DOX + siRNA/ePL could inhibit the proliferation, induce apoptosis effect, and downregulate the P-gp expression in vivo. Altogether, DOX + siRNA/ePL was expected to be a suitable codelivery system for overcoming the MDR effect.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Zhouqi Du
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Jie Li
- Mudanjiang Medical University , Tongxiang Street No. 3 , Mudanjiang , Heilongjiang 157011 , PR China
| | - Chunrong Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| |
Collapse
|
21
|
Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother 2018; 102:555-566. [DOI: 10.1016/j.biopha.2018.03.101] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/01/2018] [Accepted: 03/17/2018] [Indexed: 02/06/2023] Open
|
22
|
Zong L, Pi Z, Liu S, Liu Z, Song F. Metabolomics analysis of multidrug-resistant breast cancer cellsin vitrousing methyl-tert-butyl ether method. RSC Adv 2018; 8:15831-15841. [PMID: 35539507 PMCID: PMC9080077 DOI: 10.1039/c7ra12952a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/21/2018] [Indexed: 11/21/2022] Open
Abstract
MTBE-based cellular lipidomics to investigate the mechanisms of multidrug resistance of breast cancer.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| |
Collapse
|
23
|
TAT-conjugated chitosan cationic micelle for nuclear-targeted drug and gene co-delivery. Colloids Surf B Biointerfaces 2017; 162:326-334. [PMID: 29223647 DOI: 10.1016/j.colsurfb.2017.11.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/04/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
We developed a high-efficiency nucleus-targeted co-delivery vector that delivers genes and drugs directly into the nucleus of cancer cells. The system is based on grafted poly-(N-3-carbobenzyloxy-lysine) (CPCL) with transactivator of transcription (TAT)- chitosan on the surface. It is designed to perform highly efficient nucleus- targeted gene and drug co-delivery. Confocal laser scanning microscopy (CLSM) revealed that more TAT-CPCL entered the nucleus than does CPCL alone. The TAT-modified vector serves as a gene and drug co-delivery mechanism to achieve high gene transfection efficiency, high apoptosis and low viability in HeLa cells. TAT-CPCL may become a vector for cancer gene treatment and a template for designing better co-deliver systems.
Collapse
|
24
|
Wang M, Wang J, Li B, Meng L, Tian Z. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review. Colloids Surf B Biointerfaces 2017; 157:297-308. [DOI: 10.1016/j.colsurfb.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
|
25
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:885-898. [PMID: 28826237 DOI: 10.1080/21691401.2017.1366337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) are heterogeneous subpopulation of tumour initiating cells within breast tumours. They are spared even after chemotherapy and responsible for tumour relapse. Targeting BCSCs is, therefore, necessary to achieve radical cure in breast cancer. Despite the availability of agents targeting BCSCs, their clinical application is limited due to their off-target effects and bioavailability issues. Nanotechnology based drug carriers (nanocarriers) offer various advantages to deliver anti-BCSCs agents specifically to their target sites by overcoming their bioavailability issues. In this review, we describe various strategies for targeting BCSCs using nanocarriers.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Praveen T Krishnamurthy
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Pavan Kumar Chintamaneni
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Veera Venkata Satyanarayana Reddy Karri
- b Department of Pharmaceutics , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| |
Collapse
|
26
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
27
|
Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci Rep 2017; 7:5806. [PMID: 28724926 PMCID: PMC5517447 DOI: 10.1038/s41598-017-05296-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/26/2017] [Indexed: 01/22/2023] Open
Abstract
Research on metastasis is gaining momentum for effective cancer management. Berbamine (BBM) has the potency to act as a therapeutic in multiple cancers and cancer metastasis. However, the major limitation of the compound includes poor bioavailability at the tumor site due to short plasma half-life. Here, our major objective involved development of lipid based nanoparticles (NPs) loaded with BBM with an aim to circumvent the above problem. Moreover its, therapeutic potentiality was evaluated through various in vitro cellular studies and in vivo melanoma primary and experimental lung metastatic tumor model in C57BL/6 mice. Results of different cellular experiments demonstrated enhanced therapeutic efficacy of BBM-NPs in inhibiting metastasis, cell proliferation and growth as compared to native BBM in highly metastatic cancer cell lines. Further, in vivo results demonstrated suppression of primary B16F10 melanoma tumor growth in C57BL/6 mice model treated with BBM-NPs than that of native BBM. Importantly, a moderately cytotoxic dose of BBM-NPs was able to significantly suppress the incidence of B16F10 cells lung metastasis in vivo. Results indicated development of an effective approach for aggressive metastatic cancer.
Collapse
|
28
|
Alshaker H, Wang Q, Srivats S, Chao Y, Cooper C, Pchejetski D. New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth. Breast Cancer Res Treat 2017; 165:531-543. [PMID: 28695300 PMCID: PMC5602005 DOI: 10.1007/s10549-017-4380-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Purpose Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. Methods Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. Results We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. Conclusions We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4380-8) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qi Wang
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | - Shyam Srivats
- University of California San Francisco, Health Sciences East 1350, San Francisco, CA, 94143-0130, USA
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK.
| |
Collapse
|
29
|
Liu J, Li J, Liu N, Guo N, Gao C, Hao Y, Chen L, Zhang X. In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells. Int J Pharm 2017; 530:291-299. [PMID: 28619457 DOI: 10.1016/j.ijpharm.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 02/05/2023]
Abstract
The application of RNAi therapeutics is promising in combating several major human diseases including malignant tumors. However, this approach is limited due to its delivery barriers. In this study, we designed a new carrier system loaded with a functional siRNA targeting MDR1 gene to reverse multi-drug resistance (MDR) in human breast cancer MCF-7/ADR cells. Phospholipid-modified PAMAM-siMDR1 complexes were designed on the external decoration of polyamidoamine (PAMAM) with phospholipid (PL) and the electrostatical interaction between PAMAM and siMDR1 to form hybrid nanocomplexes (PL-dendriplexes). Compared with siMDR1 and dendriplexes (PAMAM-siMDR1), this delivery system represented higher gene silencing efficiency, enhanced cellular uptake of siMDR1, decreased p-gp expression, raised cellular accumulation of doxorubicin (DOX) and inhibited the tumor cell migration. Moreover, the siMDR1 loaded PL-dendriplexes worked synergistically with paclitaxel (PTX) for treating MDR, leading to increased cell apoptosis and cell phase regulation. Overall, this study shows that the PL-dendriplexes hold great promise in reversing the drug-resistance in MCF-7/ADR cells.
Collapse
Affiliation(s)
- Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Nan Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Nana Guo
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Chen Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yanli Hao
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- Department of Gynaecology and Obstetrics, PLA Navy General Hospital, Beijing 100037, China
| | - Xiaoning Zhang
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China; School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Abstract
Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy.
Collapse
|
31
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
|
33
|
Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-016-0296-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2016; 7:1658-1670. [PMID: 27642670 DOI: 10.1021/acschemneuro.6b00207] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the most widespread form of dementia where there is an age related degeneration of dopaminergic neurons in the substantia nigra region of the brain. Accumulation of α-synuclein (αS) protein aggregate, mitochondrial dysfunction, oxidative stress, and neuronal cell death are the pathological hallmarks of PD. In this context, amalgamation of curcumin and piperine having profound cognitive properties, and antioxidant activity seems beneficial. However, the blood-brain barrier (BBB) is the major impediment for delivery of neurotherapeutics to the brain. The present study involves formulation of curcumin and piperine coloaded glyceryl monooleate (GMO) nanoparticles coated with various surfactants with a view to enhance the bioavailability of curcumin and penetration of both drugs to the brain tissue crossing the BBB and to enhance the anti-parkinsonism effect of both drugs in a single platform. In vitro results demonstrated augmented inhibition of αS protein into oligomers and fibrils, reduced rotenone induced toxicity, oxidative stress, and apoptosis, and activation of autophagic pathway by dual drug loaded NPs compared to native counterpart. Further, in vivo studies revealed that our formulated dual drug loaded NPs were able to cross BBB, rescued the rotenone induced motor coordination impairment, and restrained dopaminergic neuronal degeneration in a PD mouse model.
Collapse
Affiliation(s)
- Paromita Kundu
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Manasi Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Kalpalata Tripathy
- Department
of Pathology, Shri Ramachandra Bhanj Medical College, Cuttack 753007, India
| | - Sanjeeb K Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| |
Collapse
|
35
|
Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7:245-55. [PMID: 27010986 DOI: 10.4155/tde-2015-0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aberrant gene expression can trigger several vital molecular events that not only result in carcinogenesis but also cause chemoresistance, metastasis and relapse. Gene-based therapies using siRNA/miRNA have been suggested as new treatment method to improve the current regimen. Although these agents can restore the normal molecular cascade thereby resensitizing the cancer cells, delivering a standard regimen (either subsequently or simultaneously) is necessary to achieve the therapeutic benefit. However, co-delivery using a single carrier could give an additional advantage of similar biodistribution profile of the loaded agents. While much research has been carried out in this field in recent years, challenges involved in designing combination formulations including efficient coloading, stability, appropriate biodistribution and target specificity have hampered their clinical translation. This article highlights current aspects of nano-carriers used for co-delivery of small molecules and genes to treat cancer.
Collapse
|
36
|
Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi MS, Samadi N. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 2016; 44:487-496. [DOI: 10.1016/j.biologicals.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
|
37
|
Sun P, Huang W, Jin M, Wang Q, Fan B, Kang L, Gao Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine 2016; 11:4931-4945. [PMID: 27729789 PMCID: PMC5045910 DOI: 10.2147/ijn.s105427] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
38
|
Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L, Pan Z. MiR-122 Reverses the Doxorubicin-Resistance in Hepatocellular Carcinoma Cells through Regulating the Tumor Metabolism. PLoS One 2016; 11:e0152090. [PMID: 27138141 PMCID: PMC4854441 DOI: 10.1371/journal.pone.0152090] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/08/2016] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used anticancer drugs in the treatment of hepatoma. However, acquired drug resistance is one of the major challenges for the chemotherapy. In this study, a down-regulation of miR-122 was observed in doxorubicin-resistant Huh7 (Huh7/R) cells compared with its parental Huh7 cells, suggesting miR-122 is associated with the chemoresistance. Meanwhile, luciferase reporter assay proved that the PKM2 is the target of miR-122, and we reported that the glucose metabolism is significantly up-regulated in Huh7/R cells. Importantly, overexpression of miR-122 in Huh7/R cells reversed the doxorubicin-resistance through the inhibition of PKM2, inducing the apoptosis in doxorubicin-resistant cancer cells. Thus, this study revealed that the dysregulated glucose metabolism contributes to doxorubicin resistance, and the inhibition of glycolysis induced by miR-122 might be a promising therapeutic strategy to overcome doxorubicin resistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chenwei Pan
- Department of Infectious Disease, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- Department of Infectious Disease, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Li
- Department of Infectious Disease, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongping Chen
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingxiang Jin
- Department of Infectious Disease, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (ZP); (LJ)
| | - Zhenzhen Pan
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (ZP); (LJ)
| |
Collapse
|
39
|
Núñez C, Capelo JL, Igrejas G, Alfonso A, Botana LM, Lodeiro C. An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials 2016; 97:34-50. [PMID: 27162073 DOI: 10.1016/j.biomaterials.2016.04.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is generally classified based on the receptors overexpressed on the cell nucleus, which include hormone receptors such as progesterone (PR) and estrogen (ER), and HER2. Triple-negative breast cancer (TNBC) is a type of cancer that lacks any of these three types of receptor proteins (ER/PR/HER2). Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. Generally, drug resistance has a genetic basis that is caused by an abnormal gene expression, nevertheless, there are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints. The use of "combination therapy" is recognized as an efficient solution to treat human diseases, in particular, breast cancer. In this review, we give examples of different nanocarriers used to co-deliver multiple therapeutics (chemotherapeutic agent and nucleic acid) to drug-resistant tumor cells, and lastly, we give our recommendations for the future directions for the co-delivery treatments.
Collapse
Affiliation(s)
- Cristina Núñez
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain; C4O Group, Research Unit UCIBIO-REQUIMTE, 2829-516, Caparica, Portugal.
| | - José Luis Capelo
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | - Gilberto Igrejas
- C4O Group, Research Unit UCIBIO-REQUIMTE, 2829-516, Caparica, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Amparo Alfonso
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Pharmacology Deparment, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal.
| |
Collapse
|
40
|
Jang B, Kwon H, Katila P, Lee SJ, Lee H. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv Drug Deliv Rev 2016; 98:113-33. [PMID: 26654747 DOI: 10.1016/j.addr.2015.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
Cancer causes >8.2 million deaths annually worldwide; thus, various cancer treatments have been investigated over the past decades. Among them, combination drug therapy has become extremely popular, and treatment with more than one drug is often necessary to achieve appropriate anticancer efficacy. With the development of nanoformulations and nanoparticulate-based drug delivery, researchers have explored the feasibility of dual delivery of biological therapeutics to overcome the current drawbacks of cancer therapy. Compared with the conventional single drug therapy, dual delivery of therapeutics has provided various synergistic effects in addition to offering multimodality to cancer treatment. In this review, we highlight and summarize three aspects of dual-delivery systems for cancer therapy. These include (1) overcoming drug resistance by the dual delivery of chemical drugs with biological therapeutics for synergistic therapy, (2) targeted and controlled drug release by the dual delivery of drugs with stimuli-responsive nanomaterials, and (3) multimodal theranostics by the dual delivery of drugs and molecular imaging probes. Furthermore, recent developments, perspectives, and new challenges regarding dual-delivery systems for cancer therapy are discussed.
Collapse
|
41
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
42
|
He H, Tian W, Chen H, Deng Y. MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol Med Rep 2015; 13:1923-9. [PMID: 26718267 DOI: 10.3892/mmr.2015.4727] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are important regulators of multiple cellular processes, and their dysregulation is a common event in tumorigenesis, including the development of hepatocellular carcinoma (HCC). Studies have shown that certain miRNAs are associated with resistance to chemotherapy or drug sensitization; however, the underlying mechanisms have largely remained elusive. Multiple drug resistance is a major barrier for the treatment of advanced HCC. In the present study, miR-101 was observed to be downregulated in a panel of HCC cell lines, suggesting that it has a tumor suppressor role. Furthermore, transfection of miR-101 significantly enhanced the cytotoxicity of doxorubicin to HepG2 cells. While overexpression of miR-101 did not influence the accumulation of doxorubicin, it promoted the apoptosis-inducing effect of doxorubicin in HepG2 cells. A bioinformatics analysis predicted that miR-101 directly targeted the 3'-untranslated region of myeloid cell leukemia 1 (Mcl-1), which was verified by a luciferase reporter assay. Finally, transfection of HepG2 cells with Mcl-1 expression plasmid inhibited apoptosis caused by doxorubicin plus miR-101 expression. In conclusion, the present study showed that miR-101 is a negative regulator of Mcl-1 in HCC, and the combination of miR-101 expression with doxorubicin may represent a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Haifei He
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Tian
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
43
|
Parhi P, Sahoo SK. Trastuzumab guided nanotheranostics: A lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J Colloid Interface Sci 2015; 451:198-211. [DOI: 10.1016/j.jcis.2015.03.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/06/2023]
|
44
|
Kang L, Gao Z, Huang W, Jin M, Wang Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 2015; 5:169-75. [PMID: 26579443 PMCID: PMC4629232 DOI: 10.1016/j.apsb.2015.03.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/17/2014] [Accepted: 01/16/2015] [Indexed: 02/04/2023] Open
Abstract
The efficacy of chemotherapeutic drug in cancer treatment is often hampered by drug resistance of tumor cells, which is usually caused by abnormal gene expression. RNA interference mediated by siRNA and miRNA can selectively knock down the carcinogenic genes by targeting specific mRNAs. Therefore, combining chemotherapeutic drugs with gene agents could be a promising strategy for cancer therapy. Due to poor stability and solubility associated with gene agents and drugs, suitable protective carriers are needed and have been widely researched for the co-delivery. In this review, we summarize the most commonly used nanocarriers for co-delivery of chemotherapeutic drugs and gene agents, as well as the advances in co-delivery systems.
Collapse
Key Words
- ANG-CLP, angiopep-2 modified cationic liposome
- CMC, critical micelle concentration
- CPLA, cationic polylactide
- Chemotherapeutic drug
- Co-delivery
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- Dendrimer
- FA, folic acid
- FCAP, ferrocenium capped amphiphilic pillar[5]arene
- GSH, glutathione
- Gene
- Liposome
- Micelle
- Nanocarrier
- OEI, oligoethylenimine
- PAMAM, poly(amido amine)
- PAsp(AED), poly(N-(2,2ʹ-dithiobis(ethylamine))aspartamide)
- PCL, poly(ε-caprolactone)
- PDMAEMA, polydimethylaminoethyl methacrylate
- PDPA, poly(2-(diisopropyl amino)ethyl methacrylate)
- PEG, polyethyleneglycol
- PEI, poly(ethyleneimine)
- PEI-Fc, ferrocene modified poly(ethyleneimine)
- PEI-PCHLG, poly(ethylene imine)-poly(γ-cholesterol-l-glutamate)
- PEI-PCL, poly(ethyleneimine) and poly(ε-caprolactone)
- PLA, polylactic acid (or polylactide)
- PLGA, poly(lactic-co-glycolic acid)
- PPEEA, poly(2-aminoethyl ethylene phosphate)
- PnBA, poly(n-butyl acrylate)
- RNAi, RNA interference
- SNPs, supramolecular nanoparticles
- SSTRs, somatostatin receptors poly(N-(2,2′-dithiobis(ethylamine))aspartamide)
- Supramolecular system
- miRNA, micro-RNA
- siRNA, small interfering RNA
- siVEGF, VEGF-targeted siRNA
- γ-CD, γ-cyclodextrin
Collapse
|
45
|
Lale SV, Kumar A, Naz F, Bharti AC, Koul V. Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polym Chem 2015. [DOI: 10.1039/c4py01698j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Folic acid and trastuzumab functionalized pH responsive polymeric nanoparticles for intracellular doxorubicin delivery in breast cancer.
Collapse
Affiliation(s)
- Shantanu V. Lale
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| | - Arun Kumar
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| | - Farhat Naz
- Department of Pathology
- All India Institute of Medical Sciences
- New Delhi 110029
- India
| | - Alok C. Bharti
- Division of Molecular Oncology
- Institute of Cytology and Preventive Oncology
- Noida 201301
- India
| | - Veena Koul
- Centre for Biomedical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110016
- India
- Biomedical Engineering Unit
| |
Collapse
|