1
|
Shu H, Ren ZJ, Li H, Zhang Y, Yin C, Nie F. Ultrasound-mediated nanobubbles loaded with STAT6 siRNA inhibit TGF-β1-EMT axis in LUSC cells via overcoming the polarization of M2-TAMs. Eur J Pharm Sci 2024; 202:106894. [PMID: 39245357 DOI: 10.1016/j.ejps.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
M2-like tumor-associated macrophages (M2-TAMs) are closely correlated with metastasis and poor clinical outcomes in lung squamous cell carcinoma (LUSC). Previous studies have demonstrated that STAT6 is an important signaling molecule involved in the polarization of M2-TAMs, EMT is the main way for TAMs to promote tumor progression. However, little attention has been paid to the effect of STAT6 inhibition on LUSC, and it is difficult to achieve an ideal gene silencing effect in immune cells using traditional gene transfection methods. Here, we investigated the optimal concentration of 12-myristic 13-acetate (PMA), lipopolysaccharide (LPS) for the induction of THP-1 into M1-TAMs and M2-TAMs. The expression of pSTAT6 and STAT6 was confirmed in three types of macrophages, and it was demonstrated that pSTAT6 can be used as a specific target of M2-TAMs derived from THP-1. Ultrasound-mediated nanobubble destruction (UMND) is a non-invasive and safe gene delivery technology. We also synthesized PLGA-PEI nanobubbles (NBs) to load and deliver STAT6 small interfering RNA (siRNA) into M2-TAMs via UMND. The results show that the NBs could effectively load with siRNA and had good biocompatibility. We found that UMND enhanced the transfection efficiency of siRNA, as well as the silencing effect of pSTAT6 and the inhibition of M2-TAMs. Simultaneously, when STAT6 siRNA entered M2-TAMs by UMND, proliferation, migration, invasion and EMT in LUSC cells could be inhibited via the transforming growth factor-β1 (TGF-β1) pathway. Therefore, our results confirm that UMND is an ideal siRNA delivery strategy, revealing its potential to inhibit M2-TAMs polarization and ultimately treat LUSC.
Collapse
Affiliation(s)
- Hong Shu
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Department of respiratory medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Emergency department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ci Yin
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
3
|
Gonzalez-Melero L, Santos-Vizcaino E, Varela-Calvino R, Gomez-Tourino I, Asumendi A, Boyano MD, Igartua M, Hernandez RM. PLGA-PEI nanoparticle covered with poly(I:C) for personalised cancer immunotherapy. Drug Deliv Transl Res 2024; 14:2788-2803. [PMID: 38427275 PMCID: PMC11525302 DOI: 10.1007/s13346-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.
Collapse
Affiliation(s)
- Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Ruben Varela-Calvino
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Maria Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Sun H, Luo W, Huang X. Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method. Curr Pharm Biotechnol 2024; 25:1807-1817. [PMID: 38178679 DOI: 10.2174/0113892010261032231214115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024]
Abstract
Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.
Collapse
Affiliation(s)
- Huayan Sun
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Weiwei Luo
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Xiaowu Huang
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
5
|
Shu H, Lv W, Ren ZJ, Li H, Dong T, Zhang Y, Nie F. Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes. Curr Drug Deliv 2024; 21:1114-1127. [PMID: 37491853 DOI: 10.2174/1567201820666230724151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development. OBJECTIVE In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro. METHODS PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells. RESULTS PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells. CONCLUSION UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.
Collapse
Affiliation(s)
- Hong Shu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenhao Lv
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Hasan MW, Ehsan M, Wang Q, Haseeb M, Lakho SA, Haider A, Lu M, Xu L, Song X, Yan R, Li X. PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model. Vaccines (Basel) 2023; 11:1794. [PMID: 38140198 PMCID: PMC10748113 DOI: 10.3390/vaccines11121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within biodegradable poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The development of this nanovaccine involved the formulation of PLGA NPs using a modified double emulsion solvent evaporation technique. Scanning electron microscopy (SEM)verified the successful encapsulation of rHcES-15 within PLGA NPs, exhibiting a size range of 350-400 nm. The encapsulation efficiency (EE) of the antigen in the nanovaccine was determined to be 72%. A total of forty experimental mice were allocated into five groups, with the nanovaccine administered on day 0 and the mice euthanized at the end of the 14-day trial. The stimulation index (SI) from the mice subjected to the nanovaccine indicated heightened lymphocyte proliferation (*** p < 0.001) and a noteworthy increase in anti-inflammatory cytokines (IL-4, IL-10, and IL-17). Additionally, the percentages of T-cells (CD4+, CD8+) and dendritic cell phenotypes (CD83+, CD86+) were significantly elevated (** p < 0.01, *** p < 0.001) in mice inoculated with the nanovaccine compared to control groups and the rHcES-15 group. Correspondingly, higher levels of antigen-specific serum immunoglobulins (IgG1, IgG2a, IgM) were observed in response to the nanovaccine in comparison to both the antigenic (rHcES-15) and control groups (* p < 0.05, ** p < 0.01). In conclusion, the data strongly supports the proposal that the encapsulation of rHcES-15 within PLGA NPs effectively triggers immune cells in vivo, ultimately enhancing the antigen-specific adaptive immune responses against H. contortus. This finding underscores the promising potential of the nanovaccine, justifying further investigations to definitively ascertain its efficacy.
Collapse
Affiliation(s)
- Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Qiangqiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Ali Haider
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.E.); (Q.W.); (M.H.); (S.A.L.); (A.H.); (M.L.); (L.X.); (X.S.)
| |
Collapse
|
7
|
Zhang Y, Zhu T, Xu S, Gu P, Cai G, Peng S, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Cationic Nanoparticle-Stabilized Vaccine Delivery System for the H9N2 Vaccine to Promote Immune Response in Chickens. Mol Pharm 2023; 20:1613-1623. [PMID: 36795759 DOI: 10.1021/acs.molpharmaceut.2c00805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tianyu Zhu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuwen Xu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Pengfei Gu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Gaofeng Cai
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Song Peng
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhenguang Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Yang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuanliang Hu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiaguo Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Deyun Wang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing, Jiangsu 210095, P. R. China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
8
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Insights into PLGA-Encapsulated Epigallocatechin 3-Gallate nanoparticles as a new potential biomedical system: a computational and experimental approach. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Vaccines platforms and COVID-19: what you need to know. Trop Dis Travel Med Vaccines 2022; 8:20. [PMID: 35965345 PMCID: PMC9537331 DOI: 10.1186/s40794-022-00176-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The novel SARS-CoV-2, responsible for the COVID-19 pandemic, is the third zoonotic coronavirus since the beginning of the 21 first century, and it has taken more than 6 million human lives because of the lack of immunity causing global economic losses. Consequently, developing a vaccine against the virus represents the fastest way to finish the threat and regain some "normality." OBJECTIVE Here, we provide information about the main features of the most important vaccine platforms, some of them already approved, to clear common doubts fostered by widespread misinformation and to reassure the public of the safety of the vaccination process and the different alternatives presented. METHODS Articles published in open access databases until January 2022 were identified using the search terms "SARS-CoV-2," "COVID-19," "Coronavirus," "COVID-19 Vaccines," "Pandemic," COVID-19, and LMICs or their combinations. DISCUSSION Traditional first-generation vaccine platforms, such as whole virus vaccines (live attenuated and inactivated virus vaccines), as well as second-generation vaccines, like protein-based vaccines (subunit and viral vector vaccines), and third-generation vaccines, such as nanoparticle and genetic vaccines (mRNA vaccines), are described. CONCLUSIONS SARS-CoV-2 sequence information obtained in a record time provided the basis for the fast development of a COVID-19 vaccine. The adaptability characteristic of the new generation of vaccines is changing our capability to react to emerging threats to future pandemics. Nevertheless, the slow and unfair distribution of vaccines to low- and middle-income countries and the spread of misinformation are a menace to global health since the unvaccinated will increase the chances for resurgences and the surge of new variants that can escape the current vaccines.
Collapse
|
12
|
Wusiman A, Li J, Abulikemu X, Pengfei G, Mai Z, Jiang W, Liu Z, Wang D, Abula S, Guo Q. Polyethyleneimine modified Pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. Int J Pharm 2022; 619:121713. [DOI: 10.1016/j.ijpharm.2022.121713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/28/2023]
|
13
|
Alhagi honey polysaccharides encapsulated into PLGA nanoparticle-based pickering emulsion as a novel adjuvant to induce strong and long-lasting immune responses. Int J Biol Macromol 2022; 202:130-140. [PMID: 35032492 DOI: 10.1016/j.ijbiomac.2022.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
Alhagi honey polysaccharides, extracted from a perennial plant Alhagi pseudalhagi syn, possessed many biological activities such as immune enhancement, anti-tumor effect, and antioxygenation. In this study, we used Alhagi honey polysaccharide encapsulated (poly lactic-co-glycolic acid) (PLGA) nanoparticles to prepare an assembled particles-oil pickering emulsion: PPAS and PEI-PPAS. We investigated the characterization of two pickering emulsions, and the possible mechanism to enhance immune responses. The results showed that PPAS and PEI-PPAS both could load high adsorption of OVA and had ability to sustained controlled release OVA. In vivo experiment, PEI-PPAS/OVA enhanced the levels of IgG and cytokines. Meanwhile, it could effectively target dendritic cells (DCs), promoted the cellular uptake of OVA then activated DCs in lymph nodes. And this effect of PEI-PPAS might be induced through the MHC II and MHC I pathway in DCs. Thus, these findings demonstrated that PEI-PPAS could induce a strong and long-term cellular and humoral immune response, and have potential to applied to vaccine adjuvant delivery system.
Collapse
|
14
|
Du X, Tan D, Gong Y, Zhang Y, Han J, Lv W, Xie T, He P, Hou Z, Xu K, Tan J, Zhu B. A new poly(I:C)-decorated PLGA-PEG nanoparticle promotes Mycobacterium tuberculosis fusion protein to induce comprehensive immune responses in mice intranasally. Microb Pathog 2021; 162:105335. [PMID: 34861347 DOI: 10.1016/j.micpath.2021.105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Protein-based subunit vaccine against tuberculosis (TB) is regarded as safer but with lower immunogenicity. To investigate effective adjuvant to improve the immunogenicity of TB subunit vaccine, we modified ploy(I:C) onto PLGA-PEG copolymer nanoparticle with polydopamine to produce a new nanoparticle adjuvant named "PLGA-PEG-poly(I:C)" (NP). M. tuberculosis fusion proteins Mtb10.4-HspX and ESAT-6-Rv2626c (M4) were encapsulated in the nanoparticles to produce the NP/M4 subunit vaccine. The PLGA-PEG/M4 nanoparticle was 200.21 ± 1.07 nm in diameter, and the polydispersity index (PDI) was 0.127 ± 0.02. Following modification with poly(I:C) by polydopamine, the NP/M4 was administered to C57BL/6 female mice intranasally and the immune responses were evaluated. The NP/M4 significantly induced antigen-specific CD4+ T cells proliferation, IL-2 and IFN-γ production. In addition, the NP/M4 could promote the production of antigen-specific IgG, IgG1, IgG2c in serum, and sIgA in lung washings. Overall, our results indicated that the NP would be a potential TB subunit vaccine adjuvant with the ability to induce strong Th1-type cell-mediated immunity and humoral immune responses.
Collapse
Affiliation(s)
- Xiufen Du
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zongjie Hou
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kun Xu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiying Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Acanthopanax senticosus polysaccharide-loaded calcium carbonate nanoparticle as an adjuvant to enhance porcine parvovirus vaccine immune responses. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Biomed Pharmacother 2021; 142:111962. [PMID: 34358752 DOI: 10.1016/j.biopha.2021.111962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoparticle-based cancer immunotherapy is considered a novel and promising therapeutic strategy aimed at stimulating host immune responses against tumors. To this end, in the present study, mannan-decorated polylactic-co-glycolic acid (PLGA) nanoparticles containing tumor cell lysate (TCL) and poly riboinosinic polycytidylic acid (poly I:C) were used as antigen delivery systems to immunize breast tumor-bearing Balb/c mice. PLGA nanoparticles were fabricated employing a double emulsion solvent evaporation method. The formation of spherical and uniform nanoparticles (NPs) ranging 150-250 nm was detected by field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS). Four nanoformulation were used to treat mice and vaccination-induced immunological responses. Tumor regression and overall survival rate were evaluated in four experimental groups. Tumor cell lysate and poly I:C loaded mannan-decorated nanoparticles (TCL-Poly I:C) NP-MN caused a significant decrease in tumor growth and 2- to 3-fold improvement in survival times of the treated mice. The NPs with or without mannan decoration elicited stronger responses in terms of lymphocyte proliferation, delayed-type hypersensitivity and CD107a expression. Moreover, our data indicated that the production of IFN-γ and IL-2 increased while the production of IL-4 and IL-10 decreased in splenocytes culture supernatants. In the pathological evaluations, we found that necrosis and immune cells infiltration rate in the tumor tissue of the treated mice was elevated, while tumor cellularity and lung metastases significantly decreased in particular in the group that received (TCL-Poly I:C) NP-MN. Altogether, our findings suggested that the mannan-decorated PLGA NPs antigen delivery system had significant anti-tumor effects against the murine model of breast cancer and it could be considered as a step forward to human breast cancer immunotherapy.
Collapse
|
17
|
Gao J, Liu J, Meng Z, Li Y, Hong Y, Wang L, He L, Hu B, Zheng Y, Li T, Cui D, Shen E. Ultrasound-assisted C 3F 8-filled PLGA nanobubbles for enhanced FGF21 delivery and improved prophylactic treatment of diabetic cardiomyopathy. Acta Biomater 2021; 130:395-408. [PMID: 34129954 DOI: 10.1016/j.actbio.2021.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks specific treatment. Fibroblast growth factor 21 (FGF21) has been proved to have cardioprotective effect in DCM. However, the insufficient cardiac delivery effect of FGF21 limits its application in DCM. Therefore, to improve the therapeutic efficacy of FGF21 in DCM, an effective drug delivery system is urgently required. In this study, perfluoropropane (C3F8) and polyethylenimine (PEI)-doped poly (lactic-co-glycolic acid) (PLGA) nanobubbles (CPPNBs) were synthesized via double-emulsion evaporation and FGF21 was efficiently absorbed (CPPNBs@FGF21) via the electrostatic incorporation effect. CPPNBs@FGF21 could effectively deliver FGF21 to the myocardial tissue through the cavitation effect under low-frequency ultrasound (LFUS). The as-prepared CPPNBs@FGF21 could efficiently load FGF21 after doping with the cationic polymer PEI, and displayed uniform dispersion and favorable biosafety. After filling with C3F8, CPPNBs@FGF21 could be used for distribution monitoring through ultrasound imaging. Moreover, CPPNBs@FGF21 significantly downregulated the expression of ANP, CTGF, and caspase-3 mRNA via the action of LFUS owing to increased FGF21 release, therefore exhibiting enhanced inhibition of myocardial hypertrophy, apoptosis, and interstitial fibrosis in DCM mice. In conclusion, we established an effective protein delivery nanocarrier for the diagnosis and prophylactic treatment of DCM. STATEMENT OF SIGNIFICANCE: Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks effective clinical treatments. Fibroblast growth factor 21 (FGF21) can protect cardiomyocytes from diabetic damage, but insufficient cardiac drug delivery limits the application of FGF21 in DCM. In this study, perfluoropropane (C3F8) and polyethylenimine (PEI)-doped poly (lactic-co-glycolic acid) (PLGA) nanobubbles loaded with FGF21 (CPPNBs@FGF21) were developed for the prophylactic treatment of DCM. CPPNBs@FGF21 could effectively deliver the FGF21 to the myocardial tissue through the cavitation effect of low-frequency ultrasound (LFUS). Our results indicated that CPPNBs@FGF21 combined with LFUS could significantly down-regulate the expressions of ANP, CTGF, and caspase-3 mRNA, and as a result, it prevented the myocardial hypertrophy, apoptosis, and interstitial fibrosis of DCM mice. Overall, we established an effective protein delivery nanocarrier for the diagnosis and prophylactic treatment of DCM.
Collapse
Affiliation(s)
- Jiameng Gao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China.; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jingjing Liu
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Zheying Meng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Yanming Li
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Yuping Hong
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Lirui Wang
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Lan He
- Department of Ultrasound in Medicine, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, PR China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China.; Department of Ultrasound in Medicine, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, PR China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Tianliang Li
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Daxiang Cui
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China.; Department of Ultrasound in Medicine, Shanghai Eighth People's Hospital, 8 Caobao Road, Shanghai 200235, PR China.
| |
Collapse
|
18
|
Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021; 9:644827. [PMID: 34055735 PMCID: PMC8161503 DOI: 10.3389/fchem.2021.644827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a spectrum of neglected tropical diseases and its cutaneous form (CL) is characterized by papillary or ulcerated skin lesions that negatively impact patients' quality of life. Current CL treatments suffer limitations, such as severe side effects and high cost, making the search for new therapeutic alternatives an imperative. In this context, heat shock protein 90 (Hsp90) could present a novel therapeutic target, as evidence suggests that Hsp90 inhibitors, such as 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin (17-DMAG), may represent promising chemotherapeutic agents against CL. As innovative input for formulation development of 17-DMAG, nano-based drug delivery systems could provide controlled release, targeting properties, and reduced drug toxicity. In this work, a double emulsion method was used to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing 17-DMAG. The nanoparticle was developed using two distinct protocols: Protocol 1 (P1) and Protocol 2 (P2), which differed concerning the organic solvent (acetone or dichloromethane, respectively) and procedure used to form double-emulsions (Ultra-Turrax® homogenization or sonication, respectively). The nanoparticles produced by P2 were comparatively smaller (305.5 vs. 489.0 nm) and more homogeneous polydispersion index (PdI) (0.129 vs. 0.33) than the ones made by P1. Afterward, the P2 was optimized and the best composition consisted of 2 mg of 17-DMAG, 100 mg of PLGA, 5% of polyethylene glycol (PEG 8000), 1.5 mL of the internal aqueous phase, 1% of polyvinyl alcohol (PVA), and 4 mL of the organic phase. Optimized P2 nanoparticles had a particle size of 297.2 nm (288.6-304.1) and encapsulation efficacy of 19.35% (15.42-42.18) by the supernatant method and 31.60% (19.9-48.79) by the filter/column method. Release kinetics performed at 37°C indicated that ~16% of the encapsulated 17-DMAG was released about to 72 h. In a separate set of experiments, a cell uptake assay employing confocal fluorescence microscopy revealed the internalization by macrophages of P2-optimized rhodamine B labeled nanoparticles at 30 min, 1, 2, 4, 6, 24, 48, and 72 h. Collectively, our results indicate the superior performance of P2 concerning the parameters used to assess nanoparticle development. Therefore, these findings warrant further research to evaluate optimized 17-DMAG-loaded nanoparticles (NP2-17-DMAG) for toxicity and antileishmanial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Beatriz F. C. Patricio
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinícius C. Pires
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marina F. Amorim
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Alan G. S. F. Pinho
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Helenita C. Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Diana A. S. Dantas
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marcelo H. C. Chaves
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio R. Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil
| | - Helvécio V. A. Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| |
Collapse
|
19
|
Wang Q, Sun X, Huang X, Huang J, Hasan MW, Yan R, Xu L, Song X, Li X. Nanoparticles of Chitosan/Poly(D,L-Lactide-Co-Glycolide) Enhanced the Immune Responses of Haemonchus contortus HCA59 Antigen in Model Mice. Int J Nanomedicine 2021; 16:3125-3139. [PMID: 33981142 PMCID: PMC8107376 DOI: 10.2147/ijn.s301851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma-associated antigen 59 (HCA59) from excretory/secretory products of Haemonchus contortus is known to have the ability to modulate the functions of host cells. However, its immunogenicities using different nanoparticles adjuvants remain poorly understood. Purpose The study aimed to select an efficient nanoparticle antigen delivery system, which could enhance the immune responses of Haemonchus contortus HCA59 in mice. Methods Here, the immune responses induced by the recombinant protein of HCA59 (rHCA59) with poly-D,L-lactide-co-glycolide (PLGA) nanoparticles, Chitosan nanoparticles, mixture of PLGA and Chitosan nanoparticles (rHCA59-Chitosan-PLGA), and Freund’s complete adjuvant were observed, respectively, in mice. Cytokine and antibody levels induced by different groups were detected by ELISA assay. The effects of lymphocyte proliferations on different groups were examined using CCK-8 kit. Phenotypes of T cells and dendritic cells were analyzed by flow cytometry. Results On day 14 post vaccination, levels of IgM, IgG1, IgG2a, IFN-γ, IL-4, and IL-17 were significantly increased in the groups immunized with rHCA59 encapsulated with nanoparticles. After mice were vaccinated with rHCA59 loaded with Chitosan/PLGA nanoparticles, lymphocytes proliferated significantly. Additionally, the percentages of CD4+ T cells (CD3+ CD4+), CD8+ T cells (CD3+ CD8+), and dendritic cells (CD11c+ CD83+, CD11c+ CD86+) were obviously up-regulated in the mice immunized with nanoparticles, especially in the rHCA59-Chitosan-PLGA antigen delivery system group. Conclusion The findings of this research demonstrated that rHCA59-Chitosan-PLGA antigen delivery system could induce higher immune responses in mice model and indicated that rHCA59 might be a good candidate molecule to develop nanovaccines against Haemonchus contortus in future study.
Collapse
Affiliation(s)
- Qiangqiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoke Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Hasan MW, Haseeb M, Ehsan M, Gadahi JA, Naqvi MAUH, Wang QQ, Liu X, Lakho SA, Yan R, Xu L, Song X, Li X. Nanoparticles (PLGA and Chitosan)-Entrapped ADP-Ribosylation Factor 1 of Haemonchus contortus Enhances the Immune Responses in ICR Mice. Vaccines (Basel) 2020; 8:E726. [PMID: 33276581 PMCID: PMC7761582 DOI: 10.3390/vaccines8040726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
ADP-ribosylation factor 1 (HcARF1) is one of the Haemonchus contortus (H. contortus) excretory/secretory proteins involved in modulating the immune response of goat peripheral blood mononuclear cells (PBMC). Here, we evaluated the immunogenic potential of recombinant HcARF1 (rHcARF1) against H. contortus infection in Institute of Cancer Research (ICR) mice. Briefly, rHcARF1 was entrapped in poly (D, L-lactide-co-glycolide) (PLGA) and chitosan (CS) nanoparticles (NP) and injected into mice as a vaccine. Fifty-six ICR mice were assigned randomly into seven groups, with eight animals in each group, and they were vaccinated subcutaneously. At the end of the experiment (14th day), the blood and the spleen were collected from euthanized mice to detect lymphocyte proliferation, cytokine analysis, and the production of antigen-specific antibodies. Scanning electron microscope was used to determine the size, morphology, and zeta potential of nanoparticles. Flow cytometry was performed, which presented the increase percentages of CD4+ T cells (CD3e+CD4+), CD8+ T cells (CD3e+CD8+) and dendritic cells (CD11c+CD83+, CD11c+CD86+) in mice vaccinated with rHcARF1+PLGA NP. Immunoassay analysis show raised humoral (Immunoglobulin (Ig)G1, IgG2a, IgM) and cell-mediated immune response (Interleukin (IL)-4, IL-12, and IL-17, and Interferon (IFN)-γ) induced by rHcARF1+PLGA NP. Experimental groups that were treated with the antigen-loaded NP yield higher lymphocyte proliferation than the control groups. Based on these results, we could propose that the rHcARF1 encapsulated in NP could stimulate a strong immune response in mice rather than administering alone against the infection of H. contortus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.W.H.); (M.H.); (M.E.); (J.A.G.); (M.A.-u.-H.N.); (Q.Q.W.); (X.L.); (S.A.L.); (R.Y.); (L.X.); (X.S.)
| |
Collapse
|
21
|
Rai M, Bonde S, Yadav A, Plekhanova Y, Reshetilov A, Gupta I, Golińska P, Pandit R, Ingle AP. Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints. Expert Rev Anti Infect Ther 2020; 20:1299-1308. [PMID: 33164589 DOI: 10.1080/14787210.2021.1836961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION COVID-19 pandemic has been declared as a global emergency by the World Health Organization which has mounted global pressure on the healthcare system. The design and development of rapid tests for the precise and early detection of infection are urgently needed to detect the disease and also for bulk screening of infected persons. The traditional drugs moderately control the symptoms, but so far, no specific drug has been discovered. The prime concern is to device novel tools for rapid and precise diagnosis, drug delivery, and effective therapies for coronavirus. In this context, nanotechnology offers novel ways to fight against COVID-19. AREA COVERED This review includes the use of nanomaterials for the control of COVID-19. The tools for diagnosis of coronavirus, nano-based vaccines, and nanoparticles as a drug delivery system for the treatment of virus infection have been discussed. The toxicity issues related to nanoparticles have also been addressed. EXPERT OPINION The research on nanotechnology-based diagnosis, drug delivery, and antiviral therapies is at a preliminary stage. The antiviral nanomedicine therapies are cost-effective and with high quality. Nanoparticles are a promising tool for prevention, diagnosis, antiviral drug delivery, and therapeutics, which may open up new avenues in the treatment of COVID-19.
Collapse
Affiliation(s)
- Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India.,Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Shital Bonde
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Alka Yadav
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Yulia Plekhanova
- Laboratory of Biosensors, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Anatoly Reshetilov
- Laboratory of Biosensors, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Indarchand Gupta
- Department of Biotechnology, Institute of Science, Aurangabad, MH, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Raksha Pandit
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Avinash P Ingle
- Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, SP, Brazil
| |
Collapse
|
22
|
Wei S, Xu C, Zhang Y, Shi Z, Wu M, Yang B. Ultrasound Assisted a Peroxisome Proliferator-Activated Receptor (PPAR)γ Agonist-Loaded Nanoparticle-Microbubble Complex to Attenuate Renal Interstitial Fibrosis. Int J Nanomedicine 2020; 15:7315-7327. [PMID: 33061383 PMCID: PMC7537998 DOI: 10.2147/ijn.s262052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To investigate the antifibrotic effect of the combination of a PPARγ agonist-loaded nanoparticle-microbubble complex with ultrasound (US) exposure on renal interstitial fibrosis (RIF). Materials and Methods Polylactide-co-glycolide (PLGA) nanoparticles were used to load PPARγ agonist (rosiglitazone, RSG) and prepare PLGA-RSG nanoparticles (PLNPs-RSG); then, a novel complex between PLNPs-RSG and SonoVue microbubbles (MBs) (PLNPs-RSG-MBs) was prepared. The size distribution, zeta potentials, RSG-loading capacity and entrapment efficiency were measured, and the release of RSG was assessed using a UV-vis spectrophotometer. The in vitro cytotoxicity and in vivo systemic toxicity assays were performed. The cellular uptake assessment was performed using a confocal laser scanning microscope (CLSM). The in vivo biodistribution assessment was performed using fluorescence imaging with a near-infrared (NIR) imaging system. Furthermore, this complex was administered to a unilateral ureteral obstruction (UUO) rat model with the assistance of US exposure to investigate the antifibrotic effect. Results This PLNPs-RSG-MBs complex had a size of 2199.5± 988.1 nm and a drug-loading efficiency of 28.5%. In vitro cytotoxicity and in vivo systemic toxicity assays indicated that the PLNPs-RSG-MBs complex displayed excellent biocompatibility. In addition, the complex showed high cellular uptake efficiency in vitro and kidney-targeting ability in vivo. In a UUO rat model, the combination of the PLNPs-RSG-MBs complex with US exposure significantly reduced collagen deposition and successfully attenuated renal fibrosis. Conclusion The combination of the PLNPs-RSG-MBs complex with US exposure may be a promising approach for the treatment of RIF.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Chaoli Xu
- Department of Ultrasound, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Zhongqing Shi
- Department of Cardiac Function, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Min Wu
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Bin Yang
- Department of Ultrasound, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Dai CC, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A Streptococcus. ACS Infect Dis 2020; 6:2502-2512. [PMID: 32786276 DOI: 10.1021/acsinfecdis.0c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group A Streptococcus (GAS) and GAS-related infections are a worldwide challenge, with no commercial GAS vaccine available. Polyethylenimine (PEI) attaches to the cells' surface and delivers cargo into endosomal and cytosolic compartments. We hypothesized that this will confer mucosal adjuvant properties for peptide antigens against group A Streptococcus (GAS). In this study, we successfully demonstrated the development of PEI incorporated liposomes for the delivery of a lipopeptide-based vaccine (LCP-1) against GAS. Outbred mice were administrated with the vaccine formulations intranasally, and immunological investigation showed that the PEI liposomes elicited significant mucosal and systemic immunity with the production of IgA and IgG antibodies. Antibodies were shown to effectively opsonize multiple isolates of clinically isolated GAS. This proof-of-concept study showed the capability for PEI liposomes to act as a safe vehicle for the delivery of GAS peptide antigens to elicit immune responses against GAS infection, making PEI a promising addition to liposomal mucosal vaccines.
Collapse
Affiliation(s)
- Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
24
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
25
|
Abstract
Infectious diseases are the tip of the iceberg in the economic burden of the developing countries, due to the resistance of the pathogens to antibiotics and the lack of vaccines. The vaccines have become a big challenge in the last decades, where the attention has been focused on scientific challenges such as new vaccine development and adjuvants or delivery systems. The classical vaccines were developed from live-attenuated or killed organisms, such as influenza, smallpox, and BCG, as well as subunits such as Hepatitis B. The attenuated vaccines carry the risk of regaining their pathogenicity under immunosuppression conditions. The development of subunit vaccines without risk are considered as an essential need in combination with adequate delivery systems to obtain desired cell and humoral immune responses against infectious diseases. In the last decades, the use of nanoparticles as a delivery system in vaccines has received special attention to improve vaccine efficacy. These nanoparticles could be composed of lipids, metal and nonmetal inorganics, several polymers, and virus-like particles, which have been tested in research; some of them have already been approved for human and animal use. The characteristics of the nanoparticles have allowed targeting desired antigen-presenting cells to improve immunization strategies to induce protection. The main characteristics of the nanoparticles are to protect the antigens from early proteolytic degradation, control antigen release, and help antigen uptake and processing by antigen-presenting cells, and they should be safe for human and veterinary use. In addition, the nanoparticles could be modified in their physicochemical properties to target specific cells and improve vaccine efficacy. This chapter focuses on the nanoparticle-based vaccine formulations and the approaches used to realize efficient delivery of vaccines in order to induce host protective immunity against infectious diseases.
Collapse
Affiliation(s)
- Diana Diaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia-FIDIC, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, DC, Colombia
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
26
|
Quadros HC, Santos LDMF, Meira CS, Khouri MI, Mattei B, Soares MBP, de Castro-Borges W, Farias LP, Formiga FR. Development and in vitro characterization of polymeric nanoparticles containing recombinant adrenomedullin-2 intended for therapeutic angiogenesis. Int J Pharm 2019; 576:118997. [PMID: 31893542 DOI: 10.1016/j.ijpharm.2019.118997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Growth factor therapy has emerged as novel therapeutic strategy under investigation for CVD. In this sense, adrenomedullin-2 (ADM-2) has been recently identified as a new angiogenic factor able to regulate the regional blood flow and cardiovascular function. However, the therapeutic value of ADM-2 is limited by its short biological half-life and low plasma stability. Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles have been investigated as growth factor delivery systems for cardiac repair. In this study, we aimed to develop PLGA nanoparticles containing ADM-2 intended for therapeutic angiogenesis. PLGA nanoparticles containing ADM-2 were prepared by a double emulsion modified method, resulting in 300 nm-sized stable particles with zeta potential around - 30 mV. Electron microscopy analysis by SEM and TEM revealed spherical particles with a smooth surface. High encapsulation efficiency was reached (ca.70%), as quantified by ELISA. ADM-2 associated to polymer nanoparticles was also determined by EDS elemental composition analysis, SDS-PAGE and LC-MS/MS for peptide identification. In vitro release assays showed the sustained release of ADM-2 from polymer nanoparticles for 21 days. Cell viability experiments were performed in J774 macrophages and H9c2 cardiomyocyte cells, about which PLGA nanoparticles loaded with ADM-2 did not cause toxicity in the range 0.01-1 mg/ml. Of note, encapsulated ADM-2 significantly induced cell proliferation in EA.hy926 endothelial cells, indicating the ADM-2 bioactivity was preserved after the encapsulation process. Collectively, these results demonstrate the feasibility of using PLGA nanoparticles as delivery systems for the angiogenic peptide ADM-2, which could represent a novel approach for therapeutic angiogenesis in CVD using growth factor therapy.
Collapse
Affiliation(s)
- Helenita Costa Quadros
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil
| | - Laís de Macêdo Ferreira Santos
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, 52171-011 Recife/PE, Brazil
| | - Cássio Santana Meira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil
| | - Mariana Ivo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil
| | - Bruno Mattei
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Campus Morro do Cruzeiro, s/n, 35400-000 Ouro Preto/MG, Brazil
| | - Milena Botelho Pereira Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil
| | - William de Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Campus Morro do Cruzeiro, s/n, 35400-000 Ouro Preto/MG, Brazil
| | - Leonardo Paiva Farias
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil
| | - Fabio Rocha Formiga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Rua Waldemar Falcão, 121, Candeal, 40296-710 Salvador/BA, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada, Universidade de Pernambuco (UPE), Rua Arnóbio Marques, 310, Santo Amaro, 50100-130 Recife/PE, Brazil.
| |
Collapse
|
27
|
Zhu J, Qin F, Ji Z, Fei W, Tan Z, Hu Y, Zheng C. Mannose-Modified PLGA Nanoparticles for Sustained and Targeted Delivery in Hepatitis B Virus Immunoprophylaxis. AAPS PharmSciTech 2019; 21:13. [PMID: 31807947 DOI: 10.1208/s12249-019-1526-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The launched hepatitis B vaccine could induce powerful antibodies, whereas it failed to improve potent cellular immune responses due to that the Th2-type response-induced aluminum adjuvant was adopted. Here, to target antigen-presenting cells under the epidermis and induce potent cellular and humoral immune responses, mannose-modified poly D,L-lactide-co-glycolic acid (PLGA) was synthesized and nanoparticle (MNP)-loaded hepatitis B surface antigen (HBsAg) protein was prepared. HBsAg could be slowly released and highly presented to lymphocytes which facilitated to produce long-lasting immunity based on characters of PLGA. In vitro uptake test results showed that MNPs could enhance internalization in bone marrow-derived dendritic cells (BMDCs) and RAW 264.7 cells. Subcutaneous delivery of MNPs into mice kept humoral immune and strengthened cellular immune responses. Experimental results indicated that MNPs showed significantly modified properties compared with parental PLGA nanoparticles. Thus, the obtained MNPs could be a promising vehicle for hepatitis B vaccine delivery.
Collapse
|
28
|
Gu P, Wusiman A, Zhang Y, Liu Z, Bo R, Hu Y, Liu J, Wang D. Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses. Mol Pharm 2019; 16:5000-5012. [DOI: 10.1021/acs.molpharmaceut.9b00860] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym 2019; 223:115128. [PMID: 31427012 DOI: 10.1016/j.carbpol.2019.115128] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Nanoparticle delivery systems have been widely investigated as new vaccines strategy to enhance the immune responses to antigens against infectious diseases. The positively charged nanoparticles could efficiently improve the immune responses due to targeting and activating the antigen-presenting cells. In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) was encapsulated into Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, and the polyethylenimine, one of the cationic polymers, was used to coat nanoparticles to develop a new nanoparticle delivery system (ASP-PLGA-PEI) with positively charged. The ASP-PLGA-PEI nanoparticles significantly activated macrophages, and promoted the expression of the MHCII and CD86 and the production of IL-1β and IL-12p70 cytokines of macrophages. Furthermore, the antigen adsorbed on the surface of the ASP-PLGA-PEI nanoparticles enhanced the antigen uptake by macrophages. Moreover, the mice immunized with PCV2 antigen adsorbed ASP-PLGA-PEI nanoparticles significantly enhanced PCV2-specific IgG immune response and the levels of cytokines, induced a mixed Th1/Th2 immune response with Th1 bias compared with other groups. These findings demonstrate that the positively charged nanoparticles (ASP-PLGA-PEI) have the potential to serve as an effective vaccine delivery and adjuvant system to induce vigorous and long-term immune responses.
Collapse
|
30
|
Gu P, Liu Z, Sun Y, Ou N, Hu Y, Liu J, Wu Y, Wang D. Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses. Int J Pharm 2018; 554:72-80. [PMID: 30399435 DOI: 10.1016/j.ijpharm.2018.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/20/2018] [Accepted: 11/03/2018] [Indexed: 01/27/2023]
Abstract
Nanoparticles (NPs)-based vaccine delivery systems are widely used for their ability to control the release of antigens and promote immune responses against cancer or infectious diseases. In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) and model protein antigen ovalbumin (OVA) were encapsulated into Poly(lactic-co-glycolic acid) (PLGA) to formulate the novel NPs-based vaccine delivery system (ASP-PLGA/OVA). These formulations were subcutaneously administered to mice, then the magnitude and kinetics of antibody and cellular immune responses were assessed. The ASP-PLGA/OVA NPs were pherical in shape with smooth surfaces, approximately 225.2 nm in average size, negatively charged (around -11.27 mV), and the encapsulation efficiency of OVA at around 66.28%, respectively. Furthermore, ASP-PLGA/OVA NPs could keep stable at 4 °C over 30 days and provide a sustained and controlled release of OVA from the NPs. The results demonstrated that mice immunized with ASP-PLGA/OVA NPs could significantly enhance lymphocyte proliferation and improve the ratio of CD4+ to CD8+ T cells, thereby ASP-PLGA/OVA NPs could induce a strong cellular immune response. Moreover, the ASP-PLGA/OVA NPs could induce vigorous and long-term IgG immune responses with a mixed Th1 and Th2 responses and up-regulate the levels of Th-associated cytokines. These results suggested that ASP-PLGA/OVA NPs, which stimulated strong and continuous antibody responses and induced cellular immune responses, could potentially serve as an efficient and safe vaccine delivery and adjuvant system against infections and diseases.
Collapse
Affiliation(s)
- Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaqin Sun
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ning Ou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
31
|
Stubelius A, Sheng W, Lee S, Olejniczak J, Guma M, Almutairi A. Disease-Triggered Drug Release Effectively Prevents Acute Inflammatory Flare-Ups, Achieving Reduced Dosing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800703. [PMID: 30009516 PMCID: PMC6165597 DOI: 10.1002/smll.201800703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/01/2018] [Indexed: 06/08/2023]
Abstract
For conditions with inflammatory flare-ups, fast drug-release from a depot is crucial to reduce cell infiltration and prevent long-term tissue destruction. While this concept has been explored for chronic diseases, preventing acute inflammatory flares has not been explored. To address this issue, a preventative inflammation-sensitive system is developed and applied to acute gout, a condition where millions of inflammatory cells are recruited rapidly, causing excruciating and debilitating pain. Rapid drug release is first demonstrated from a pH-responsive acetalated dextran particle loaded with dexamethasone (AcDex-DXM), reducing proinflammatory cytokines in vitro as efficiently as free drug. Then, using the air pouch model of gout, mice are pretreated 24 h before inducing inflammation. AcDex-DXM reduces overall cell infiltration with decreased neutrophils, increases monocytes, and diminishes cytokines and chemokines. In a more extended prophylaxis model, murine joints are pretreated eight days before initiating inflammation. After quantifying cell infiltration, only AcDex-DXM reduces the overall joint inflammation, where neither free drug nor a conventional drug-depot achieves adequate anti-inflammatory effects. Here, the superior efficacy of disease-triggered drug-delivery to prevent acute inflammation is demonstrated over free drug and slow-release depots. This approach and results promise exciting treatment opportunities for multiple inflammatory conditions suffering from acute flares.
Collapse
Affiliation(s)
- Alexandra Stubelius
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wangzhong Sheng
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sangeun Lee
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Monica Guma
- School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adah Almutairi
- Center of Excellence in Nanomedicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of NanoEngineering and Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
32
|
Biodegradable Polymeric Nanocarrier-Based Immunotherapy in Hepatitis Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:303-320. [DOI: 10.1007/978-981-13-0950-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Liu C, Shen Q, Zheng W, Lv Y, Chen X, Li X, Zhu Q, Guo X, Ge R, Li C. Poly(anhydride) nanoparticles act as effective adjuvants to elicit a persistent immune response. RSC Adv 2017. [DOI: 10.1039/c7ra11891k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This research shows that p-OVA nanoparticles composed of poly(anhydride) and OVA have a strong ability to induce an OVA-specific immune response.
Collapse
Affiliation(s)
- Caixia Liu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Qiuxai Shen
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Wenwen Zheng
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Yao Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Xinyu Chen
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Qiqi Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
- Wenzhou 325027
- P. R. China
| |
Collapse
|
34
|
Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:168. [PMID: 27782834 PMCID: PMC5080692 DOI: 10.1186/s13046-016-0444-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC) are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs) has been established. METHODS In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA) NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture. RESULTS The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in IFN-γ and IL-12 production. We demonstrated that NPs containing tumor lysate can induce maturation and activation of DCs, as antigen alone does. CONCLUSION PLGA-NPs are attractive vehicles for protein antigen delivery which effectively induce stimulation and maturation of DCs, allowing not only an enhanced antigen processing and immunogenicity or improved antigen stability, but also the targeted delivery and slow release of antigens.
Collapse
|