1
|
Iyer J, Morgan LM, Harrison P, Davis A, Ray A, Mitsche S, Hofer F, Saraf I, Paudel A. Applying Material Science Principles to Chemical Stability: Modelling Solid State Autoxidation in Mifepristone Containing Different Degrees of Crystal Disorder. J Pharm Sci 2023; 112:2463-2482. [PMID: 37031865 DOI: 10.1016/j.xphs.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Ball-milling and harsh manufacturing processes often generate crystal disorder which have practical implications on the physical and chemical stabilities of solid drugs during subsequent storage, transport, and handling. The impact of the physical state of solid drugs, containing different degrees/levels of crystal disorder, on their autoxidative stability under storage has not been widely investigated. This study investigates the impact of differing degrees of crystal disorder on the autoxidation of Mifepristone (MFP) to develop a predictive (semi-empirical) stability model. Crystalline MFP was subjected to different durations of ambient ball milling, and the resulting disorder/ amorphous content was quantified using a partial least square (PLS) regression model based on Raman spectroscopy data. Samples of MFP milled to generate varying levels of disorder were subjected to a range of (accelerated) stability conditions, and periodically sampled to examine their recrystallization and degradation extents. Crystallinity was monitored by Raman spectroscopy, and the degradation was evaluated by liquid chromatography. The analyses of milled samples demonstrated a competition between recrystallization and degradation via autoxidation of MFP, to different extents depending on stability conditions/exposure time. The degradation kinetics were analyzed by accounting for the preceding amorphous content, and fitted with a diffusion model. An extended Arrhenius equation was used to predict the degradation of stored samples under long-term (25°C/60% RH) and accelerated (40°C/75% RH, 50°C/75% RH) stability conditions. This study highlights the utility of such a predictive stability model for identifying the autoxidative instability in non-crystalline/partially crystalline MFP, owing to the degradation of the amorphous phases. This study is particularly useful for identifying drug-product instability by leveraging the concept of material sciences.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Lucy M Morgan
- Pfizer Worldwide Research, Development and Medical, Sandwich, Kent, CT13 9NJ, UK
| | - Pamela Harrison
- Oral Product Development, Pharmaceutical Technology and Development, operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Adrian Davis
- Pfizer Worldwide Research, Development and Medical, Sandwich, Kent, CT13 9NJ, UK
| | - Andrew Ray
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
| | - Stefan Mitsche
- FELMI ZFE-Austrian Center for Electron Microscopy and Nanoanalysis Graz University of Technology, Graz 8010, Austria
| | - Ferdinand Hofer
- FELMI ZFE-Austrian Center for Electron Microscopy and Nanoanalysis Graz University of Technology, Graz 8010, Austria
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz 8010, Austria.
| |
Collapse
|
2
|
Shalaev E, Ohtake S, Moussa EM, Searles J, Nail S, Roberts CJ. Accelerated Storage for Shelf-Life Prediction of Lyophiles: Temperature Dependence of Degradation of Amorphous Small Molecular Weight Drugs and Proteins. J Pharm Sci 2023; 112:1509-1522. [PMID: 36796635 DOI: 10.1016/j.xphs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Prediction of lyophilized product shelf-life using accelerated stability data requires understanding the temperature dependence of the degradation rate. Despite the abundance of published studies on stability of freeze-dried formulations and other amorphous materials, there are no definitive conclusions on the type of pattern one can expect for the temperature dependence of degradation. This lack of consensus represents a significant gap which may impact development and regulatory acceptance of freeze-dried pharmaceuticals and biopharmaceuticals. Review of the literature demonstrates that the temperature dependence of degradation rate constants in lyophiles can be represented by the Arrhenius equation in most cases. In some instances there is a break in the Arrhenius plot around the glass transition temperature or a related characteristic temperature. The majority of the activation energies (Ea), which are reported for various degradation pathways in lyophiles, falls in the range of 8 to 25 kcal/mol. The degradation Ea values for lyophiles are compared with the Ea for relaxation processes and diffusion in glasses, as wells as solution chemical reactions. Collectively, analysis of the literature demonstrates that the Arrhenius equation represents a reasonable empirical tool for analysis, presentation, and extrapolation of stability data for lyophiles, provided that specific conditions are met.
Collapse
Affiliation(s)
| | - Satoshi Ohtake
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie, North Chicago, IL, USA
| | - Jim Searles
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | | | - Christopher J Roberts
- University of Delaware, Department of Chemical & Biomolecular Engineering, Newark DE 19713 USA
| |
Collapse
|
3
|
Tamura K, Ono M, Kawabe T, Yonemochi E. Impact of Magnesium Stearate Content: Modeling of Drug Degradation Using a Modified Arrhenius Equation. Chem Pharm Bull (Tokyo) 2020; 68:1049-1054. [PMID: 33132371 DOI: 10.1248/cpb.c20-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To accelerate drug development, the pharmaceutical industry is working to shorten and improve studies on stability. The Accelerated Stability Assessment Program (ASAP) incorporating the humidity-corrected Arrhenius equation as an accelerated methodology has been proposed for both drug substances and drug products. In this study, the effect of magnesium stearate (MgSt) content on the chemical stability of acetylsalicylic acid was evaluated as a model system of drug-excipient compatibility studies using ASAP. In the acetylsalicylic acid powder blends, temperature and humidity showed a first-order linear response to the natural logarithm of the reaction rate constant, and MgSt content also showed a first-order linear response. A polynomial model was built in which temperature, humidity, and MgSt content were independent each other. The fitting index of the model, the coefficient of determination, was 0.9567, which was a good fit. In the long-term stability study (25 °C/60% relative humidity, 6 months), there was good agreement in total between measured values and model-predicted values. Using this model, we inferred that the degradation rates were depended on MgSt content at the fixed temperature and humidity because the micro-environmental pH of the excipient was catalytically affected. Applying this model equation can significantly reduce the duration of formulation design and stability studies and save time and costs in drug development.
Collapse
Affiliation(s)
- Kousuke Tamura
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Makoto Ono
- Quality Assurance Department, Daiichi Sankyo Co., Ltd
| | - Takefumi Kawabe
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd
| | - Etsuo Yonemochi
- Graduate School of Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
4
|
Zhang X, Rao Q, Qiu Z, Lin Y, Zhang L, Hu Q, Chen T, Ma Z, Gao H, Luo D, Zhao J, Ouyang D, Zhang ZJ, Li Q. Using Acetone/Water Binary Solvent to Enhance the Stability and Bioavailability of Spray Dried Enzalutamide/HPMC-AS Solid Dispersions. J Pharm Sci 2020; 110:1160-1171. [PMID: 33049259 DOI: 10.1016/j.xphs.2020.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
We demonstrated a facile approach, by adjusting the solvent ratio of water/acetone binary mixture, to alter the intermolecular interactions between Enzalutamide (ENZ) and hydroxypropyl methylcellulose acetate succinate (HPMC-AS) for spray drying process, which can be readily implemented to produce spray-dried dispersions (SDD) with enhanced stability and bioavailability. The prepared SDD of ENZ/HPMC-AS were examined systematically in terms of particle size, morphology, dissolution, solubility, stability, and bioavailability. Our results show that the introduction of water (up to 30% volume fraction) can effectively reduce the hydrodynamic diameter of HPMC-AS from approximately 220 nm to 160 nm (a reduction of c.a. 20%), which increases the miscibility of the drug and polymer, delaying or inhibiting the crystallization of ENZ during the spray drying process, resulting in a homogeneous amorphous phase. The benefits of using acetone/water binary mixture were subsequently evidenced by an increased specific surface area, improved dissolution profile and relative bioavailability, enhanced stability, and elevated drug release rate. This fundamental finding underpins the great potential of using binary mixture for spray drying process to process active pharmaceutical ingredients (APIs) that are otherwise challenging to handle.
Collapse
Affiliation(s)
- Xiaoting Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Qiuhong Rao
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Yisheng Lin
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Qingzhong Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Tingting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhimin Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Hanlu Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, P.R. China
| | - Dandong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Jiaqi Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, P.R. China.
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China.
| |
Collapse
|
5
|
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2017; 269:110-127. [PMID: 29117503 DOI: 10.1016/j.jconrel.2017.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
Poorly water-soluble drugs are a significant and ongoing issue for the pharmaceutical industry. An overview of recent developments for the preparation of spray-dried delivery systems is presented. Examples include amorphous solid dispersions, spray dried dispersions, microparticles, nanoparticles, surfactant systems and self-emulsifying drug delivery systems. Several aspects of formulation are considered, such as pre-screening, choosing excipient(s), the effect of polymer structure on performance, formulation optimisation, ternary dispersions, fixed-dose combinations, solvent selection and component miscibility. Process optimisation techniques including nozzle selection are discussed. Comparisons are drawn with other preparation techniques such as hot melt extrusion, freeze drying, milling, electro spinning and film casting. Novel analytical and dissolution techniques for the characterization of amorphous solid dispersions are included. Progress in understanding of amorphous supersaturation or recrystallisation from solution gathered from mechanistic studies is discussed. Aspects of powder flow and compression are considered in a section on downstream processing. Overall, spray drying has a bright future due to its versatility, efficiency and the driving force of poorly soluble drugs.
Collapse
Affiliation(s)
- Mark Davis
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Gavin Walker
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Gamble JF, Terada M, Holzner C, Lavery L, Nicholson SJ, Timmins P, Tobyn M. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles. Int J Pharm 2016; 510:1-8. [DOI: 10.1016/j.ijpharm.2016.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
|
7
|
Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 2016; 100:27-50. [PMID: 26705850 DOI: 10.1016/j.addr.2015.12.010] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023]
Abstract
Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.
Collapse
|
8
|
Naveršnik K, Jurečič R. Humidity-corrected Arrhenius equation: The reference condition approach. Int J Pharm 2016; 500:360-5. [PMID: 26802498 DOI: 10.1016/j.ijpharm.2016.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements.
Collapse
Affiliation(s)
- Klemen Naveršnik
- SDC Slovenia, Lek Pharmaceuticals d.d., Verovškova 57, SI-1529 Ljubljana, Slovenia.
| | - Rok Jurečič
- SDC Slovenia, Lek Pharmaceuticals d.d., Verovškova 57, SI-1529 Ljubljana, Slovenia
| |
Collapse
|