1
|
Geng L, Matsumoto M, Yao F, Umino M, Kamiya M, Mukai H, Kawakami S. Microfluidic post-insertion of polyethylene glycol lipids and KK or RGD high functionality and quality lipids in milk-derived extracellular vesicles. Eur J Pharm Sci 2024; 203:106929. [PMID: 39389168 DOI: 10.1016/j.ejps.2024.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
To achieve the desired delivery effect, extracellular vesicles (EVs) must bypass rapid clearance from circulation and exhibit affinity for target cells; however, it is difficult to simultaneously incorporate two materials into EVs. Post-insertion is a general modification method that can be performed by simply mixing different solutions. Previously, we have developed a microfluidic post-insertion method that supported fast and upscaled modification of EVs using KK-modified high-functionality and -quality (HFQ) lipids. Here, we used microfluidic post-insertion to achieve simultaneous incorporation of polyethylene glycol (PEG) lipids and KK or RGD-modified HFQ lipids into milk-derived EVs to avoid uptake from the reticuloendothelial system and increase the uptake into target cells. PEG lipid and HFQ lipids were formulated to produce micelles and subsequently mixed with EV solution using a microfluidic device. Compared to bulk mixing, microfluidic post-insertion showed higher cellular association. Altered cellular association capacities and endocytic pathways indicated simultaneous incorporation. The cellular association of modified EVs can be adjusted by altering the ratio of (EK)4-KK in micelles with slight changes in physicochemical properties. Furthermore, microfluidic post-insertion is also suitable for (SG)5-RGD, which is insoluble in phosphate-buffered saline (PBS). Our results may be valuable for the development and manufacture of functional EVs as drug delivery systems for clinical applications.
Collapse
Affiliation(s)
- Longjian Geng
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Makoto Matsumoto
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Feijie Yao
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Mizuki Umino
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki-shi, Nagasaki 852-8521, Japan.
| | - Mariko Kamiya
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| |
Collapse
|
2
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Peregrino GMS, Kudsiova L, Santin M. Poly(Epsilon-Lysine) Dendrons Inhibit Proliferation in HER2-Overexpressing SKBR3 Breast Cancer Cells at Levels Higher than the Low-Expressing MDA-MB-231 Phenotype and Independently from the Presentation of HER2 Bioligands in Their Structure. Int J Mol Sci 2024; 25:11987. [PMID: 39596057 PMCID: PMC11593396 DOI: 10.3390/ijms252211987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Among the known breast cancers, the subtype with HER2 receptors-overexpressing cells is associated with a poor prognosis. The adopted monoclonal antibody Trastuzumab has improved clinical outcomes, but it is associated with drug resistance and relatively high costs. The present work adopted the peptide solid-phase synthesis method to synthesise branched poly(ε-lysine) peptide dendrons with 8 branching arms integrating, at their carboxy terminal molecular root, either an arginine or the HER2 receptor-binding sequence LSYCCK or the scramble sequence CSCLYK. These dendrons were synthesised in quantities higher than 100 mg/batch and with a purity exceeding 95%. When tested with two types of breast cancer cells, the dendrons led to levels of inhibition in the HER2 receptor-overexpressing breast cancer cells (SKBR3) comparable to Trastuzumab and higher than breast cancer cells with low receptor expression (MDA-MB-231) where inhibition was more moderate. Noticeably, the presence of the amino acid sequence LSYCCK at the dendron molecular root did not appear to produce any additional inhibitory effect. This was demonstrated also when the scramble sequence CSCLYK was integrated into the dendron and by the lack of any antiproliferative effect by the control linear target sequence. The specific inhibitory effect on proliferation was finally proven by the absence of cytotoxicity and normal expression of the cell migration marker N-Cadherin. Therefore, the present study shows the potential of poly(ε-lysine) dendrons as a cost-effective alternative to Trastuzumab in the treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Giordana M. S. Peregrino
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK; (G.M.S.P.); (L.K.)
| | - Laila Kudsiova
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK; (G.M.S.P.); (L.K.)
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai International Academic City, Dubai P.O. Box 341799, United Arab Emirates
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN2 4GJ, UK; (G.M.S.P.); (L.K.)
| |
Collapse
|
4
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Kato N, Yamada S, Suzuki R, Iida Y, Matsumoto M, Fumoto S, Arima H, Mukai H, Kawakami S. Development of an apolipoprotein E mimetic peptide-lipid conjugate for efficient brain delivery of liposomes. Drug Deliv 2023; 30:2173333. [PMID: 36718920 PMCID: PMC9891163 DOI: 10.1080/10717544.2023.2173333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 02/01/2023] Open
Abstract
Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG)5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.
Collapse
Affiliation(s)
- Naoya Kato
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sakura Yamada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Rino Suzuki
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiki Iida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Makoto Matsumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hidetoshi Arima
- School of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hidefumi Mukai
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Hagimori M, Kato N, Orimoto A, Suga T, Kawakami S. Development of Triple-Negative Breast Cancer-Targeted Liposomes with MUC16 Binding Peptide Ligand in Triple-Negative Breast Cancer Cells. J Pharm Sci 2023; 112:1740-1745. [PMID: 36878391 DOI: 10.1016/j.xphs.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant tumor that does not express the estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2). As molecular approaches to these targets have limited clinical utility in TNBC, novel strategies for the treatment of TNBC are urgently needed. MUC16 (Mucin-16) is a glycoprotein involved in cell proliferation and apoptosis and is overexpressed in breast cancer. To develop a clinically available strategy for TNBC treatment, we synthesized a MUC16 targeted peptide (EVQ)-grafted lipid derivative, EVQ-(SG)5-lipid, and prepared EVQ-(SG)5/PEGylated liposomes of 100 nm by size and a slightly negative ζ-potential value. Thus, we aimed at investigating the association between EVQ-(SG)5/PEGylated and TNBC cell lines by interacting with MUC16 using an in vitro model. In addition, we aimed at exploring the intracellular distribution and cellular uptake pathway of EVQ-(SG)5/PEGylated liposomes as novel drug delivery carriers for TNBC.
Collapse
Affiliation(s)
- Masayori Hagimori
- Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya, 663-8179, Japan.
| | - Naoya Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Akira Orimoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tadaharu Suga
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| |
Collapse
|
8
|
Sugimoto Y, Suga T, Kato N, Umino M, Yamayoshi A, Mukai H, Kawakami S. Microfluidic Post-Insertion Method for the Efficient Preparation of PEGylated Liposomes Using High Functionality and Quality Lipids. Int J Nanomedicine 2022; 17:6675-6686. [PMID: 36597433 PMCID: PMC9805735 DOI: 10.2147/ijn.s390866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Targeted liposomes using ligand peptides have been applied to deliver therapeutic agents to the target sites. The post-insertion method is commonly used because targeted liposomes can be prepared by simple mixing of ligand peptide-lipid and liposomes. A large-scale preparation method is required for the clinical application of ligand-peptide-modified liposomes. Large-scale preparation involves an increase in volume and a change in the preparation conditions. Therefore, the physicochemical properties of liposomes may change owing to large alterations in the preparation conditions. To address this issue, we focused on a microfluidic device and developed a novel ligand peptide modification method, the microfluidic post-insertion method. Methods We used integrin αvβ3-targeted GRGDS (RGD) and cyclic RGDfK (cRGD)-modified high functionality and quality (HFQ) lipids, which we had previously developed. First, the preparation conditions of the total flow rate in the microfluidic device for modifying HFQ lipids to polyethylene glycol (PEG)-modified (PEGylated) liposomes were optimized by evaluating the physicochemical properties of the liposomes. The targeting ability of integrin αvβ3-expressing colon 26 murine colorectal carcinoma cells was evaluated by comparing the cellular association properties of the liposomes prepared by the conventional post-insertion method. Results When the RGD-HFQ lipid was modified into PEGylated liposomes by varying the total flow rate (1, 6, and 12 mL/min) of the microfluidic device, as the total flow rate increased, the polydispersity index also increased, whereas the particle size did not change. Furthermore, the RGD- and cRGD-modified PEGylated liposomes prepared at a total flow rate of 1 mL/min showed high cellular association properties equivalent to those prepared by the conventional post-insertion method. Conclusion Microfluidic post-insertion method of HFQ lipids might be useful for clinical application and large-scale preparation of targeted liposomes.
Collapse
Affiliation(s)
- Yuri Sugimoto
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Department of Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mizuki Umino
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Asako Yamayoshi
- Department of Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan,Correspondence: Shigeru Kawakami, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan, Tel/Fax +81 95 819 8563, Email
| |
Collapse
|
9
|
Synthesis and evaluation of a novel adapter lipid derivative for preparation of cyclic peptide-modified PEGylated liposomes: Application of cyclic RGD peptide. Eur J Pharm Sci 2022; 176:106239. [PMID: 35714942 DOI: 10.1016/j.ejps.2022.106239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Peptide ligand modified nanoparticles can simply prepared by post-insertion method to mix pre-formed nanoparticles with peptide-lipid conjugates in an aqueous solution at an optimal temperature. Therefore, water dispersibility of peptide-lipid conjugates is a very important factor for implementing the post-insertion method. We proposed that highly water dispersible peptide-lipid conjugates can be easily synthesized by separately designing novel adapter lipids with different water dispersibility and reacting them with ligands in a highly efficient manner. Adapter lipids have three critical roles; as spacers of ligand-conjugated lipids for efficient ligand presentation, as structures that form discrete molecular weight distributions, and as providing water dispersibility. In this study, we developed a novel adapter-lipid derivative that enables a variety of cyclic peptide modifications using the click reaction. The integrin αvβ3-targeted cyclic RGDfK (cRGD) peptide was selected as the cyclic peptide ligand. We designed a novel alkyne-tagged lipid with a discrete peptide spacer and bound the cRGD peptide using a click reaction to synthesize a cRGD-conjugated lipid with good water dispersibility for the preparation of cRGD-modified PEGylated liposomes using the post-insertion method. We also revealed that cRGD-modified PEGylated liposomes are efficiently associated with integrin αvβ3-expressing murine colon carcinoma (Colon-26) cells in a modification amount- and peptide sequence-dependent manner, showing high cytotoxicity upon loading with doxorubicin. This novel adapter lipid derivative can be used to synthesize various cyclic peptides by click reactions and will provide useful insights for the future development of cyclic peptide-modified PEGylated liposomes.
Collapse
|
10
|
Synthesis and Evaluation of High Functionality and Quality Cell-penetrating Peptide Conjugated Lipid for Octaarginine Modified PEGylated Liposomes In U251 and U87 Glioma Cells. J Pharm Sci 2021; 111:1719-1727. [PMID: 34863974 DOI: 10.1016/j.xphs.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022]
Abstract
The use of peptide ligand modified PEGylated liposomes has been widely investigated for tumor targeting. Peptides are mainly inserted in the liposomal lipid bilayer using PEG2K-lipid spacer (Peptide-PEG2K-DSPE). However, a lower cellular uptake from longer nonlinear PEG2K spacer was reported, we here synthesized a high functionality and quality (HFQ) lipid with a short, linear serine-glycine repeated peptide [(SG)5] spacer. The objective of the current study is to develop novel octaarginine (R8) peptide-HFQ lipid grafted PEGylated liposomes for glioma cells targeting. In vitro liposomes characterization showed that the mean particle size of all liposomal formulations was in the nano-scale range < 120 nm, with a small PDI value (i.e. ∼0.2) and had a spherical shape under Transmission Electron Microscope, indicating a homogenous particle size distribution. The flow cytometry in vitro cellular association data with U251 MG and U87 cells revealed that 1.5% R8-(SG)5-lipid-PEGylated liposomes exhibited significantly higher cellular association of ∼15.87 and 7.59-fold than the conventional R8-PEG2K-lipid-PEGylated liposomes (10.4 and 6.19-fold), respectively, relative to the unmodified PEGylated liposomes. Moreover, intracellular distribution studies using confocal laser scanning microscopy (CLSM) corroborated the results of the in vitro cell association. The use of ligand-HFQ-lipid liposomes could be a potential alternative to ligand-PEG2K-lipid-modified liposomes as a drug delivery system for tumor targeting.
Collapse
|
11
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
12
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Reduction of enzymatic degradation of insulin via encapsulation in a lipidic bicontinuous cubic phase. J Colloid Interface Sci 2021; 592:135-144. [PMID: 33647562 DOI: 10.1016/j.jcis.2021.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
Oral delivery of the protein drug insulin is not currently possible due to rapid degradation of the secondary structure in low pH conditions in the stomach and under the influence of digestive enzymes in the gastrointestinal tract. Effective oral delivery of insulin and other protein- or peptide-based drugs will, therefore, require encapsulation in a material or nanoparticle. Herein we investigate the ability of the lipid bicontinuous cubic phase formed by two lipids, monoolein (MO) and phytantriol (PT), to protect encapsulated insulin from degradation by the enzyme chymotrypsin, typically found in the small intestine. High encapsulation efficiency (>80%) was achieved in both lipid cubic phases with retention of the underlying cubic nanostructure. Release of insulin from the cubic matrix was shown to be diffusion-controlled; the release rate was dependent on the cubic nanostructure and consistent with measured diffusion coefficients for encapsulated insulin. Encapsulation was shown to significantly retard enzymatic degradation relative to that in water, with the protective effect lasting up to 2 h, exemplifying the potential of these materials to protect the encapsulated protein payload during oral delivery.
Collapse
|
14
|
Naik H, Sonju JJ, Singh S, Chatzistamou I, Shrestha L, Gauthier T, Jois S. Lipidated Peptidomimetic Ligand-Functionalized HER2 Targeted Liposome as Nano-Carrier Designed for Doxorubicin Delivery in Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:221. [PMID: 33800723 PMCID: PMC8002094 DOI: 10.3390/ph14030221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic index of chemotherapeutic agents can be improved by the use of nano-carrier-mediated chemotherapeutic delivery. Ligand-targeted drug delivery can be used to achieve selective and specific delivery of chemotherapeutic agents to cancer cells. In this study, we prepared a peptidomimetic conjugate (SA-5)-tagged doxorubicin (Dox) incorporated liposome (LP) formulation (SA-5-Dox-LP) to evaluate the targeted delivery potential of SA-5 in human epidermal growth factor receptor-2 (HER2) overexpressed non-small-cell lung cancer (NSCLC) and breast cancer cell lines. The liposome was prepared using thin lipid film hydration and was characterized for particle size, encapsulation efficiency, cell viability, and targeted cellular uptake. In vivo evaluation of the liposomal formulation was performed in a mice model of NSCLC. The cell viability studies revealed that targeted SA-5-Dox-LP showed better antiproliferative activity than non-targeted Dox liposomes (Dox-LP). HER2-targeted liposome delivery showed selective cellular uptake compared to non-targeted liposomes on cancer cells. In vitro drug release studies indicated that Dox was released slowly from the formulations over 24 h, and there was no difference in Dox release between Dox-LP formulation and SA-5-Dox-LP formulation. In vivo studies in an NSCLC model of mice indicated that SA-5-Dox-LP could reduce the lung tumors significantly compared to vehicle control and Dox. In conclusion, this study demonstrated that the SA-5-Dox-LP liposome has the potential to increase therapeutic efficiency and targeted delivery of Dox in HER2 overexpressing cancer.
Collapse
Affiliation(s)
- Himgauri Naik
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (H.N.); (J.J.S.); (S.S.); (L.S.)
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (H.N.); (J.J.S.); (S.S.); (L.S.)
| | - Sitanshu Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (H.N.); (J.J.S.); (S.S.); (L.S.)
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology (PMI), School of Medicine, USC, SC 6439 Garners Ferry Rd, Columbia, SC 29208, USA;
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (H.N.); (J.J.S.); (S.S.); (L.S.)
| | - Ted Gauthier
- Biotechnology Laboratory, LSU AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (H.N.); (J.J.S.); (S.S.); (L.S.)
| |
Collapse
|
15
|
Hagimori M, Mendoza-Ortega EE, Krafft MP. Synthesis and physicochemical evaluation of fluorinated lipopeptide precursors of ligands for microbubble targeting. Beilstein J Org Chem 2021; 17:511-518. [PMID: 33727974 PMCID: PMC7934786 DOI: 10.3762/bjoc.17.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ligand-targeted microbubbles are focusing interest for molecular imaging and delivery of chemotherapeutics. Lipid-peptide conjugates (lipopeptides) that feature alternating serine-glycine (SG) n segments rather than classical poly(oxyethylene) linkers between the lipid polar head and a targeting ligand were proposed for the liposome-mediated, selective delivery of anticancer drugs. Here, we report the synthesis of perfluoroalkylated lipopeptides (F-lipopeptides) bearing two hydrophobic chains (C n F2 n +1, n = 6, 7, 8, 1-3) grafted through a lysine moiety on a hydrophilic chain composed of a lysine-serine-serine (KSS) sequence followed by 5 SG sequences. These F-lipopeptides are precursors of targeting lipopeptide conjugates. A hydrocarbon counterpart with a C10H21 chain (4) was synthesized for comparison. The capacity for the F-lipopeptides to spontaneously adsorb at the air/water interface and form monolayers when combined with dipalmitoylphosphatidylcholine (DPPC) was investigated. The F-lipopeptides 1-3 demonstrated a markedly enhanced tendency to form monolayers at the air/water interface, with equilibrium surface pressures reaching ≈7-10 mN m-1 versus less than 1 mN m-1 only for their hydrocarbon analog 4. The F-lipopeptides penetrate in the DPPC monolayers in both liquid expanded (LE) and liquid condensed (LC) phases without interfacial film destabilization. By contrast, 4 provokes delipidation of the interfacial film. The incorporation of the F-lipopeptides 1-3 in microbubbles with a shell of DPPC and dipalmitoylphosphatidylethanolamine-PEG2000 decreased their mean diameter and increased their stability, the best results being obtained for the C8F17-bearing lipopeptide 3. By contrast, the hydrocarbon lipopeptide led to microbubbles with a larger mean diameter and a significantly lower stability.
Collapse
Affiliation(s)
- Masayori Hagimori
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
- Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Estefanía E Mendoza-Ortega
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
16
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun X, Tokunaga R, Nagai Y, Miyahara R, Kishimura A, Kawakami S, Katayama Y, Mori T. Ligand Design for Specific MHC Class I Molecules on the Cell Surface. Biochemistry 2020; 59:4646-4653. [PMID: 33252220 DOI: 10.1021/acs.biochem.0c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I) molecules on the cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. This strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed in autoimmune diseases.
Collapse
Affiliation(s)
- Xizheng Sun
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reika Tokunaga
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoko Nagai
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Miyahara
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Advanced Medical Innovation, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li, 32023 ROC, Taiwan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Kawakami S, Suga T. [Development of Nano-DDS Carriers for Control of Spatial Distribution Using Multi-color Deep Imaging]. YAKUGAKU ZASSHI 2020; 140:633-640. [PMID: 32378663 DOI: 10.1248/yakushi.19-00218-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because active-targeted liposomes are very complex formulations, quality characteristics of functional lipids have not been defined yet, and this is a major obstacle in clinical application of active targeted liposomes. We have developed high functionality and quality (HFQ) lipids, which define quality characteristics of functional lipids for clinical drug delivery system (DDS) applications. Because HFQ lipids are designed to enable facile and rapid functionalization of DDS carrier by simple and one-step mixing, we are expanding applications for not only liposomes but also exosomes and cells. Recently, we developed multi-color deep imaging by tissue clearing for analysis of spatial distribution of DDS in various tissues. Nanocarriers are usually non-uniformly distributed in solid tumors because of their heterogeneity. Especially, in refractory cancer such as pancreatic cancer, the presence of collagen and blood vessels greatly affects intra-tumor distribution of DDS carrier. Therefore information on spatial relations between the tissue structure and DDS carrier is important to regulate precisely intra-tumor distribution of DDS carrier. Recently, our group has established multi-color deep imaging to analyze spatial distribution of stromal collagen, liposomes, and blood vessels in pancreatic tumor tissue. In this review, we present recent research in developing HFQ lipids. Moreover, current status of research on DDS for pancreatic cancer treatment is reviewed.
Collapse
Affiliation(s)
- Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
19
|
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101549] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020; 43:1978-1997. [DOI: 10.1002/jssc.201901340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhi Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Yuyao Zhang
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Shiwen Song
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| | - Lei Yin
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Research Institute of Translational MedicineThe First Bethune Hospital of Jilin University Changchun P. R. China
| | - Dong Sun
- Department of Biopharmacy, College of Life ScienceJilin University Changchun P. R. China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education”Yantai University Yantai P. R. China
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life ScienceJilin University Changchun P. R. China
- Beijing Institute of Drug Metabolism Beijing P. R. China
| |
Collapse
|
21
|
Fang Z, Wang X, Sun Y, Fan R, Liu Z, Guo R, Xie D. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia. NANOSCALE 2019; 11:23000-23012. [PMID: 31769777 DOI: 10.1039/c9nr07391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytarabine (Ara-C) is an essential medicine used in the clinical treatment of acute lymphoblastic leukemia. However, Ara-C suffers from high hydrophilicity, rapid plasma degradation and significant side effects. Thus, herein, to eliminate the limitations of Ara-C in the treatment of leukemia, Sgc8 aptamer targeting and glutathione (GSH)-responsive polymeric micelles (PCL-ss-Ara@Sgc8-BSA) were prepared. The prodrug was synthesized via covalent bond formation between acryloyl chloride-terminal PCL-ss-PCL and Ara-C, and surface decoration with Sgc8-bovine serum albumin (Sgc8-BSA). The obtained PCL-ss-Ara@Sgc8-BSA exhibited good GSH-responsive drug release behavior, obvious targetability and sufficient antitumor effect to acute lymphoblastic leukemia (ALL) cells (CCRF-CEM). A hemolysis test was further carried out to demonstrate that these polymeric micelles are safe to be administrated intravenously. Compared with free Ara-C, PCL-ss-Ara@Sgc8-BSA significantly enhanced tumor growth inhibition in mice bearing CCRF-CEM xenograft tumors, while causing little side effects, and improved the survival rate of CCRF-CEM tumor-bearing mice in vivo. Therefore, this new self-assembling small molecular prodrug equipped with Sgc8 targeting function is a potential treatment for the targeted therapy of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Zhigang Fang
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510010, China
| | - Xiaozhen Wang
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510010, China
| | - Yanling Sun
- Department of Hematology, Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510010, China
| | - Ruifang Fan
- Department of Prevention & Healthcare, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510010, China
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Deming Xie
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Sabir F, Farooq RK, Asim.ur.Rehman, Ahmed N. Monocyte as an Emerging Tool for Targeted Drug Delivery: A Review. Curr Pharm Des 2019; 24:5296-5312. [DOI: 10.2174/1381612825666190102104642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
Abstract
Monocytes are leading component of the mononuclear phagocytic system that play a key role in phagocytosis and removal of several kinds of microbes from the body. Monocytes are bone marrow precursor cells that stay in the blood for a few days and migrate towards tissues where they differentiate into macrophages. Monocytes can be used as a carrier for delivery of active agents into tissues, where other carriers have no significant access. Targeting monocytes is possible both through passive and active targeting, the former one is simply achieved by enhanced permeation and retention effect while the later one by attachment of ligands on the surface of the lipid-based particulate system. Monocytes have many receptors e.g., mannose, scavenger, integrins, cluster of differentiation 14 (CD14) and cluster of differentiation 36 (CD36). The ligands used against these receptors are peptides, lectins, antibodies, glycolipids, and glycoproteins. This review encloses extensive introduction of monocytes as a suitable carrier system for drug delivery, the design of lipid-based carrier system, possible ways for delivery of therapeutics to monocytes, and the role of monocytes in the treatment of life compromising diseases such as cancer, inflammation, stroke, etc.
Collapse
Affiliation(s)
- Fakhara Sabir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rai K. Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O Box 1982, Dammam 31441, Saudi Arabia
| | - Asim.ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
23
|
Peng JQ, Fumoto S, Suga T, Miyamoto H, Kuroda N, Kawakami S, Nishida K. Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles. J Control Release 2019; 302:42-53. [PMID: 30926479 DOI: 10.1016/j.jconrel.2019.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/25/2019] [Indexed: 01/26/2023]
Abstract
Synchronized bio-distribution of combination therapies has several merits such as synergistic effects and reduced side-effects. Co-delivery of a protein and small molecule drug using a single nanocarrier is challenging because they possess totally different characteristics. Herein, we report the development of sophisticated nanoparticles composed of lipids, calcium carbonate and RGD peptide ligands for the co-delivery of a protein and small molecule drug combination via a simple preparation method. A 'one-step' ethanol injection method was employed to prepare the highly organized nanoparticles. The nanoparticles exhibited a spherical shape with ca. 130 nm diameter, and clearly had an integrated lipid layer covering the periphery. As a ligand, an RGD-modified lipid was post-inserted into the nanoparticles, which was important to overcome the 'PEG dilemma'. The pH-sensitivity of the targeted nanoparticles contributed to the efficient intracellular co-delivery of a protein and drug combination in Colon26 tumor cells, and noticeably improved their accumulation in the tumor region of xenograft mice. Synchronized bio-distribution of the protein and drug was achieved, which was the foundation for the synergistic effects of the combination. The targeting capability of the nanoparticles along with their pH-sensitive drug release and the synchronized bio-distribution of their cargos led to the significant antitumor activity of the SOD and paclitaxel combination in mice. This study provides novel information for the design and preparation of functionalized nanoparticles for the delivery of a protein/drug combination in vivo.
Collapse
Affiliation(s)
- Jian Qing Peng
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan.
| | - Tadaharu Suga
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
24
|
Synthesis of a high functionality and quality lipid with gp130 binding hydrophobic peptide for the preparation of human glioma cell-targeted PEGylated liposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Zhang H, Guo Z, He B, Dai W, Zhang H, Wang X, Zhang Q. The Improved Delivery to Breast Cancer Based on a Novel Nanocarrier Modified with High-Affinity Peptides Discovered by Phage Display. Adv Healthc Mater 2018; 7:e1800269. [PMID: 29956504 DOI: 10.1002/adhm.201800269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Ligand-targeted nanosystems have the potential to realize site-specific tumor therapy and alleviate unwanted side effects of many chemotherapeutic agents, and one of the most key issues seems to be the construction of an effective nanocarrier. Based on different processes of phage display techniques, 38 cell-binding peptides and 32 cell-internalizing peptides are discovered. Four of these ligand peptides [FIPFDPMSMRWE (FIP), NASSFPTNSRWA (NAS), GLHTSATNLYLH (GLH), and ALAVAPSRWWNE (ALA), respectively] exhibit high affinity to MCF7 human breast cancer cells. Among them, NAS and ALA are reported for the first time, whose affinities are 20.6 and 76.3 times that of the random peptide control, respectively. Both NAS and ALA modifications to doxorubicin-loaded lipid nanosytems [LP(DOX)] show stronger tumor inhibition, longer animal survival time, and less body weight loss, compared to unmodified or control peptide modified nanosystems, on an MCF7 tumor-bearing mouse model. In conclusion, the cell-binding peptide NAS and cell-internalizing peptide ALA can be used for ligand-targeted delivery of antitumor drugs. It seems that the in vivo antitumor effect of these ligand-targeted nanosystems is closely related to their ligand-cell affinity, but fairly tolerant of the ligand types.
Collapse
Affiliation(s)
- Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| | - Zhaoming Guo
- School of Life Science and Medicine; Dalian University of Technology; Liaoning 124221 China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University Health Science Center; Beijing 100191 China
| |
Collapse
|
26
|
Suga T, Kato N, Hagimori M, Fuchigami Y, Kuroda N, Kodama Y, Sasaki H, Kawakami S. Development of High-Functionality and -Quality Lipids with RGD Peptide Ligands: Application for PEGylated Liposomes and Analysis of Intratumoral Distribution in a Murine Colon Cancer Model. Mol Pharm 2018; 15:4481-4490. [PMID: 30179010 DOI: 10.1021/acs.molpharmaceut.8b00476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
High-functionality and -quality (HFQ) lipids have a discrete molecular weight and good water dispersibility and can be produced by solid-phase peptide synthesis. Therefore, HFQ lipids are a promising material for the preparation of ligand-grafted PEGylated liposomes. Recently, we have reported serine-glycine repeated peptides ((SG) n) as a spacer of HFQ lipids and to substitute a conventional PEG spacer. We demonstrated the advantage of using (SG) n spacers for peptide ligand presentation on the liposomal surface in vitro; however, the use of (SG) n spacers in ligand-grafted PEGylated liposomes in vivo has not been validated. The aim of this study was to validate the in vivo targeting ability of HFQ lipid-grafted PEGylated liposomes. We synthesized lipids containing GRGDS (RGD-(SG) n-lipid) to target integrin αvβ3 and prepared RGD-(SG) n/PEGylated liposomes. Subsequently, their cellular uptake characteristics in murine colon carcinoma (Colon-26) cells were evaluated. Two-color imaging of liposomes and tumor blood vessels following tissue clearing was performed to examine the spatial intratumoral distribution of liposomes. RGD-(SG)5/PEGylated liposomes were selectively associated with the cells in vitro. In vivo analysis of intratumoral distribution following tissue clearing revealed the superior targeting ability of RGD-(SG)5/PEGylated liposomes compared with that of conventional RGD-PEG2000/PEGylated liposomes for both tumor tissues and tumor blood vessels. We successfully synthesized RGD-HFQ lipids to prepare RGD-grafted PEGylated liposomes for the efficient targeting of integrin αvβ3-expressing cells. To the best of our knowledge, this is the first report of the intratumoral distribution of ligand-grafted PEGylated liposomes by two-color imaging following tissue clearing.
Collapse
Affiliation(s)
- Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , 1-7-1 Sakamoto-machi , Nagasaki 852-8588 , Japan.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences , Nagasaki University , 1-14 Bunkyo-machi , Nagasaki 852-8521 , Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , 1-7-1 Sakamoto-machi , Nagasaki 852-8588 , Japan
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , 1-7-1 Sakamoto-machi , Nagasaki 852-8588 , Japan
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , 1-7-1 Sakamoto-machi , Nagasaki 852-8588 , Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences , Nagasaki University , 1-14 Bunkyo-machi , Nagasaki 852-8521 , Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy , Nagasaki University Hospital , 1-7-1 Sakamoto-machi , Nagasaki 852-8501 , Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy , Nagasaki University Hospital , 1-7-1 Sakamoto-machi , Nagasaki 852-8501 , Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences , Nagasaki University , 1-7-1 Sakamoto-machi , Nagasaki 852-8588 , Japan
| |
Collapse
|
27
|
Wang W, Suga T, Hagimori M, Kuroda N, Fuchigami Y, Kawakami S. Investigation of Intracellular Delivery of NuBCP-9 by Conjugation with Oligoarginines Peptides in MDA-MB-231 Cells. Biol Pharm Bull 2018; 41:1448-1455. [PMID: 30175779 DOI: 10.1248/bpb.b18-00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligoarginines (Rn) are becoming promising tools for the intracellular delivery of biologically active molecules. NuBCP-9, a peptide that induces apoptosis in B-cell lymphoma 2 (Bcl-2)-expressing cancer cells, has been reported to promote the uptake and non-specific cytotoxicity of R8, also called octaarginine. However, it is unknown whether a similar synergistic effect can be seen with other Rn. In this study, we conjugated NuBCP-9 with various Rn (n=8, 10, 12, 14) to investigate and compare their cellular uptake characteristics. In addition, their non-specific cytotoxicity and apoptosis-inducing abilities were evaluated. We found that NuBCP-9 conjugated with Rn enhanced cellular uptake mainly through clathrin-mediated endocytosis and macropinocytosis, and that the uptake pathways were not different from those used by unconjugated Rn. However, the cytotoxicity study showed that NuBCP-9-R12 and NuBCP-9-R14 conjugates enhanced non-specific cytotoxicity. We found that NuBCP-9-R10 conjugate had the highest uptake efficiency and induced correspondingly high levels of apoptosis, while resulting in a tolerable degree of non-specific toxicity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University.,Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
28
|
Hagimori M, Chinda Y, Suga T, Yamanami K, Kato N, Inamine T, Fuchigami Y, Kawakami S. Synthesis of high functionality and quality mannose-grafted lipids to produce macrophage-targeted liposomes. Eur J Pharm Sci 2018; 123:153-161. [PMID: 30030100 DOI: 10.1016/j.ejps.2018.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023]
Abstract
The mannose receptor, which is responsible for tumor invasion, proliferation, and metastasis in the tumor microenvironment, is overexpressed in tumor-associated macrophages. Mannose is commonly applied to PEGylated liposomes in macrophage-targeted cancer therapy. To develop a high functionality and quality (HFQ) lipid for macrophage-targeted liposomes, we designed a novel mannosylated lipid with improved mannose receptor binding affinity using serine-glycine repeats (SG)n. We synthesized Man(S)-(SG)5-SSK-K(Pal)2 using only a fluorenylmethyloxycarbonyl (Fmoc) protecting group solid-phase peptide synthesis method, which produced a high-quality lipid at a moderately good yield. We then prepared Man-(SG)5/PEGylated liposomes using a post-insertion technique to insert Man(S)-(SG)5-SSK-K(Pal)2 into the PEGylated liposomes. In vitro cell investigations revealed that the Man-(SG)5/PEGylated liposomes effectively associated with mouse peritoneal macrophages by interacting with the mannose receptors. The results suggest that we produced a novel high-quality, highly functional mannosylated lipid that is suitable for clinical drug delivery applications.
Collapse
Affiliation(s)
- Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yorinao Chinda
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tadaharu Suga
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuto Yamanami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yuki Fuchigami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
29
|
Zhang J, Du Z, Pan S, Shi M, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21590-21600. [PMID: 29798663 DOI: 10.1021/acsami.8b01806] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The therapeutic efficacy of chemotherapy is dramatically hindered by multidrug resistance (MDR), which is induced by the overexpression of P-glycoprotein (P-gp). The codelivery of an antitumor drug and siRNA is an effective strategy recently applied in overcoming P-gp-related MDR. In this study, a multifunctional drug delivery system with both pH-sensitive feature and active targetability was designed, in which MDR1-siRNA and DOX were successfully loaded. The resulting carrier EphA10 antibody-conjugated pH-sensitive doxorubicin (DOX), MDR1-siRNA coloading lipoplexes (shortened as DOX + siRNA/ePL) with high serum stability had favorable physicochemical properties. DOX + siRNA/ePL exhibited an incremental cellular uptake, enhanced P-gp downregulation efficacy, as well as a better cell cytotoxicity in human breast cancer cell line/adriamycin drug-resistant (MCF-7/ADR) cells. The results of the intracellular colocalization study indicated that DOX + siRNA/ePL possessed the ability for pH-responsive rapid endosomal escape in a time-dependent characteristic. Meanwhile, the in vivo antitumor activities suggested that DOX + siRNA/ePL could prolong the circulation time as well as specifically accumulate in the tumor cells via receptor-mediated endocytosis after intravenous administration into the blood system. The histological study further demonstrated that DOX + siRNA/ePL could inhibit the proliferation, induce apoptosis effect, and downregulate the P-gp expression in vivo. Altogether, DOX + siRNA/ePL was expected to be a suitable codelivery system for overcoming the MDR effect.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Zhouqi Du
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Jie Li
- Mudanjiang Medical University , Tongxiang Street No. 3 , Mudanjiang , Heilongjiang 157011 , PR China
| | - Chunrong Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| |
Collapse
|
30
|
Han JH, Park J, Seo YW, Kim TH. Designing a cancer therapeutic peptide by combining the mitochondrial targeting domain of Noxa and ErbB2-targeting moieties. FEBS Lett 2017; 592:103-111. [PMID: 29193033 DOI: 10.1002/1873-3468.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Abstract
Many anticancer drugs target epidermal growth factor receptors to inhibit receptor tyrosine kinases and tumor growth. Here, we show that an ErbB2-targeting pronecrotic peptide (KWSY:MTD) selectively kills tumor cells expressing ErbB2 in vitro. An antibody against ErbB2 inhibits KWSY:MTD-induced cell death. KWSY:MTD causes membrane permeability which allows propidium iodide entry into the cytosol and the release of HMGB1 into the media, indicative of necrosis. Mitochondrial swelling occurs in response to KWSY:MTD. Moreover, in vivo analysis using a mouse model shows that KWSY:MTD partially suppressed growth in tumor tissue bearing ErbB2-expressing cells, but did not have obvious toxicity in mouse liver or kidney tissue. Taken together, KWSY:MTD has potential as an ErbB2-targeting anticancer drug.
Collapse
Affiliation(s)
- Ji-Hye Han
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| | - Junghee Park
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| | - Young-Woo Seo
- Korea Basic Science Institute Gwang-Ju Center, Chonnam National University, Gwang-Ju, Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwang-Ju, Korea
| |
Collapse
|
31
|
Affiliation(s)
- Kıvılcım Öztürk-Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|