1
|
Zhou S, Wang Y, Li Z, Wu F, Hong Y, Shen L, Lin X. Fingerprinting of physical manufacturing properties of different acids for effervescent systems. Pharm Dev Technol 2024; 29:649-662. [PMID: 38864367 DOI: 10.1080/10837450.2024.2367519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to fingerprint the physical manufacturing properties of five commonly used acid sources in effervescent systems for designing the formulation and process of such systems. The hygroscopicity, texture properties, rheological torque, compressibility, tabletability, etc., were investigated to inspect 'powder direct compression (DC)' and 'wet granulation and compression' properties of citric (CA), tartaric (TA), malic (MA), fumaric (FA), and adipic acid (AA). The DC ability was evaluated by the SeDeM expert system. The results indicated that all acid powders failed to meet flowability requirements for DC, and plastic deformation dominated during compression. Furthermore, CA exhibited strong hygroscopicity and punch sticking, while MA demonstrated the best tabletability. TA had a large wet granulation space and was relatively the most suitable for DC. AA was extremely hygroscopic, and its flowability improved significantly as particle size increased. Finally, FA displayed the lowest hygroscopicity and ejection force as well as great compressibility and wet granulation space, and did not exhibit punch sticking, while the granule fragments dissolved slowly during disintegration. Generally speaking, the formulation or granulation affected the tabletability, indicating that pairing with other acids or suitable fillers could potentially improve its disadvantages. These multidimensional assessments effectively reduce the pre-exploration and enhance the efficiency of the development of effervescent systems.
Collapse
Affiliation(s)
- Shiyi Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiting Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
2
|
Chen L, Lin Y, Irdam E, Madden N, Osei-Yeboah F. Improving the Manufacturability of Cohesive and Poorly Compactable API for Direct Compression of Mini-tablets at High Drug Loading via Particle Engineering. Pharm Res 2022; 39:3185-3195. [PMID: 36319885 DOI: 10.1007/s11095-022-03413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To utilize a particle engineering strategy to improve the manufacturability of a cohesive and poorly compactable API at high drug loading for direct compression of mini-tablets. METHODS A high-shear mixer was used for wet milling during the API manufacturing process to obtain target particle size distributions. The targeted particles were characterized and formulated into blends by mixing with excipients. The formulated blends were compressed directly into mini-tablets using a compaction simulator. The tablet hardness, weight variation, and friability of the mini-tablets were characterized and compared with mini-tablets prepared with hammer milled APIs. RESULTS Compared to the hammer milled APIs, the wet milled APIs, had smoother surface, narrower particle size distributions and demonstrated a better flow properties. Moreover, the mini-tablets produced with the wet milled APIs exhibited better weight uniformity, robust tablet mechanical strength and ultimately better friability. In addition, unlike the hammer milled process, the wet milling process is controllable and easy to scale up. CONCLUSIONS This study successfully implemented API particle engineering through a high shear wet milling process to produce particles suitable for robust drug product manufacturing.
Collapse
Affiliation(s)
- Liang Chen
- Small Molecule Drug Product Development, Biogen, 225 Binney St., Cambridge, Massachusetts, 02142, USA.
| | - Yiqing Lin
- Small Molecule Drug Product Development, Biogen, 225 Binney St., Cambridge, Massachusetts, 02142, USA
| | - Erwin Irdam
- Small Molecule Drug Product Development, Biogen, 225 Binney St., Cambridge, Massachusetts, 02142, USA
| | - Nicole Madden
- Small Molecule Drug Product Development, Biogen, 225 Binney St., Cambridge, Massachusetts, 02142, USA
| | - Frederick Osei-Yeboah
- Small Molecule Drug Product Development, Biogen, 225 Binney St., Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
3
|
Shikha S, Lee YW, Doyle PS, Khan SA. Microfluidic Particle Engineering of Hydrophobic Drug with Eudragit E100─Bridging the Amorphous and Crystalline Gap. Mol Pharm 2022; 19:4345-4356. [PMID: 36268657 DOI: 10.1021/acs.molpharmaceut.2c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.
Collapse
Affiliation(s)
- Swati Shikha
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore
| | - Yi Wei Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore119077, Singapore
| | - Patrick S Doyle
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Harvard Medical School Initiative for RNA Medicine, Boston, Massachusetts02215, United States
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore
| |
Collapse
|
4
|
Chen FC, Liu WJ, Zhu WF, Yang LY, Zhang JW, Feng Y, Ming LS, Li Z. Surface Modifiers on Composite Particles for Direct Compaction. Pharmaceutics 2022; 14:pharmaceutics14102217. [PMID: 36297653 PMCID: PMC9612340 DOI: 10.3390/pharmaceutics14102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Direct compaction (DC) is considered to be the most effective method of tablet production. However, only a small number of the active pharmaceutical ingredients (APIs) can be successfully manufactured into tablets using DC since most APIs lack adequate functional properties to meet DC requirements. The use of suitable modifiers and appropriate co-processing technologies can provide a promising approach for the preparation of composite particles with high functional properties. The purpose of this review is to provide an overview and classification of different modifiers and their multiple combinations that may improve API tableting properties or prepare composite excipients with appropriate co-processed technology, as well as discuss the corresponding modification mechanism. Moreover, it provides solutions for selecting appropriate modifiers and co-processing technologies to prepare composite particles with improved properties.
Collapse
Affiliation(s)
- Fu-Cai Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Wei-Feng Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ling-Yu Yang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Ji-Wen Zhang
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Feng
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Shan Ming
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| | - Zhe Li
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| |
Collapse
|
5
|
Li J, Li Z, Ruan H, Gao Y, Hong Y, Shen L, Lin X. Improved direct compression properties of Gardeniae Fructus water extract powders via fluid bed-mediated surface engineering. Pharm Dev Technol 2022; 27:725-739. [PMID: 35920696 DOI: 10.1080/10837450.2022.2109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Direct compression (DC) attracts increasing attention for tablet manufacturing; however, its application in medicinal plant tablets is still extremely limited. In this work, eight kinds of the Gardeniae Fructus water extract powder (GF)-based composite particles (CPs) were prepared with different cohesive surface engineering materials, including dextran, inulin, hypromellose, and povidone, alone or in combination with mannitol and colloidal silica. Their physical properties and compacting parameters were characterized comprehensively. All the CPs showed marked improvement in tabletability, which is about 2-4 times higher than that of GF and physical mixtures (PMs). Specifically, the CPs showed a 7.45-26.48 times higher hardness value and a 1.26-2.74 times higher cohesiveness value than PMs. In addition, all the CPs (angle of repose being from 34.27° to 38.46°) showed better flowability than PMs (35.49° to 53.53°) and GF (51.86°). These results demonstrated that (i) fluid-bed coating was not a simple process of superposition and transmission of the physical properties of raw materials; and (ii) all the surface engineering materials studied could improve the DC properties of problematic GF to some degree. As a whole, through the design of fluid-bed coating CPs, qualified tablets with high GF loadings (up to 93%) were produced via DC.
Collapse
Affiliation(s)
- Jinzhi Li
- College of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo, 315100, PR China
| | - Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Hongsheng Ruan
- College of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo, 315100, PR China
| | - Yating Gao
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
6
|
Hadinoto K, Tran TT, Chua A, Cheow WS. Comparing environmental impacts of direct compaction versus wet granulation tableting methods for drugs with poor flowability by life cycle assessment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Siriwachirachai C, Pongjanyakul T. Particle Agglomeration of Acid-Modified Tapioca Starches: Characterization and Use as Direct Compression Fillers in Tablets. Pharmaceutics 2022; 14:1245. [PMID: 35745817 PMCID: PMC9227145 DOI: 10.3390/pharmaceutics14061245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Acid-modified tapioca starches (AMTSs) possessed good compressibility but showed poor particle flowability for preparing tablets by the direct compression method. The aims of this work were to prepare and characterize AMTS agglomerates using polyvinylpyrrolidone (PVP) as an agglomerating agent. The dilution potential and stability studies of the AMTS agglomerates were investigated. The results showed that particle enlargement of TS and AMTS could be achieved via agglomeration using PVP. The thermal behavior and molecular interaction of the agglomerates were revealed using DSC and FTIR spectroscopy, respectively. An increase in PVP concentrations resulted in greater particle strength of the TS agglomerates and a higher acid concentration for modification enhanced the strength of the AMTS agglomerates. All agglomerates presented good particle flowability. Moreover, the AMTS agglomerates provided higher compressibility hardness than the TS agglomerates. The addition of PVP could extend the disintegration time and slow drug dissolution from the agglomerate tablets. The humidity of the storage conditions influenced the thickness and hardness of the AMTS agglomerate tablets, and good physical and chemical stability of the tablets was obtained under ambient conditions and in the refrigerator. Furthermore, the AMTS agglomerates displayed good carrying capacity and possessed desirable characteristics for use in direct compression tablets.
Collapse
Affiliation(s)
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
8
|
Razavi SM, Tao Y, Scicolone J, Morker T, Cunningham C, Rajabi-Siahboomi A, Hausner DB, Muzzio FJ. Starch Products as Candidate Excipients in a Continuous Direct Compression Line. J Pharm Innov 2022. [DOI: 10.1007/s12247-020-09504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gao Y, Li J, Zhao L, Hong Y, Shen L, Wang Y, Lin X. Distribution pattern and surface nature-mediated differential effects of hydrophilic and hydrophobic nano-silica on key direct compaction properties of Citri Reticulatae Pericarpium powder by co-processing. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Römerová S, Dammer O, Zámostný P. Streamlining of the Powder Mixing Process based on a Segregation Test. AAPS PharmSciTech 2021; 22:190. [PMID: 34159445 DOI: 10.1208/s12249-021-02073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023] Open
Abstract
In direct compression of tablets, it is crucial to maintain content uniformity within acceptable margins, especially in formulations with low drug loading. To assure it, complex and multistep mixing processes are utilized in the industry. In this study, we suggest the use of a simple segregation test to evaluate mixing process performance and mixture segregation to produce tablets having satisfying content uniformity while keeping the process as simple and low cost as possible. Eventually, the formulation propensity to segregation can be evaluated using process analytical technology (PAT) to adjust the mixing process parameters to changing source drug properties. In this study, that approach was examined on a model drug with a broad batch-to-batch variability in particle size and shape. Excipients were chosen so that the resulting blend composition mimicked some marketed formulations. For each drug batch, two formulation blends were prepared through different preparation processes (one simple and one complex) and subsequently subjected to segregation tests. From those, segregation coefficients were obtained to compare segregation tendencies and homogeneity robustness between the drug batches and the blend preparation methods. The inter-particulate interactions were substantially influenced by the drug particle morphology and size and resulted in different segregation behavior. Based on these findings, a simple segregation test proved to be a useful tool for determining the suitability of different batches of the model drug to be used in a certain formulation. Moreover, for a particular batch A, the test revealed a potential for mixing process simplification and therefore process intensification and cost reduction.
Collapse
|
11
|
Zhu WF, Zhu L, Li Z, Wu WT, Guan YM, Chen LH, Mao ZX, Ming LS. The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose. Pharmaceutics 2021; 13:814. [PMID: 34070708 PMCID: PMC8228188 DOI: 10.3390/pharmaceutics13060814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
It is necessary to prepare porous lactose in order to improve the dissolution behavior of insoluble active ingredient. In this study, polyvinylpyrrolidone K30 (PVP K30) was firstly utilized as a templating agent with different use levels in preparing porous lactose. Then, the physical properties were profoundly characterized. Finally, the porous lactose was also employed as a health functional food/drug carrier to explore the effect on the dissolution behavior of curcumin. The results confirmed that (i) porous lactose was successfully prepared using PVP K30 as templating agent; (ii) PVP K30 significantly improved the yield of lactose in the spray drying; (iii) the improved powder properties of porous lactose were more conducive to the downstream operating process for the preparation of health functional food or drug; and (iv) the porous lactose significantly improved the dissolution behavior of curcumin. Therefore, the results obtained are beneficial to boosting the development of porous materials.
Collapse
Affiliation(s)
| | | | - Zhe Li
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Research Center for Differentiation and Development of TCM Basic Theory, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (W.-F.Z.); (L.Z.); (W.-T.W.); (Y.-M.G.); (L.-H.C.); (Z.-X.M.)
| | | | | | | | | | - Liang-Shan Ming
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Research Center for Differentiation and Development of TCM Basic Theory, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (W.-F.Z.); (L.Z.); (W.-T.W.); (Y.-M.G.); (L.-H.C.); (Z.-X.M.)
| |
Collapse
|
12
|
Yano T, Ohsaki S, Nakamura H, Watano S. Numerical study on compression processes of cohesive bimodal particles and their packing structure. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Blanco D, Antikainen O, Räikkönen H, Yliruusi J, Juppo AM. Effect of colloidal silicon dioxide and moisture on powder flow properties: Predicting in-process performance using image-based analysis. Int J Pharm 2021; 597:120344. [PMID: 33545294 DOI: 10.1016/j.ijpharm.2021.120344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
The effect of colloidal silicon dioxide (CSD) on powder flow properties of poor-flowing excipient lactose 200 M was investigated. Binary mixtures of different ratios of CSD as glidant were examined using a modern image-based flow measuring technique. Special attention was placed to subtle variations in powder flow from small changes in glidant concentration (0.025% w/w). Understanding the modes of interaction of particles and their effects on flowability using the method predicted the die filling performance during tablet manufacture. In addition, the importance of moisture content on powder flow properties was empirically underlined. A more efficient range of CSD was detected from 0.10 to 0.50% w/w in most of the tested conditions, which revealed a significant improvement in powder flow performance compared to higher amounts typically handled in the pharmaceutical industry.
Collapse
Affiliation(s)
- David Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland.
| | - Osmo Antikainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Heikki Räikkönen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Jouko Yliruusi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Anne Mari Juppo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| |
Collapse
|
14
|
Abstract
Tableting by direct compression (DC) is one of the simplest and most cost-effective drug manufacturing approaches. However, most active pharmaceutical ingredients (APIs) and excipients lack the compression and flow properties required to meet the needs of high-speed industrial tablet presses. Therefore, the majority of DC APIs and excipients are modified via processing/co-processing particle engineering techniques to boost their properties. Spray drying is one of the most commonly employed techniques to prepare DC grades of APIs and excipients with prominent advantages. This review aims to present an overview of the commercially marketed and investigationally-prepared DC APIs and excipients produced by spray drying.
Collapse
|
15
|
Direct compression tablet formulation of celecoxib enabled with a pharmaceutical solvate. Int J Pharm 2021; 596:120239. [PMID: 33484921 DOI: 10.1016/j.ijpharm.2021.120239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 01/01/2023]
Abstract
Celecoxib, an anti-inflammatory drug for pain and arthritis, is currently only available in capsule form. To reduce the onset time for a faster action and to lower the manufacturing cost, the tablet dosage form is more preferred. However, the commercial celecoxib (Form III) is not suitable for direct compression (DC) tablet manufacture due to poor flow, low bulk density, and tablet lamination. In this work, we overcome these challenges using a pharmaceutically acceptable dimethyl sulfoxide (DMSO) solvate of celecoxib. Aided with the DMSO solvate, an acceptable DC tablet formulation was successfully developed to manufacture tablets containing 200 mg celecoxib, with satisfactory manufacturability, disintegration, and in vitro dissolution performance.
Collapse
|
16
|
Salar-Behzadi S, Karrer J, Demiri V, Barrios B, Corzo C, Meindl C, Lochmann D, Reyer S. Polyglycerol esters of fatty acids as safe and stable matrix forming tableting excipients: A structure-function analysis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
An investigation into the impact of key process variables on the uniformity of powder blends containing a low-dose drug in a gentle-wing high shear mixer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Li Z, Wu F, Hong Y, Shen L, Lin X, Feng Y. The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating. AAPS PharmSciTech 2020; 21:201. [PMID: 32676863 DOI: 10.1208/s12249-020-01739-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Core-shell composite particles (CPs) are the most preferred choice for direct compaction (DC), but their application in herbal tablets is limited. Hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) are usually employed as the shell materials, but there are few, if any, researches exploring the different effects of HPMC and PVP on the properties of herbal CPs. In this study, the CPs containing HPMC (CP X-H) and CPs containing PVP (CP X-P) were prepared based on herbal powders (X). Their physical properties were characterized comprehensively. The differences in properties between CP X-H and CP X-P were explored, and their mechanism analysis was also performed profoundly. The results demonstrated that (i) CP X-H and CP X-P exhibited similar flowability; (ii) CP X-H generally exhibited better compactibility, larger particle size, and more uniform particle size distribution, and lower bulk density, tap density, and hygroscopicity than CP X-P; (iii) compared with the tablets produced with CP X-P, ones with CP X-H exhibited similar weight variation (%), lower friability, and longer disintegration time. The mechanism analysis manifested that the differences in physical properties between HPMC and PVP were the important and fundamental factors, which led to the differences in structure and surface morphology of particles, and in fundamental properties of CPs. These findings are beneficial to the development of herbal core-shell CPs for DC.
Collapse
|
19
|
Solving a sticking related tablet problem by multivariate statistics and computational tomographic analysis. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Nitsure A, Patel D, Wairkar S. Improved processability of ethambutol hydrochloride by spherical agglomeration. Pharm Dev Technol 2019; 25:376-384. [PMID: 31842656 DOI: 10.1080/10837450.2019.1705487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ethambutol hydrochloride (ETB), high dose anti-tubercular drug exhibits poor micromeritics and compressibility. The current study aimed to enhance flow, compressibility and packing characteristics, thereby improving processability of ETB by spherical agglomeration. Quasi emulsion solvent diffusion method was used for agglomeration process in which saturated aqueous ETB solution was prepared and the crystallization was carried out subsequently at different ratios of acetone and ethyl acetate which act as anti-solvent. Further the process was optimised statistically using 32 factorial design keeping 'speed of stirring' and 'ratio acetone and ethyl acetate' as independent variables and particle size as dependent variable. Optimised batch of ethambutol hydrochloride spherical agglomerates (ETB-SA) was characterised for sieve analysis, solid state characteristics and Kawakita analysis. The uniformity of ETB-SA was observed with SEM while XRPD studies revealed reduction in crystallinity for ETB-SA. DSC and FTIR indicated no polymeric or chemical alteration during crystallization process. The flow properties of ETB-SA were found superior and its Kawakita parameters indicated improved packability and flowability compared to ETB. ETB has high solubility in water therefore was no significant difference was observed in in vitro dissolution of ETB and ETB-SA. Thus spherical agglomeration, a revered particle engineering technique, continues to be a salient approach for enhancing processability of high-dose drugs like ETB.
Collapse
Affiliation(s)
- Ashwini Nitsure
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Shiino K, Oshima T, Sonoda R, Kimura SI, Itai S, Iwao Y. Controlled-Release Fine Particles Prepared by Melt Adsorption for Orally Disintegrating Tablets. Chem Pharm Bull (Tokyo) 2019; 67:1152-1159. [PMID: 31582635 DOI: 10.1248/cpb.c19-00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melt adsorption is a manufacturing method that offers precise control of particle size distribution of granules and circumvents the disadvantages of conventional melt granulation. However, drug release from particles adsorbed with hydrophobic materials has not been fully investigated, and there are missing details as to whether particles manufactured by this technique can be applied to orally disintegrating tablets (ODT). In this report, we aimed to optimize process parameters and formulation to manufacture ODT containing melt adsorption-particles with the specific characteristic of sustained release. Melt adsorption particles containing Neusilin US2 as the adsorbent were prepared by using various waxes to determine the most suitable material for controlled release formulation. Glycerol fatty acid ester (Poem TR-FB: TR-FB) was the optimal wax examined because of its drug release pattern and tabletability. We then optimized manufacturing conditions by examining granulation time, disintegrant amount per tablet and compression force on the tablet for ODT that meet the criteria of controlled drug release, tensile strength and disintegration of the tablet. Multiple regression analysis revealed the effect of process parameters on tablet properties and drug release with increasing the granulation time affording sustained release of the drug. The analysis also showed that a high compression force crushed the granules coated by TR-FB, which impaired sustained drug release. From the regression model the optimal manufacturing conditions were determined, and the tablet prepared under these conditions concurred with the predicted values and met all criteria. This new technique should contribute to the development of ODT to improve medication adherence.
Collapse
Affiliation(s)
- Kai Shiino
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd.,Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takao Oshima
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd
| | - Ryoichi Sonoda
- Formulation Department, CMC center, Kaken Pharmaceutical Co., Ltd
| | - Shin-Ichiro Kimura
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shigeru Itai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasunori Iwao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
22
|
Zheng X, Wu F, Hong Y, Shen L, Lin X, Feng Y. Improvements in sticking, hygroscopicity, and compactibility of effervescent systems by fluid-bed coating. RSC Adv 2019; 9:31594-31608. [PMID: 35527953 PMCID: PMC9072709 DOI: 10.1039/c9ra05884b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, effervescent tablets (ETs) have become increasingly popular with patients in clinics due to their fast disintegration by acid–alkali reactions in water. However, certain undesirable properties of ETs (e.g., sticking and high hygroscopicity) can limit their production and application. In particular, frequent sticking always severely decreases the tablet quality and productivity. Therefore, in this study, polyvinylpyrrolidone (PVP) at different usage levels, grades, or spray solution concentrations was coated onto the surfaces of both acidic and alkaline granules of ETs by means of the fluid-bed coating technique. In terms of fully characterized powder, tableting, and tablet properties, the following points were concluded: (i) a uniform coating of PVP onto the surfaces of these two granules not only resolved the sticking problem, but also effectively decreased the hygroscopicity and enhanced the compactibility; (ii) the improvements increased with an increase in the PVP content or PVP molecular weight and a decrease in the PVP spray solution concentration owing to the formation of an increasingly even and cohesive coating layer; (iii) the process of fluid-bed coating was not the simple superposition or simple mixing of two different materials' properties; (iv) the coating process did not cause significant influences on the disintegration time of ETs. Overall, it is fairly meaningful to further promote the development of ETs in practice since these problems have been overcome. Recently, effervescent tablets (ETs) have become increasingly popular with patients in clinics due to their fast disintegration by acid–alkali reactions in water.![]()
Collapse
Affiliation(s)
- Xiao Zheng
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322197 +86 21 51322197.,Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322429 +86 21 51322429
| | - Fei Wu
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322197 +86 21 51322197.,Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322429 +86 21 51322429
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322197 +86 21 51322197
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322197 +86 21 51322197
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine Shanghai 201203 P. R. China +86 21 51322429 +86 21 51322429
| |
Collapse
|
23
|
Li Z, Zhou M, Wu F, Shen L, Lin X, Feng Y. Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: Improvements and mechanism analysis. Int J Pharm 2019; 564:10-21. [PMID: 30974193 DOI: 10.1016/j.ijpharm.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
Direct compaction (DC) attracts more and more attention for tablet manufacturing; however, its application in natural plant product (NPP) tablets is still extremely limited. In this study, 8 kinds of composite particles (CPs) based on the Zingiberis Rhizoma extracted powder (ZR) (a natural plant product powder with poor DC properties) were prepared with different shell materials, including hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), dextran, inulin, mannitol, silica, and their combinations. Their physical properties and compacting parameters were characterized comprehensively. The results demonstrated that (i) fluid bed coating was not a simple process of superposition and transmission of the physical properties of raw materials; and (ii) all the shell materials studied could improve the DC properties of problematic ZR to some degree and the combination of 7% HPMC and 1% silica showed to be the best to markedly improve both the compactibility and flowability of ZR. As a whole, by virtue of the design of core-shell particles, qualified tablets with high ZR loadings were successfully produced via continuous DC in this study. These findings are beneficial to boosting the development of natural plant tablets through DC.
Collapse
Affiliation(s)
- Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Miaomiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
24
|
Effect of lignin on the release rate of acetylsalicylic acid tablets. Int J Biol Macromol 2019; 124:354-359. [DOI: 10.1016/j.ijbiomac.2018.11.136] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/30/2023]
|
25
|
Assessment of material and process attributes' influence on tablet quality using a QbD and DEM combined approach. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Chen L, He Z, Kunnath KT, Fan S, Wei Y, Ding X, Zheng K, Davé RN. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Int J Pharm 2019; 557:354-365. [DOI: 10.1016/j.ijpharm.2018.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
27
|
Maver U, Milojević M, Štos J, Adrenšek S, Planinšek O. Matrix Tablets for Controlled Release of Drugs Incorporated Using Capillary Absorption. AAPS PharmSciTech 2019; 20:91. [PMID: 30684053 DOI: 10.1208/s12249-019-1303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Cost and time effectiveness make direct tableting still the favored method for tablet production. Among its most noticeable limitations in application is the non-uniformity (and/or inhomogeneities) in the contents of the resulting tablets, possibly leading to inconsistencies in required tablet properties. The efficiency of direct tableting is mostly affected by surface properties of the components to be tableted, which govern the final tablet mechanical and chemical properties and can influence the liquid capillary rise that the tablets exhibit after ingestion. By using capillary rise as a driving force, we developed a simple, yet powerful procedure for filling blank tablets with a repeatable drug amount. Blank tablets were prepared by direct compression of the excipient and filled with an organic solution of hydrochlorothiazide. Tablets were characterized regarding their structure and morphology, while their applicability was monitored using in vitro drug release studies. By utilizing the mentioned filling of blank tablets, we were able to incorporate the desired dose of the drug inside while maintaining the tablets initial mechanical properties. Moreover, most of the drug was incorporated in the tablet pores and the rest was homogeneously distributed over the tablet surface in the form of small particles, by which we also eliminated content non-uniformity (homogenous drug distribution through the tablet). To sum up, we not only developed a cheap, simple, and reproducible variation of direct tableting, but were also able to eliminate some of its biggest disadvantages (e.g., segregation of components, leading to inhomogeneities in contents, and incompatibility between different base ingredients due to their different surface properties). All mentioned make the proposed approach highly interesting for future use, especially in potential therapy individualization.
Collapse
|
28
|
Fuenmayor E, Forde M, Healy AV, Devine DM, Lyons JG, McConville C, Major I. Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets. Int J Pharm 2019; 558:328-340. [PMID: 30659922 DOI: 10.1016/j.ijpharm.2019.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/12/2023]
Abstract
Oral tablets are a convenient form to deliver active pharmaceutical ingredients (API) and have a high level of acceptance from clinicians and patients. There is a wide range of excipients available for the fabrication of tablets thereby offering a versatile platform for the delivery of therapeutic agents to the gastrointestinal tract. However, the geometry of tablets is limited by conventional manufacturing processes. This study aimed to compare three manufacturing processes in the production of flat-faced oral tablets using the same formulation composed of a polymer blend and caffeine as a model drug: fused-filament fabrication (FFF), direct compression (DC) and injection molding (IM). Hot-melt extrusion was used to convert a powder blend into feedstock material for FFF and IM processes, while DC was performed on the powder mixture. Tablets were produced with the same dimensions and were characterized for their physical and dissolution properties. There were statistical differences in the physical properties and drug release profiles of the tablets produced by the different manufacturing processes. DC tablets displayed immediate release, IM provided sustained release over 48 h, and FFF tablets displayed both release types depending on the printing parameters. FFF continues to demonstrate high potential as a manufacturing process for the efficient production of personalized oral tablets.
Collapse
Affiliation(s)
- Evert Fuenmayor
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Martin Forde
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Andrew V Healy
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Declan M Devine
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - John G Lyons
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland.
| |
Collapse
|
29
|
Li Z, Wu F, Zhao L, Lin X, Shen L, Feng Y. Evaluation of fundamental and functional properties of natural plant product powders for direct compaction based on multivariate statistical analysis. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. Int J Pharm 2018; 546:125-136. [DOI: 10.1016/j.ijpharm.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/22/2022]
|
31
|
Allouche R, Dupont S, Charriau A, Gervais P, Beney L, Chambin O. Optimized tableting for extremely oxygen-sensitive probiotics using direct compression. Int J Pharm 2018; 538:14-20. [PMID: 29307771 DOI: 10.1016/j.ijpharm.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/25/2023]
Abstract
Faecalibacterium prausnitzii was previously recognized for its intestinal anti-inflammatory activities and it has been shown less abundant in patients with chronic intestinal diseases. However, the main problems encountered in the use of this interesting anaerobic microorganism are firstly its high sensitivity to the oxygen and secondly, its ability to reach the large intestine alive as targeted site. The aim of this study was to investigate the effect of direct compression on the viability of this probiotic strain after different compression pressure and storage using three different excipients (MCC, HPMC and HPMCP). The effect of compression process on cell viability was studied and a strategy was proposed to improve probiotic viability. Results showed that cell viability decreased almost linearly with compression pressure. MCC and HPMC seemed the most favorable carriers and after storage, each tablet exhibited a survival above108 CFU. Storage stability was obtained with a pressure of 201 MPa after 28 days at 25 °C, in anaerobic condition and with 11% relative humidity. Compression after a pre-consolidated stage improved clearly the survival rate due to lower temperature increase and lower shearing force. Thus, direct compression seems to be suitable in producing probiotics tablets with extremely oxygen-sensitive strains, and could provide sufficient protection during storage to expect therapeutic efficiency.
Collapse
Affiliation(s)
- Rania Allouche
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Sébastien Dupont
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Alexandre Charriau
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Patrick Gervais
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Laurent Beney
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Odile Chambin
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France; Department of Pharmaceutical Technology, Health Sciences Faculty, Université de Bourgogne Franche-Comté, 7 Bd Jeanne d'Arc, F-21079, Dijon, France.
| |
Collapse
|
32
|
Taipale-Kovalainen K, Karttunen AP, Ketolainen J, Korhonen O. Lubricant based determination of design space for continuously manufactured high dose paracetamol tablets. Eur J Pharm Sci 2017; 115:1-10. [PMID: 29277668 DOI: 10.1016/j.ejps.2017.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.5, 1.0 and 1.5%). Process variables were total production feed rate (5, 10.5 and 16kg/h), mixer speed rpm (500, 850 and 1200rpm), and mixer inlet port for lubricant (A or B). The continuous direct compression tableting line consisted of loss-in-weight feeders, a continuous mixer and a tablet press. The Quality Target Product Profile (QTPP) was defined for the final product, as the flowability of powder blends (2.5s), tablet strength (147N), dissolution in 2.5min (90%) and ejection force (425N). A design space was identified which fulfilled all the requirements of QTPP. The type and concentration of lubricant exerted the greatest influence on the design space. For example, stearic acid increased the tablet strength. Interestingly, the studied process parameters had only a very minor effect on the quality of the final product and the design space. It is concluded that the continuous direct compression tableting process itself is insensitive and can cope with changes in lubrication, whereas formulation parameters exert a major influence on the end product quality.
Collapse
Affiliation(s)
| | | | - Jarkko Ketolainen
- University of Eastern Finland, School of Pharmacy, Promis Centre, Kuopio, Finland
| | - Ossi Korhonen
- University of Eastern Finland, School of Pharmacy, Promis Centre, Kuopio, Finland.
| |
Collapse
|
33
|
Chattoraj S, Sun CC. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression. J Pharm Sci 2017; 107:968-974. [PMID: 29247737 DOI: 10.1016/j.xphs.2017.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022]
Abstract
Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process.
Collapse
Affiliation(s)
- Sayantan Chattoraj
- Drug Product Design and Development, GlaxoSmithKline Pharmaceuticals R&D, Collegeville, Pennsylvania 19426.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, University of Minnesota, Minnesota 55455.
| |
Collapse
|
34
|
Khlibsuwan R, Pongjanyakul T. Particle agglomeration of chitosan-magnesium aluminum silicate nanocomposites for direct compression tablets. Int J Pharm 2017; 535:410-419. [PMID: 29155229 DOI: 10.1016/j.ijpharm.2017.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Exfoliated nanocomposites of chitosan-magnesium aluminum silicate (CS-MAS) particles are characterized by good compressibility but poor flowability. Thus, the aims of this study were to investigate agglomerates of CS-MAS nanocomposites prepared using the agglomerating agents water, ethanol, or polyvinylpyrrolidone (PVP) for flowability enhancement and to evaluate the agglomerates obtained as direct compression fillers for tablets. The results showed that the addition of agglomerating agents did not affect crystallinity, but slightly influenced thermal behavior of the CS-MAS nanocomposites. The agglomerates prepared using water were larger than those prepared using 95% ethanol because high swelling of the layer of chitosonium acetate occurred, allowing formation of solid bridges and capillary force between particles, leading to higher flowability and particle strength. Incorporation of PVP resulted in larger agglomerates with good flowability and high strength due to the binder hardening mechanism. The tablets prepared from agglomerates using water showed lower hardness, shorter disintegration times and faster drug release than those using 95% ethanol. In contrast, greater hardness and more prolonged drug release were obtained from the tablets prepared from agglomerates using PVP. Additionally, the agglomerates of CS-MAS nanocomposites showed good carrying capacity and provided desirable characteristics of direct compression tablets.
Collapse
Affiliation(s)
- Rapee Khlibsuwan
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|