1
|
Zhang K, Miao Y, Liu H, Hu L, Tang M, Duan Y, Gao Y, Qian S, Zhang J, Wei Y. Deaggregation of micronized insoluble drugs by incorporating mannitol form α. Int J Pharm 2025; 671:125161. [PMID: 39761708 DOI: 10.1016/j.ijpharm.2024.125161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.e., lurasidone hydrochloride, indomethacin and ibuprofen) after general mixing, while β-mannitol could not. In addition, the drug dissolutions after mixing with α-mannitol were also significantly higher than that with β one. This stemmed from the different molecular orientation on their dominant crystal facets, resulting in greater number of unsaturated hydrogen bonds site (0.050 Å-2vs 0.042 Å-2) on α-mannitol's crystal facet {013}, leading to more positive charge and negative charge site and higher surface energy (64.42 mJ/m2vs 50.26mJ/m2). Subsequently, this increased the interaction between drug and α-mannitol, which is higher than interaction between drug itself, also higher than interaction between drug and β-mannitol, resulting in adhesion of drug powder on α-mannitol rather than cohesion into aggregates. Moreover, after 30 days of storage at 60 °C or 92.5 % relative humidity, the polymorphic purity of α-mannitol remained above 99 %, indicating good polymorphic stability during transportation and storage. This work illustrates that α-mannitol exhibited great potential to serve as a new pharmaceutical excipient in solid dosage forms. We believe that utilizing the benefits of polymorphism and mitigating their limitations will exert great potential for the development of functional pharmaceutical excipients.
Collapse
Affiliation(s)
- Ke Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Yan Miao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Huina Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Liqin Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Mi Tang
- Jiangsu Litaier Pharma Ltd. Company, Nanjing 211100 PR China
| | - Yingran Duan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China.
| |
Collapse
|
2
|
Marcozzi T, Baviriseaty S, Yawman P, Zhang S, Vervaet C, Vanhoorne V, Andersen SK. Synchrotron computed tomography combined with AI-based image analysis for the advanced characterization of spray dried amorphous solid dispersion particles. J Pharm Sci 2025; 114:530-543. [PMID: 39549833 DOI: 10.1016/j.xphs.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Particle engineering aims to design particles with specific properties. A deeper understanding of how particle formation relates to material attributes and process conditions are critical to strengthen knowledge on powder properties and enhance modeling capabilities. New, alternative powder characterization techniques can offer novel and more accurate measures for particle properties, giving more advanced characterization information. In this context, a case study is presented in which spray dried amorphous solid dispersion powders produced by modifying process conditions were characterized by both well-established compendial methods (i.e., laser light diffraction, SEM image analysis, bulk and tapped density, and gas adsorption), as well as a new method combining synchrotron computed tomography (SyncCT) with AI-based image analysis. SyncCT was used to classify and quantify the spray dried particles as hollow spheres and solid particles, giving a more detailed quality measure of the particle shape, as they impact downstream processing differently. Moreover, hollow particle wall thicknesses, as well as internal and external particle surface areas were measured by SyncCT. Altogether, powder characterization data from SyncCT show similar trends to that obtained from compendial techniques and giving additional quality measure regarding particle shape, showing promise of this new and advanced characterization method.
Collapse
Affiliation(s)
- Tatiana Marcozzi
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium; Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Sruthika Baviriseaty
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Phillip Yawman
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Shawn Zhang
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Chris Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | | |
Collapse
|
3
|
Tsolaki E, Healy AM, Ferguson S. Development of polymer-encapsulated microparticles of a lipophilic API-IL and its lipid based formulations for enhanced solubilisation. Int J Pharm 2024; 667:124878. [PMID: 39491654 DOI: 10.1016/j.ijpharm.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Active Pharmaceutical Ingredient-Ionic liquids (API-ILs) have the potential to improve the bioavailability of BCS Class IV Drugs. However, the problematic physical handling properties of room temperature API-ILs have impaired clinical and commercial exploitation to date. Lipid-based formulations (LBFs) are used to improve the absorption of drugs with limited bioavailability. Nonetheless, LBFs face limitations such as low drug loading capacity and sub-par physical stability. A platform for transforming API-ILs into solid forms at high loadings via spray encapsulation with polymers has been developed and previously demonstrated for hydrophilic API-ILs. The current work demonstrates that this platform technology can be applied to a lipophilic API-IL of the BCS Class IV API, chlorpromazine, and to multi-component solutions comprising API-IL and a LBF. Furthermore, solidification of a type IIIB, liquid LBF was achieved via spray encapsulation with cellulose- and methacrylate- based polymers for the first time. The spray-encapsulated formulations had excellent physical handling properties, and successfully eluted the API-IL in aqueous media. The chlorpromazine release profiles from the API-IL, the API-IL containing LBF, and the solidified formulations, were evaluated in vitro using phosphate buffer (pH 6.8) and fasted state simulated intestinal fluid (FaSSIF). Spray-encapsulated formulations exhibited improved release profiles compared to the liquid formulations. Overall, these findings indicate that phase-separated, polymeric, solid formulations of liquid API forms represent a promising platform technology for developing oral solid dosage forms of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Anne Marie Healy
- EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; National Institute for Bioprocessing Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
4
|
Abdel-Hafez SM, Gallei M, Wagner S, Schneider M. Inhalable nano-structured microparticles for extracellular matrix modulation as a potential delivery system for lung cancer. Eur J Pharm Biopharm 2024; 204:114512. [PMID: 39332746 DOI: 10.1016/j.ejpb.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
The use of inhalable nanoparticulate-based systems in the treatment of lung cancer allows for efficient localized delivery to the lungs with less undesirable systemic exposure. For this to be attained, the inhaled particles should have optimum properties for deposition and at the same time avoid pulmonary clearance mechanisms. Drug delivery to solid tumors is furthermore challenging, due to dense extracellular matrix (ECM) formation, which hinders the penetration and diffusion of therapeutic agents. To this end, the aim of the current work is to develop an ECM-modulating nano-structured microparticulate carrier, that not only enables the delivery of therapeutic nanoparticles (NPs) to the lungs, but also enhances their intratumoral penetration. The system is composed of acetalated maltodextrin (AcMD) NPs embedded into a water-soluble trehalose/leucine matrix, in which collagenase was loaded with different mass concentrations (10 %, 30 % and 50 %). The collagenase-containing AcMD nano-structured microparticles (MPs) exhibited suitable median volume diameters (2.58 ± 1.35 to 3.01 ± 0.68 µm), hollow corrugated morphology, sufficient redispersibility, low residual moisture content (2.71 ± 0.17 % to 3.10 ± 0.20 %), and favorable aerodynamic properties (Mass median aerodynamic diameter (MMAD): 1.93 ± 0.06 to 2.80 ± 0.10 µm and fine particle fraction (FPF): 68.02 ± 6.86 % to 69.62 ± 2.01 %). Importantly, collagenase retained as high as 89.5 ± 6.7 % of its enzymatic activity after spray drying. MPs containing 10 % mass content of collagenase did not show signs of cytotoxicity on either human lung adenocarcinoma A549 cells or lung MRC-5 fibroblasts. The nanoparticle penetration was tested using adenocarcinoma A549/MRC-5 co-culture spheroid model, where the inclusion of collagenase resulted in deeper penetration depth of AcMD-NPs.
Collapse
Affiliation(s)
- Salma M Abdel-Hafez
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany; Saarene, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Sylvia Wagner
- Department Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Kruk K, Winnicka K. Hard Gelatin Capsules with Alginate-Hypromellose Microparticles as a Multicompartment Drug Delivery System for Sustained Posaconazole Release. Int J Mol Sci 2024; 25:7116. [PMID: 39000223 PMCID: PMC11241651 DOI: 10.3390/ijms25137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
6
|
Gupta A, Dahima R, Panda SK, Gupta A, Singh GD, Wani TA, Hussain A, Rathore D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:764. [PMID: 38931886 PMCID: PMC11206766 DOI: 10.3390/pharmaceutics16060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.
Collapse
Affiliation(s)
- Amit Gupta
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Rashmi Dahima
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| | - Sunil K. Panda
- Research & Development, GM Pharmaceutical Inc., 0114 Tbilisi, Georgia;
| | - Annie Gupta
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida 201303, India
| | - Gaurav Deep Singh
- Department of Chemistry, Radha Govind University, Ramgarh 829122, India
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Devashish Rathore
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Ring Road, Indore 452001, India; (R.D.); (D.R.)
| |
Collapse
|
7
|
Alamdari NE, Aksoy B, Babu RJ, Jiang Z. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Int J Biol Macromol 2024; 270:132298. [PMID: 38750863 DOI: 10.1016/j.ijbiomac.2024.132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microcrystalline cellulose (MCC) is one of the essential functional excipients in the formulation of tablets. The need for cheaper MCC sources has drawn significant attention to exploring renewable sources. In this study, MCC was produced from soybean hull (SBH), the primary by-product of the soy industry, using a novel, simplified, and cost-effective approach. Various characterization techniques were used to study the physicochemical properties and micromeritics of the SBH-based MCC powders and compare them to those of the commercial Avicel PH-101. SBH MCCs had a larger particle size, a broader particle size distribution, a higher degree of polymerization, a higher degree of crystallinity, better thermal stability, and slightly superior flowability and compressibility than Avicel PH-101. The tableting blends (containing 60 % MCC) were prepared, and the post-compression out-of-die Heckel analysis showed that formulations with aggregated SBH MCCs were less ductile than those made with Avicel PH-101, resulting in a lower porosity (better compressibility) of the latter at higher compression pressures. The hardness values for all formulations were above 6 kg, with higher values for those made with Avicel PH-101. The lubricant sensitivity was lower for SBH MCCs. All tablets made using developed formulations showed very low friability (<0.1 %) and short disintegration times (<90 s), making them well-suited candidates for manufacturing orally disintegrating tablets (ODTs).
Collapse
Affiliation(s)
- Navid Etebari Alamdari
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Burak Aksoy
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | | | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
8
|
Moldovan AA, Maloney AGP. Surface Analysis-From Crystal Structures to Particle Properties. CRYSTAL GROWTH & DESIGN 2024; 24:4160-4169. [PMID: 38766640 PMCID: PMC11099916 DOI: 10.1021/acs.cgd.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Understanding the surface properties of particles is crucial for optimizing the performance of formulated products in various industries. However, acquiring this understanding often requires expensive trial-and-error studies. Here, we present advanced surface analysis tools that enable the visualization and quantification of chemical and topological information derived from crystallographic data. By employing functional group analysis, roughness calculations, and statistical interaction data, we facilitate direct comparisons of surfaces. We further demonstrate the practicality of our approach by correlating the sticking propensity of distinct ibuprofen morphologies with surface and particle descriptors calculated from a single crystal structure. Our findings support and expand upon previous work, demonstrating that the presence of a carboxylic acid group on the {011} facet leads to significant differences in particle properties and explains the higher electrostatic potential observed in the block-like morphology. While our surface analysis tools are not intended to replace the importance of chemical intuition and expertise, they provide valuable insights for formulators and particle engineers, facilitating informed, data-driven decisions to mitigate formulation risks. This research represents a significant step toward a comprehensive understanding of particle surfaces and their impact on products.
Collapse
Affiliation(s)
| | - Andrew G. P. Maloney
- The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
| |
Collapse
|
9
|
Yano T, Oshiro A, Ohsaki S, Nakamura H, Watano S. A Method for the Tensile Strength Prediction of Tablets with Differing Powder Plasticities. Chem Pharm Bull (Tokyo) 2024; 72:374-380. [PMID: 38599850 DOI: 10.1248/cpb.c24-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Tablets are the most commonly used dosage form in the pharmaceutical industry, and their properties such as disintegration, dissolution, and portability are influenced by their strength. However, in industry, the mixing fraction of powders to obtain a tablet compact with sufficient strength is determined based on empirical rules. Therefore, a method for predicting tablet strength based on the properties of a single material is required. The objective of this study was to quantitatively evaluate the relationship between the compression properties and tablet strength of powder mixtures. The compression properties of the powder mixtures with different plasticities were evaluated based on the force-displacement curves obtained from the powder compression tests. Heckel and compression energy analyses were performed to evaluate compression properties. During the compression energy analysis, the ratio of plastic deformation energy to elastic deformation energy (Ep/Ee) was assumed to be the plastic deformability of the powder. The quantitative relationship between the compression properties and tensile strength of the tablets was investigated. Based on the obtained relationship and the compression properties of a single material, a prediction equation was put forward for the compression properties of the powder mixture. Subsequently, a correlation equation for tablet strength was proposed by combining the values of K and Ep/Ee obtained from the Heckel and compression energy analyses, respectively. Finally, by substituting the compression properties of the single material and the mass fraction of the plastic material into the proposed equation, the tablet strength of the powder mixture with different plastic deformabilities was predicted.
Collapse
Affiliation(s)
- Takeru Yano
- Department of Chemical Engineering, Osaka Metropolitan University
| | - Atsushi Oshiro
- Department of Chemical Engineering, Osaka Metropolitan University
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University
| |
Collapse
|
10
|
Martínez-Acevedo L, Job Galindo-Pérez M, Vidal-Romero G, Del Real A, de la Luz Zambrano-Zaragoza M, Quintanar-Guerrero D. Effect of magnesium stearate solid lipid nanoparticles as a lubricant on the properties of tablets by direct compression. Eur J Pharm Biopharm 2023; 193:262-273. [PMID: 37944711 DOI: 10.1016/j.ejpb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
This study discusses the lubricant properties of magnesium stearate solid lipid nanoparticles (MgSt-SLN) and their effect on the tabletability, mechanical properties, disintegration, and acetaminophen-model dissolution time of microcrystalline cellulose (MCC) tablets prepared by direct compression. The behavior of MgSt-SLN was compared to reference material (RM) to identify advantages and drawbacks. The nanoprecipitation/ion exchange method was employed to prepare the MgSt-SLN. Particle size, zeta potential, specific surface area, morphology, and true density were measured to characterize the nanosystem. The MgSt-SLN particle sizes obtained were 240 ± 5 nm with a specific surface area of 12.2 m2/g. The MCC tablets with MgSt-SLN presented a reduction greater than 20 % in their ejection force, good tabletability, higher tensile strength, lower disintegration delay, and marked differences in acetaminophen dissolution when compared to the RM. The reduced particle size of the magnesium stearate seems to offer a promising technological advantage as an efficient lubricant process that does not affect the properties of tablets.
Collapse
Affiliation(s)
- Lizbeth Martínez-Acevedo
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico; Laboratorio de Desarrollo Galénico, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Cuidad de México C.P. 04960, Mexico
| | - Moises Job Galindo-Pérez
- Departamento de Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Campus II, Universidad Nacional Autónoma de México, Ciudad de México C.P. 09230, Mexico; Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México C.P. 05348, Mexico
| | - Gustavo Vidal-Romero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico; Departamento de Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Campus II, Universidad Nacional Autónoma de México, Ciudad de México C.P. 09230, Mexico
| | - Alicia Del Real
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Querétaro C.P. 76230, México
| | - María de la Luz Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54714, México
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico.
| |
Collapse
|
11
|
Middleton J, Scott AJ, Storey R, Marucci M, Ghadiri M. Prediction of the Effective Work Function of Aspirin and Paracetamol Crystals by Density Functional Theory-A First-Principles Study. CRYSTAL GROWTH & DESIGN 2023; 23:6308-6317. [PMID: 37692333 PMCID: PMC10485818 DOI: 10.1021/acs.cgd.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Crystals of active pharmaceutical ingredients (API) are prone to triboelectric charging due to their dielectric nature. This characteristic, coupled with their typically low density and often large aspect ratio, poses significant challenges in the manufacturing process. The pharmaceutical industry frequently encounters issues during the secondary processing of APIs, such as particle adhesion to walls, clump formation, unreliable flow, and the need for careful handling to mitigate the risk of fire and explosions. These challenges are further intensified by the limited availability of powder quantities for testing, particularly in the early stages of drug development. Therefore, it is highly desirable to develop predictive tools that can assess the triboelectric propensity of APIs. In this study, Density Functional Theory calculations are employed to predict the effective work function of different facets of aspirin and paracetamol crystals, both in a vacuum and in the presence of water molecules on their surfaces. The calculations reveal significant variations in the work function across different facets and materials. Moreover, the adsorption of water molecules induces a shift in the work function. These findings underscore the considerable impact of distinct surface terminations and the presence of molecular water on the calculated effective work function of pharmaceuticals. Consequently, this approach offers a valuable predictive tool for determining the triboelectric propensity of APIs.
Collapse
Affiliation(s)
- James
R. Middleton
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Andrew J. Scott
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Richard Storey
- New
Modalities Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Mariagrazia Marucci
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Gothenburg 413 27, Sweden
| | - Mojtaba Ghadiri
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| |
Collapse
|
12
|
Affleck S, Thomas A, Routh A, Vriend N. Novel protocol for quantifying powder cohesivity through fluidisation tests. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Jia W, Yawman PD, Pandya KM, Sluga K, Ng T, Kou D, Nagapudi K, Luner PE, Zhu A, Zhang S, Hou HH. Assessing the Interrelationship of Microstructure, Properties, Drug Release Performance, and Preparation Process for Amorphous Solid Dispersions Via Noninvasive Imaging Analytics and Material Characterization. Pharm Res 2022; 39:3137-3154. [PMID: 35661085 DOI: 10.1007/s11095-022-03308-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this work is to evaluate the interrelationship of microstructure, properties, and dissolution performance for amorphous solid dispersions (ASDs) prepared using different methods. METHODS ASD of GDC-0810 (50% w/w) with HPMC-AS was prepared using methods of spray drying and co-precipitation via resonant acoustic mixing. Microstructure, particulate and bulk powder properties, and dissolution performance were characterized for GDC-0810 ASDs. In addition to application of typical physical characterization tools, we have applied X-Ray Microscopy (XRM) to assess the contribution of microstructure to the characteristics of ASDs and obtain additional quantification and understanding of the drug product intermediates and tablets. RESULTS Both methods of spray drying and co-precipitation produced single-phase ASDs. Distinct differences in microstructure, particle size distribution, specific surface area, bulk and tapped density, were observed between GDC-0810 spray dried dispersion (SDD) and co-precipitated amorphous dispersion (cPAD) materials. The cPAD powders prepared by the resonant acoustic mixing process demonstrated superior compactibility compared to the SDD, while the compressibility of the ASDs were comparable. Both SDD powder and tablets showed higher in vitro dissolution than those of cPAD powders. XRM calculated total solid external surface area (SA) normalized by calculated total solid volume (SV) shows a strong correlation with micro dissolution data. CONCLUSION Strong interrelationship of microstructure, physical properties, and dissolution performance was observed for GDC-0810 ASDs. XRM image-based analysis is a powerful tool to assess the contribution of microstructure to the characteristics of ASDs and provide mechanistic understanding of the interrelationship.
Collapse
Affiliation(s)
- Wei Jia
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Phillip D Yawman
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Keyur M Pandya
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kellie Sluga
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tania Ng
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dawen Kou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Paul E Luner
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA.,Triform Sciences LLC, Waterford, Connecticut, 06385, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
14
|
Brokešová J, Niederquell A, Kuentz M, Zámostný P, Vraníková B, Šklubalová Z. Powder cohesion and energy to break an avalanche: Can we address surface heterogeneity? Int J Pharm 2022; 626:122198. [PMID: 36115463 DOI: 10.1016/j.ijpharm.2022.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jana Brokešová
- Charles University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Akademika Heyrovského, 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Andreas Niederquell
- Charles University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Akademika Heyrovského, 1203/8, 500 05 Hradec Králové, Czech Republic; University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstrasse, 30, CH-4132 Muttenz, Switzerland
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Hofackerstrasse, 30, CH-4132 Muttenz, Switzerland
| | - Petr Zámostný
- UCT Prague, Faculty of Chemical Technology, Department of Organic Technology, Technická, 5, 166 28, Prague 6, Dejvice, Czech Republic
| | - Barbora Vraníková
- Charles University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Akademika Heyrovského, 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Zdenka Šklubalová
- Charles University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Akademika Heyrovského, 1203/8, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Xiao B, Zhang J, Geng L, Tang X, Wang Y, Yin T, Zhang Y, Gou J, He H. Studies on the influence of high-shear granulation process on the compressibility of microcrystalline cellulose. Int J Pharm 2022; 625:122075. [PMID: 35931395 DOI: 10.1016/j.ijpharm.2022.122075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
Microcrystalline cellulose (MCC) is a diluent for oral solid dosage forms. The wet granulation process was selected to prepare losartan potassium tablets using MCC as a model for a predictive study. It was found that the hardness of the tablets could not satisfy the quality standards. In this study, the effect of the high-shear granulation process on the compressibility of MCC was characterized by plotting the compression characteristics curve, as well as the mechanism of the effect from the perspectives of mechanical properties, powder properties. The solid-state properties were also analyzed. Combined with the Heckel equation, the Ryshkewitch-Duckworth equation, the energy method, PXRD, SEM, and other evaluation methods, the results suggest that the high-shear granulation process reduced the compressibility of MCC, which may be caused by the reduced plastic deformation capacity of MCC and the change of the particle morphology structure. The method applied in this study can also be applied to other excipients, which is an important guideline for solving possible problems and process selections during the preparation stage of solid formulations.
Collapse
Affiliation(s)
- Boyun Xiao
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaqi Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lixin Geng
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
16
|
Varun N, Ghoroi C. Crystallization induced flower-like lactose as potential carriers for dry powder inhaler application. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ng DZL, Nelson AZ, Ward G, Lai D, Doyle PS, Khan SA. Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology. Pharm Res 2022; 39:411-421. [PMID: 35119593 DOI: 10.1007/s11095-021-03155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Industrial implementation of continuous oral solid dosage form manufacturing has been impeded by the poor powder flow properties of many active pharmaceutical ingredients (APIs). Microfluidic droplet-based particle synthesis is an emerging particle engineering technique that enables the production of neat or composite microparticles with precise control over key attributes that affect powder flowability, such as particle size distribution, particle morphology, composition, and the API's polymorphic form. However, the powder properties of these microparticles have not been well-studied due to the limited mass throughputs of available platforms. In this work, we produce spherical API and API-composite microparticles at high mass throughputs, enabling characterization and comparison of the bulk powder flow properties of these materials and greater understanding of how particle-scale attributes correlate with powder rheology. METHODS A multi-channel emulsification device and an extractive droplet-based method are harnessed to synthesize spherical API and API-excipient particles of artemether. As-received API and API crystallized in the absence of droplet confinement are used as control cases. Particle attributes are characterized for each material and correlated with a comprehensive series of powder rheology tests. RESULTS The droplet-based processed artemether particles are observed to be more flowable, less cohesive, and less compressible than conventionally synthesized artemether powder. Co-processing the API with polycaprolactone to produce composite microparticles reduces the friction of the powder on stainless steel, a common equipment material. CONCLUSIONS Droplet-based extractive solidification is an attractive particle engineering technique for improving powder processing and may aid in the implementation of continuous solid dosage form manufacturing.
Collapse
Affiliation(s)
- Denise Z L Ng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.,Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Arif Z Nelson
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Gareth Ward
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG12NY, UK
| | - David Lai
- GlaxoSmithKline LLC, Product and Process Engineering, 709 Swedeland Road, King of Prussia, Pennsylvania, 19406, USA.,GlaxoSmithKline LLC, Advanced Manufacturing Technologies, 830 Winter Street, Waltham, Massachusetts, 02451, USA
| | - Patrick S Doyle
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore. .,Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
18
|
Casian T, Iurian S, Gâvan A, Porfire A, Pop AL, Crișan S, Pușcaș AM, Tomuță I. In-Depth Understanding of Granule Compression Behavior under Variable Raw Material and Processing Conditions. Pharmaceutics 2022; 14:pharmaceutics14010177. [PMID: 35057072 PMCID: PMC8780340 DOI: 10.3390/pharmaceutics14010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Tablet manufacturing involves the processing of raw materials through several unit operations. Thus, the mitigation of input-induced variability should also consider the downstream processability of intermediary products. The objective of the present work was to study the effect of variable raw materials and processing conditions on the compression properties of granules containing two active pharmaceutical ingredients (APIs) and microcrystalline cellulose. Differences in compressibility and tabletability of granules were highlighted in function of the initial particle size of the first API, granule polydispersity and fragmentation. Moreover, interactions were underlined with the atomizing pressure. Changing the supplier of the second API was efficiently controlled by adapting the binder addition rate and atomizing pressure during granulation, considering the starting crystal size. By fitting mathematical models on the available compression data, the influence of diluent source on granule compactibility and tabletability was identified. These differences resumed to the ease of compaction, tableting capacity and pressure sensitivity index due to variable water binding capacity of microcrystalline cellulose. Building the design space enabled the identification of suitable API types and the appropriate processing conditions (spray rate, atomizing pressure, compression force) required to ensure the desired tableting performance.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
- Correspondence:
| | - Alexandru Gâvan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- RD Center, AC HELCOR, 430092 Baia Mare, Romania;
| | | | - Anda Maria Pușcaș
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| |
Collapse
|
19
|
Investigating sizing induced surface alterations in crystalline powders using surface energy heterogeneity determination. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Lamešić D, Grilc B, Roškar R, Kolokytha S, Hofmann J, Malekos A, Kaufmann R, Planinšek O. Spherical Agglomerates of Lactose Reduce Segregation in Powder Blends and Improve Uniformity of Tablet Content at High Drug Loads. AAPS PharmSciTech 2021; 23:17. [PMID: 34893932 DOI: 10.1208/s12249-021-02150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
We report here on improved uniformity of blends of micronised active pharmaceutical ingredients (APIs) using addition of spherical agglomerates of lactose and enhanced blend flow to improve tablet content uniformity with higher API loads. Micromeritic properties and intra-particle porosity (using nano-computed X-ray tomography) of recently introduced spherical agglomerates of lactose and two standard lactose grades for the direct compression processes were compared. Powder blends of the individual lactose types and different micronised API drug loads were prepared and subjected to specific conditions that can induce API segregation. Tablet content uniformity during direct compression was related to the lactose material attributes. The distinctive micromeritic properties of the lactose types showed that spherical agglomerates of lactose had high intra-particle porosity and increased specific surface area. The stability of binary blends after intense sieving was governed by the intra-particle porosity and surface roughness of the lactose particles, which determined the retention of the model substance. Greater intra-particle porosity, powder specific surface area, and particle size of the spherical agglomerates provided greater adhesion of micronised particles, compared to granulated and spray-dried lactose. Thus the spherical agglomerates provided enhanced final blend flow and uniformity of tablet content at higher drug loads.
Collapse
|
21
|
Insight into the morphology and crystal growth of DL-methionine in aqueous solution with presence of cellulose polymers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Numerical simulation of the flow behavior and powder spreading mechanism in powder bed-based additive manufacturing. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Mansour NA, El-Bedawy ME, Ghoneim MM. Effect of delay time between mixing and compacting for producing nuclear fuel plates. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1987127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nabil A. Mansour
- Nuclear Metallurgy Department, Atomic Energy Authority, Cairo, Egypt
| | | | | |
Collapse
|
24
|
A study of particle adhesion for cohesive powders using a novel mechanical surface energy tester. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Wang R, Hartel RW. Understanding stickiness in sugar-rich food systems: A review of mechanisms, analyses, and solutions of adhesion. Compr Rev Food Sci Food Saf 2021; 20:5901-5937. [PMID: 34580978 DOI: 10.1111/1541-4337.12833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
Stickinessis an inherent textural property in many sugar-rich foods, which can be problematic to the processing of confectionery products. The adhesion between foods and contact surfaces during processing and consumption has not been well understood in academia or industry. The theories of adhesion were discovered by scientists in the adhesive field of study, some of which can explain the stickiness phenomenon of confections. This work reviewed these theories in the context of sugar-rich foods, followed by a survey on the sensory and instrumental analyses of stickiness. Furthermore, the contributions of ingredients, temperature, compression, and contact surfaces to sugar-rich food adhesion are highlighted.
Collapse
Affiliation(s)
- Ruican Wang
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard W Hartel
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Hazlett R, Schmidmeier C, O'Mahony J. Approaches for improving the flowability of high-protein dairy powders post spray drying – A review. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Deng T, Garg V, Salehi H, Bradley MS. Correlations between segregation intensity and material properties such as particle sizes and adhesions and novel methods for assessment. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Ejeta F, Gabriel T, Joseph NM, Belete A. Formulation, Optimization and In Vitro Evaluation of Fast Disintegrating Tablets of Salbutamol Sulphate using a Combination of Superdisintegrant and Subliming Agent. Curr Drug Deliv 2021; 19:129-141. [PMID: 34126894 DOI: 10.2174/1567201818666210614094646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/23/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
AIM The present research work was aimed to formulate fast disintegrating tablets (FDTs) of salbutamol sulphate (SBS) using a combination of superdisintegrant and subliming agent, optimize the formulation and evaluate the in vitro performance of the developed FDTs. MATERIALS AND METHODS A formulation of SBS FDT was developed using a combination of superdisintegrant - crospovidone and subliming agent - ammonium bicarbonate (AB) in which formulation variables, namely levels of crospovidone and microcrystalline cellulose (MCC):Mannitol (MNTL) ratio were evaluated for their effects on the response variables - disintegration time, hardness, friability and wetting time of the resulting FDTs. By employing a central composite design (CCD) methodology, the FDTs were optimized to achieve optimum levels of the formulation factors. RESULTS The desired optimum condition was obtained at 7.82% crospovidone and 70% of 1.56:1 MCC: MNTL ratio while maintaining AB at 5% level for aesthetic reasons. Under the optimized conditions, the disintegration time, hardness, friability and wetting time were 14.57±0.53 sec, 7.17±0.82 kg/cm2, 0.311% and 13.14±0.69 sec, respectively. The experimentally observed responses were found to be in close agreement with the predicted values for the optimized formulation. Moreover, the validity of the obtained optimal point was confirmed by the low magnitude of percent prediction error (<5%). CONCLUSION FDTs of SBS were successfully formulated and optimized using CCD employing a combination of superdisintegrant and subliming agents.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Gabriel
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nisha Mary Joseph
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Yano T, Ohsaki S, Nakamura H, Watano S. Numerical study on compression processes of cohesive bimodal particles and their packing structure. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Salehi H, Karde V, Hajmohammadi H, Dissanayake S, Larsson SH, Heng JYY, Bradley M. Understanding flow properties of mannitol powder at a range of temperature and humidity. Int J Pharm 2021; 596:120244. [PMID: 33484920 DOI: 10.1016/j.ijpharm.2021.120244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
Inadequate flowability of powders in industries during handling can cause many problems. For example, lack of flow from hoppers, poor tablet weight consistency, and low production rate in tableting. Many factors are known to commonly affect flow properties of powders, such as temperature, humidity and conditioning duration. In this paper, flow properties of a mannitol powder, which was conditioned between 24 and 72 h at various high relative humidities and temperature, were measured using a shear tester. A statistical model was developed to investigate the relative importance of these variables on the mannitol flow properties. The developed model showed all independent variables are significant in estimating bulk cohesion. Two separate approaches were used to evaluate inter-particle forces in the bulk, and how these changed with environmental conditions. First, inter-particle forces were inferred from the measured bulk properties using the Rumpf model approach. Secondly, inter-particle forces were predicted based on a model of moisture present on the particle surface using a combination of Kelvin model with the Laplace-Young (KLY) equation. The second approach also involved a new method to measure surface energy of mannitol powder based on measurements using Finite Dilution Inverse Gas Chromatography (FD-IGC). The surface energies of the mannitol powder were measured at high temperature (35 °C) and at different range of relative humidities. In spite of the fundamentally different approaches to the two ways of inferring inter-particles forces, these forces came out within less than 1.5:1 in magnitude. The Rumpf approach from bulk behaviour data obviously reflected the measured change in behaviour with humidity in particular, but this was not predicted from the KLY approach, however the likely reasons for this are postulated and recommendations for improvement are made.
Collapse
Affiliation(s)
- Hamid Salehi
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom.
| | - Vikram Karde
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Hajar Hajmohammadi
- Centre For Clinical Effectiveness and Health Data Sciences, Institute of Population Health Sciences, Queen Mary University of London, United Kingdom
| | - Susantha Dissanayake
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom
| | - Sylvia H Larsson
- Biomass Technology Centre, Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Mike Bradley
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
32
|
Hazlett R, Schmidmeier C, O'Mahony J. Influence of mechanical integrity during pneumatic conveying on the bulk handling and rehydration properties of agglomerated dairy powders. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Li Z, Wen W, Chen X, Zhu L, Cheng G, Liao Z, Huang H, Ming L. Release Characteristics of an Essential Oil Component Encapsulated with Cyclodextrin Shell Matrices. Curr Drug Deliv 2020; 18:487-499. [PMID: 32735520 DOI: 10.2174/1567201817666200731164902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Essential oils are poor aqueous solubility and high volatility compounds. The encapsulation of essential oils with Cyclodextrins (CDs) can protect them from adverse environmental conditions and improve their stability. Therefore, increasing the functional capabilities of essential oils when they were used as additives in pharmaceutical and food systems. Additionally, the release of active compounds is an important issue. However, there were few studies about the effect of different CDs on the release of drugs after encapsulation. Therefore, the information on the study of release models is considerably limited. OBJECTIVE This study aimed to (i) characterize the physico-chemical properties and release behavior of myrcene encapsulated in the four different shell matrices of α-CD, β-CD, γ-CD and 2-hydroxypropyl-β- cyclodextrin (HP-β-CD), which were selected from the perspective of stability, and (ii) determine the release mechanism of myrcene in Inclusion Complexes (ICs). METHODS ICs of myrcene and four CDs were prepared by freeze-drying. The physico-chemical properties of ICs were fully characterized by laser diffraction particle size analyzer, Scanning Electron Microscope (SEM), Fourier-Transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimeter (DSC). The release behaviors of ICs at 50, 60, 70 and 80 °C were determined and described by zeroorder or first-order kinetics with the Henderson-Pabis, Peppas, Avrami and Page mathematical models. Moreover, the possible binding modes of ICs were identified with molecular modelling technique. RESULTS Firstly, the structure of Particle Size Distribution (PSD), FT-IR, DSC and SEM showed that (i) CDs could effectively encapsulate the myrcene molecules, and (ii) the release kinetics were well simulated by Avrami and Page models. Secondly, the release rates of the ICs experienced an unsteady state in the early stage, and gradually became almost constants period after 20 hours. Except that the release of myrcene in γ-CD/myrcene belonged to the first-order kinetic, the release models of the remaining three ICs belonged to diffusion mode. Thirdly, the calculated binding energies of the optimized structures for α-CD/myrcene, β-CD/myrcene, γ-CD/myrcene, and HP-β-CD/myrcene ICs were -4.28, -3.82, -4.04, and -3.72 kcal/mol, respectively. Finally, the encapsulation of myrcene with α-CD and β-CD was preferable according to the stability and release characteristics. CONCLUSION The encapsulation of myrcene was profoundly affected by the type of CDs, and the stability could be improved by complexation with suitable CDs. The binding behavior between guest and CD molecules, and the release profile of the guest molecules could be effectively explained by the kinetics parameters and molecular modelling. This study can provide an effective basis and guide for screening suitable shell matrices.
Collapse
Affiliation(s)
- Zhe Li
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Wangwen Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Xulong Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Lin Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Genjinsheng Cheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Zhenggen Liao
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Jiangxi Ganzhou, 341000, China
| | - Liangshan Ming
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Jiangxi Nanchang 330004, China
| |
Collapse
|
34
|
Cavalli G, Bosi R, Ghiretti A, Cottini C, Benassi A, Gaspari R. A shear cell study on oral and inhalation grade lactose powders. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Gajjar P, Styliari ID, Nguyen TTH, Carr J, Chen X, Elliott JA, Hammond RB, Burnett TL, Roberts K, Withers PJ, Murnane D. 3D characterisation of dry powder inhaler formulations: Developing X-ray micro computed tomography approaches. Eur J Pharm Biopharm 2020; 151:32-44. [PMID: 32268190 DOI: 10.1016/j.ejpb.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carrier-based dry powder inhaler (DPI) formulations need to be accurately characterised for their particle size distributions, surface roughnesses, fines contents and flow properties. Understanding the micro-structure of the powder formulation is crucial, yet current characterisation methods give incomplete information. Commonly used techniques like laser diffraction (LD) and optical microscopy (OM) are limited due to the assumption of sphericity and can give variable results depending on particle orientation and dispersion. The aim of this work was to develop new three dimensional (3D) powder analytical techniques using X-ray computed tomography (XCT) that could be employed for non-destructive metrology of inhaled formulations. α-lactose monohydrate powders with different characteristics have been analysed, and their size and shape (sphericity/aspect ratio) distributions compared with results from LD and OM. The three techniques were shown to produce comparable size distributions, while the different shape distributions from XCT and OM highlight the difference between 2D and 3D imaging. The effect of micro-structure on flowability was also analysed through 3D measurements of void volume and tap density. This study has demonstrated for the first time that XCT provides an invaluable, non-destructive and analytical approach to obtain number- and volume-based particle size distributions of DPI formulations in 3D space, and for unique 3D characterisation of powder micro-structure.
Collapse
Affiliation(s)
- P Gajjar
- Henry Moseley X-ray Imaging Facility, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - I D Styliari
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - T T H Nguyen
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - J Carr
- Henry Moseley X-ray Imaging Facility, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - X Chen
- Department of Materials Science & Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - J A Elliott
- Department of Materials Science & Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - R B Hammond
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - T L Burnett
- Henry Moseley X-ray Imaging Facility, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - K Roberts
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - P J Withers
- Henry Moseley X-ray Imaging Facility, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK; Henry Royce Institute for Advanced Materials, Oxford Road, Manchester M13 9PL, UK
| | - D Murnane
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| |
Collapse
|
36
|
de Souza Lima R, Ré MI, Arlabosse P. Drying droplet as a template for solid formation: A review. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.09.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. MINERALS 2019. [DOI: 10.3390/min10010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present work aimed at assessing the pharmaceutical tableting properties of some Egyptian kaolin samples belong to the Abu Zenima kaolin deposits (estimated at 120 million tons). Four representative samples were selected based on kaolinite richness and their structural order-disorder degree, and after purification, they were dried at 70 °C and heated from room temperature up to 400 °C (10 °C/min). Mineralogy, micromorphology, microtexture, granulometry, porosimetry, moisture content, bulk and tapped density, direct and indirect flowability, and tableting characteristics are studied. Results indicated that purified kaolin samples were made up of 95–99% kaolinite, <3% illite, 1% quartz and 1% anatase. The powder showed mesoporous character (pore diameters from 2 to 38 nm and total pore volume from 0.064 to 0.136 cm3/g) with dominance of fine nanosized particles (<1 μm–10 nm). The powder flow characteristics of both the ordered (Hinckley Index HI > 0.7, crystallite size D001 > 30 nm) and disordered (HI < 0.7, D001 < 30 nm) kaolinite-rich samples have been improved (Hausner ratio between 1.24 and 1.09) as their densities were influenced by thermal treatment (with some observed changes in the kaolinite XRD reflection profiles) and by moisture content (variable between 2.98% and 5.82%). The obtained tablets exhibited hardness between 33 and 44 N only from the dehydrated powders at 400 °C, with elastic recovery (ER) between 21.74% and 25.61%, ejection stress (ES) between 7.85 and 11.45 MPa and tensile fracture stress (TFS) between 1.85 and 2.32 MPa, which are strongly correlated with crystallinity (HI) and flowability (HR) parameters. These findings on quality indicators showed the promising pharmaceutical tabletability of the studied Egyptian kaolin powders and the optimization factors for their manufacturability and compactability.
Collapse
|
38
|
Jange CG, Ambrose RPK. Quantifying the influence of surface chemical composition on surface energy during powder flow. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2019.1679305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Camila G. Jange
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - R. P. Kingsly Ambrose
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
Mayer-Laigle C, Gatumel C, Berthiaux H. Scale-up in Turbula® mixers based on the principle of similarities. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2019.1644689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Claire Mayer-Laigle
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Cendrine Gatumel
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE, Campus Jarlard, Albi, France
| | - Henri Berthiaux
- Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE, Campus Jarlard, Albi, France
| |
Collapse
|
40
|
Saker A, Cares-Pacheco MG, Marchal P, Falk V. Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio? POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Ijaz H, Tulain UR, Azam F, Qureshi J. Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabinoxylan grafted acrylic acid copolymer. Drug Dev Ind Pharm 2019; 45:754-766. [DOI: 10.1080/03639045.2019.1569041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hira Ijaz
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Farooq Azam
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Qureshi
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
42
|
Sebastian Escotet-Espinoza M, Moghtadernejad S, Oka S, Wang Y, Roman-Ospino A, Schäfer E, Cappuyns P, Van Assche I, Futran M, Ierapetritou M, Muzzio F. Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
|
44
|
Chattoraj S, Daugherity P, McDermott T, Olsofsky A, Roth WJ, Tobyn M. Sticking and Picking in Pharmaceutical Tablet Compression: An IQ Consortium Review. J Pharm Sci 2018; 107:2267-2282. [DOI: 10.1016/j.xphs.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
|
45
|
Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary delivery of high powder doses. Int J Pharm 2018; 548:325-336. [PMID: 29991452 DOI: 10.1016/j.ijpharm.2018.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
In recent years there is an increasing interest in the pulmonary delivery of large cohesive powder doses, i.e. drugs with a low potency such as antibiotics or drugs with a high potency that need a substantial fraction of excipient(s) such as vaccines stabilized in sugar glasses. The pulmonary delivery of high powder doses comes with unique challenges. For low potency drugs, the use of excipients should be minimized to limit the powder mass to be inhaled as much as possible. To achieve this objective the inhaler design should be adapted to the properties of the API in order to achieve a compatible combination of the drug formulation and inhaler device. The inhaler should have an appropriate powder dosing principle for which prefilled compartments seem most appropriate. The drug formulation should not only allow for accurate filling of these compartments but also enable efficient compartment emptying during inhalation. The dispersion principle must have the capacity to disperse considerable amounts of powder in a short time frame that allows the powder to reach the deep lung. Last, but not least, the inhaler should be simple and intuitive in use, be cost-effective and exhibit accurate and consistent, preferably patient independent, pulmonary delivery performance.
Collapse
Affiliation(s)
- Imco Sibum
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Henderik Willem Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Sebastian Escotet-Espinoza M, Foster CJ, Ierapetritou M. Discrete Element Modeling (DEM) for mixing of cohesive solids in rotating cylinders. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Alsulays BB, Fayed MH, Alalaiwe A, Alshahrani SM, Alshetaili AS, Alshehri SM, Alanazi FK. Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator. Drug Dev Ind Pharm 2018; 44:1520-1527. [PMID: 29718720 DOI: 10.1080/03639045.2018.1472278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The objective of this study was to examine the influence of drug amount and mixing time on the homogeneity and content uniformity of a low-dose drug formulation during the dry mixing step using a new gentle-wing high-shear mixer. Moreover, the study investigated the influence of drug incorporation mode on the content uniformity of tablets manufactured by different methods. Albuterol sulfate was selected as a model drug and was blended with the other excipients at two different levels, 1% w/w and 5% w/w at impeller speed of 300 rpm and chopper speed of 3000 rpm for 30 min. Utilizing a 1 ml unit side-sampling thief probe, triplicate samples were taken from nine different positions in the mixer bowl at selected time points. Two methods were used for manufacturing of tablets, direct compression and wet granulation. The produced tablets were sampled at the beginning, middle, and end of the compression cycle. An analysis of variance analysis indicated the significant effect (p < .05) of drug amount on the content uniformity of the powder blend and the corresponding tablets. For 1% w/w and 5% w/w formulations, incorporation of the drug in the granulating fluid provided tablets with excellent content uniformity and very low relative standard deviation (∼0.61%) during the whole tableting cycle compared to direct compression and granulation method with dry incorporation mode of the drug. Overall, gentle-wing mixer is a good candidate for mixing of low-dose cohesive drug and provides tablets with acceptable content uniformity with no need for pre-blending step.
Collapse
Affiliation(s)
- Bader B Alsulays
- a Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-kharj , Saudi Arabia
| | - Mohamed H Fayed
- a Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-kharj , Saudi Arabia.,b Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Ahmed Alalaiwe
- a Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-kharj , Saudi Arabia
| | - Saad M Alshahrani
- a Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-kharj , Saudi Arabia
| | - Abdullah S Alshetaili
- a Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-kharj , Saudi Arabia
| | - Sultan M Alshehri
- c Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Fars K Alanazi
- b Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
48
|
Sunkara D, Capece M. Influence of Material Properties on the Effectiveness of Glidants Used to Improve the Flowability of Cohesive Pharmaceutical Powders. AAPS PharmSciTech 2018; 19:1920-1930. [PMID: 29663287 DOI: 10.1208/s12249-018-1006-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effect of material properties, primarily particle size and surface energy, on the effectiveness of glidants used for the purpose of flowability enhancement. Three pharmaceutical grade glidants (Aerosil 200, Aerosil R972, and Cab-O-Sil M5P) were evaluated and blended with various pharmaceutical actives as well as cohesive excipients common to capsule and tablet formulation. Flowability enhancement was characterized by the flow function coefficient (ff c ). An industry-relevant mixer (Turbula mixer) and a highly efficient and effective mixer (LabRAM vibratory mixer) were used to further understand the effect of material properties on glidant effectiveness. While concepts of inter-particle cohesion and interaction strength were applied to evaluate their usefulness in understanding and predicting flowability enhancement, theoretical expectations did not fully explain the behavior of all three glidants. However, the study suggests that the low surface energy and optimal particle size of Aerosil R972 relative to the other glidants results in lower inter-particle force and consequently better flowability. Aerosil R972 was also shown to be more effectively utilized in the Turbula mixing process particularly for larger (d50 > 40 μm) and less cohesive (ff c > 3) materials. This may be due to its lower surface energy and hydrophobic surface which allows it to disperse easily. Overall, this study provides useful insight into the material properties which influence the effectiveness of glidants used in formulation development.
Collapse
|
49
|
Heng J, New T, Wilson P. On the application of an Eulerian granular model towards dilute phase pneumatic conveying. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Simulation of particle size segregation in a pharmaceutical tablet press lab-scale gravity feeder. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|