1
|
Kakati N, Ahari D, Parmar PR, Deshmukh OS, Bandyopadhyay D. Lactic Acid-Induced Colloidal Microrheology of Synovial Fluids. ACS Biomater Sci Eng 2024; 10:3378-3386. [PMID: 38517700 DOI: 10.1021/acsbiomaterials.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The presence of colloidal scaffolds composed of proteins and hyaluronic acid engenders unique viscous and elastic properties to the synovial fluid (SF). While the elastic resistance of SF due to the presence of such nanoscale structures provides the load-bearing capacity, the viscous nature enables fluidity of the joints during the movements to minimize the wear and tear of the adjacent muscle, cartilage, or bone tissues. It is well-known that the hypoxic conditions at the bone joints often increase the lactic acid (LA) concentration due to the occurrence of excess anaerobic respiration during either hyperactivity or arthritic conditions. The present study uncovers that in such a scenario, beyond a critical loading of LA, the colloidal nanoscaffolds of SF break down to precipitate higher molecular weight (MW) proteins and hyaluronic acid (HA). Subsequently, the viscosity and elasticity of SF reduce drastically to manifest a fluid that has reduced load bearing and wear and tear resistance capacity. Interestingly, the study also suggests that a heathy SF is a viscoelastic fluid with a mild Hookean elasticity and non-Newtonian fluidity, which eventually transforms into a viscous watery liquid in the presence of a higher loading of LA. We employ this knowledge to biosynthesize an artificial SF that emulates the characteristics of the real one. Remarkably, the spatiotemporal microscopic images uncover that even for the artificial SF, a dynamic cross-linking of the high MW proteins and HA takes place before precipitating out of the same from the artificial SF matrix, emulating the real one. Control experiments suggest that this phenomenon is absent in the case when LA is mixed with either pure HA or proteins. The experiments unfold the specific role of LA in the destruction of colloidal nanoscaffolds of synovia, which is an extremely important requirement for the biosynthesis and translation of artificial synovial fluid.
Collapse
Affiliation(s)
- Nayanjyoti Kakati
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dileep Ahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prathu Raja Parmar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Omkar Suresh Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Hao G, Qi Z, Li L, Xu ZP. Investigation of the mucin-nanoparticle interactions via real-time monitoring by microbalance and kinetic model simulation. J Colloid Interface Sci 2024; 661:588-597. [PMID: 38308897 DOI: 10.1016/j.jcis.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
Interactions between nanoparticles and the mucus layer are crucial to understand the behaviours in biological environments and design drug delivery systems. In this study, we developed a kinetic deposition model for the dynamic mucin-nanoparticle interactions using quartz crystal microbalance with dissipation (QCM-D). We investigated the effects of the physiochemical properties of several nanoparticles (including size, charge, and shape) and the physiological conditions on the mucin-nanoparticle interaction. Interestingly, layered double hydroxide (LDH) nanoparticles showed stronger interactions with the mucus layer compared to other types of nanoparticles due to their unique plate-like morphology. In specific for sheet-like LDH nanoparticles, our model found that their equilibrium adsorption capacity (Qe) followed the Langmuir adsorption isotherm, and the adsorption rate (k1) increased proportionally with the nanoparticle concentration. In addition, the particle size and thickness affected Qe and the surface coverage. Furthermore, bovine serum albumin (BSA) coating dramatically increased k1 of LDH nanoparticles. We proposed a novel mechanism to elucidate mucin-nanoparticle interactions, shedding light on the synergistic roles of drag force (Fd), repulsive force (Fr), and adsorptive force (Fa). These findings offer valuable insights into the complex mucin-nanoparticle interactions and provide guidance for the design of drug delivery systems.
Collapse
Affiliation(s)
- Guanyu Hao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Qi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Garcia da Silva AC, Carvalho Filho SDM, Furtado de Mendonça IC, Valadares MC. Identification of toxicity-induced biomarkers in human non-immune airway cells exposed to respiratory sensitizers: A mechanistic approach. Toxicology 2024; 503:153750. [PMID: 38360295 DOI: 10.1016/j.tox.2024.153750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Occupational asthma covers a group of work-related diseases whose clinical manifestations include airway hyperresponsiveness and airflow limitation. Although the chemical respiratory allergy (CRA) induced by Low Molecular Weight (LMW) sensitizers is a major concern, especially in terms of the regulatory framework, to date there are no methods available for preclinically addressing this toxicological outcome, as its mechanistic background is not fully understood at molecular or cellular levels. This paper proposes a mechanistic study applying New Approach Methodologies (NAM) of the pro-inflammatory and functional effects triggered by LMW respiratory allergens in different respiratory tract cell lines, including bronchial epithelial (BEAS-2B), lung fibroblast (MRC-5), and endothelial cells (EA.hy926), and an analysis of the capacity of such chemicals to interact with the mucin protein, to address certain toxicodynamic aspects of such compounds. The results showed that some of the sensitizers evaluated interact with mucin, the main protein mucus component, but the toxicant-mucin complex formation does not seem to be a common feature of different chemical classes of allergens. At a cellular level, sensitizers promoted an increase in IL-8, IL-6, and IL-1β production in the evaluated cell types. It also impaired the MUC1 expression by bronchial cells and activated endothelial cells, thereby increasing the ICAM-I surface expression. Taken together, our results showed that these aforementioned cell types participate in the CRA Adverse Outcome Pathway and must be considered when developing preclinical testing strategies, particularly investigating danger signal production after exposure to LMW sensitizers in different tissue compartments.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Zhang H, Liu Z, Lihe H, Lu L, Zhang Z, Yang S, Meng N, Xiong Y, Fan X, Chen Z, Lu W, Xie C, Liu M. Intranasal G5-BGG/pDNA Vaccine Elicits Protective Systemic and Mucosal Immunity against SARS-CoV-2 by Transfecting Mucosal Dendritic Cells. Adv Healthc Mater 2024; 13:e2303261. [PMID: 37961920 DOI: 10.1002/adhm.202303261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Indexed: 11/15/2023]
Abstract
Infectious disease pandemics, including the coronavirus disease 2019 pandemic, have heightened the demand for vaccines. Although parenteral vaccines induce robust systemic immunity, their effectiveness in respiratory mucosae is limited. Considering the crucial role of nasal-associated lymphoid tissue (NALT) in mucosal immune responses, in this study, the intranasal complex composed of G5-BGG and antigen-expressing plasmid DNA (pSP), named G5-BGG/pSP complex, is developed to activate NALT and to promote both systemic and mucosal immune defense. G5-BGG/pSP could traverse mucosal barriers and deliver DNA to the target cells because of its superior nasal retention and permeability characteristics. The intranasal G5-BGG/pSP complex elicits robust antigen-specific immune responses, such as the notable production of IgG antibody against several virus variants. More importantly, it induces elevated levels of antigen-specific IgA antibody and a significant expansion of the lung-resident T lymphocyte population. Notably, the intranasal G5-BGG/pSP complex results in antigen expression and maturation of dendritic cells in nasal mucosae. These findings exhibit the potential of G5-BGG, a novel cationic material, as an effective gene carrier for intranasal vaccines to obtain robust systemic and mucosal immunity.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zezhong Liu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongye Lihe
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 201203, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China
| | - Zongxu Zhang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shengmin Yang
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Nana Meng
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yin Xiong
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xingyan Fan
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhikai Chen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Engineering Technology Research Center for Pharmaceutica Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA Institute for Frontier Medical Technology Shanghai University of Engineering Science, Shanghai, 201203, China
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Cao Xie
- Shanghai Tayzen Pharmlab Co., Ltd., Shanghai, 201203, China
| | - Min Liu
- Department of Pharmaceutics and the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
A P, Alexander A. Biophysical analysis on molecular interactions between chitosan-coated sinapic acid loaded liposomes and mucin. Biochim Biophys Acta Gen Subj 2024; 1868:130517. [PMID: 37935351 DOI: 10.1016/j.bbagen.2023.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The mucus biomembrane is a primary barrier in delivering drugs to the brain via intranasal delivery. The negatively charged nanoformulations suffer from poor mucoadhesive ability and less retention time in the nasal cavity, which limits further therapeutic efficacy. The positively charged chitosan coating on liposomes may overcome the above issues. Hence, understanding the molecular interactions between the chitosan-coated liposomes and mucin is essential for developing an effective drug delivery system. METHODS The molecular interactions of mucin with sinapic acid-loaded liposomes (SA-LPs) and mucin with chitosan-coated sinapic acid-loaded liposomes (SA-CH-LPs) were assessed using different biophysical instrumental analyses by interpreting the UV-Vis spectra and observing the particle size, polydispersity index, surface charge, and rheological behavior. RESULTS The mucin interaction with SA-CH-LPs showed increased viscosity as compared to SA-LPs with mucin. Moreover, the mucin interaction with SA-CH-LPs showed stronger mucoadhesive properties as compared to SA-LPs with mucin. The electrostatic interaction between positively charged SA-CH-LPs and negatively charged mucin was responsible for the enhanced mucoadhesive property. CONCLUSION The positively charged SA-CH-LPs highly interact with mucin as compared to negatively charged SA-LPs. The mucoadhesive property of SA-CH-LPs could improve the retention of SA in the nasal cavity as compared to SA-LPs. These findings emphasize the importance of chitosan in modulating the mucoadhesive behavior of liposomes. GENERAL SIGNIFICANCE Overall, this study helps to understand the molecular interactions and mucoadhesive nature of the chitosan-coated liposomes with mucin, which is essential for biological activity in the physiological environment.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
6
|
Shan H, Zhao Q, Guo Y, Gao M, Xu X, McClements DJ, Cao C, Yuan B. Impact of pH on the Formation and Properties of Whey Protein Coronas around TiO 2 Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5756-5769. [PMID: 37013898 DOI: 10.1021/acs.jafc.3c00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In aqueous media, titanium dioxide (TiO2) nanoparticles can interact with proteins in their environment and form a protein corona. The pH of the aqueous media affects the structure and properties of the protein corona, and currently there is a lack of understanding of the effects of pH on the characteristics of protein coronas. In this study, we examined the impact of pH (2-11) on the structural and physicochemical properties of whey protein coronas formed around TiO2 nanoparticles. The pH of the solution influenced the structure of whey protein molecules, especially around their isoelectric point. Thermogravimetric and quartz crystal microbalance analyses showed that the adsorption capacity of the whey proteins was the largest at their isoelectric points and the lowest under highly acidic or alkaline conditions. The majority of the proteins were tightly bound to the nanoparticle surfaces, forming a hard corona. The influence of solution pH on protein corona properties was mainly attributed to its impact on the electrostatic forces in the system, which impacted the protein conformation and interactions. This study provides useful insights into the influence of pH on the formation and properties of protein coronas around inorganic nanoparticles, which may be important for understanding the gastrointestinal and environmental fates.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qiaorun Zhao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Mengchao Gao
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
7
|
Zhou Z, Cen J, Wang H, Sun Y, Yang L. Interactions of CdSe and CdSe@ZnS quantum dots with transferrin and effects on the iron ions release. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Kakati N, Parashar CK, Thakur S, Deshmukh OS, Bandyopadhyay D. Microrheology of Mucin-Albumin Assembly Using Diffusing Wave Spectroscopy. ACS APPLIED BIO MATERIALS 2022; 5:4118-4127. [PMID: 35969851 DOI: 10.1021/acsabm.2c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus plays an important role in the protection of the epithelial cells from various pathogens and low pH environments besides helping in the absorption of nutrients. Alteration of the rheology of the mucus layer leads to various disease conditions such as cystic fibrosis, Crohn's disease, and gastric ulcers, among others. Importantly, mucus consists of various mucins along with proteins such as immunoglobulin, lysozyme, and albumin. In the present study, we explore the effect of pH on the interactions between bovine serum albumin (BSA) and porcine gastric mucins using diffusing wave spectroscopy (DWS). The study unveils that BSA actively binds with mucin to form mucin-BSA complexes, which is largely driven by electrostatic interactions. Interestingly, such physical interactions significantly alter the microrheology of these biomaterials, which is indicated by a reduction in the diffusivity of tracer particles in DWS. An array of DWS experiments suggests that the interaction between mucin and BSA is the highest at pH 7.4 and the least at pH 3. Further analyses using atomic force microscopy showed the formation of a compact cross-linked colloidal network of mucin-BSA complexes at pH 7.4, which is the main reason for the reduction in the diffusivity of the tracer particles in DWS. Furthermore, the circular dichroism analysis revealed that the secondary structures of mucin-BSA complexes are markedly different from those of only mucin at pH 7.4. Importantly, such a difference has not been observed at pH 3, which confirms that largely electrostatic interactions drive the formation of mucin-BSA complexes at neutral pH. In such a scenario, the presence of Ca2+ ions is also found to facilitate bridging between BSA molecules, which is also reflected in the microrheology of the suspension of BSA-mucin complexes.
Collapse
Affiliation(s)
- Nayanjyoti Kakati
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Siddharth Thakur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Omkar Suresh Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
9
|
Azagury A, Baptista C, Milovanovic K, Shin H, Morello P, Perez-Rogers J, Goldenshtein V, Nguyen T, Markel A, Rege S, Hojsak S, Perl A, Jones C, Fife M, Furtado S, Mathiowitz E. Biocoating-A Critical Step Governing the Oral Delivery of Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107559. [PMID: 35606684 PMCID: PMC9250634 DOI: 10.1002/smll.202107559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties-charge and bioadhesiveness-as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating-the coating of NPs with mucus-which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta-potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21-fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake.
Collapse
Affiliation(s)
- Aharon Azagury
- Noninvasive Biomimetic Drug Delivery Systems Lab, The Department of Chemical Engineering, Ariel Center for Applied Cancer Research (ACACR), Ariel University, Ramat HaGolan St 65, Ari'el, 40700000, Israel
| | - Cameron Baptista
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Kosta Milovanovic
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Hyeseon Shin
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Peter Morello
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - James Perez-Rogers
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Victoria Goldenshtein
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Travis Nguyen
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Arianna Markel
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Soham Rege
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stephanie Hojsak
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Alexander Perl
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Carder Jones
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Megan Fife
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stacia Furtado
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Edith Mathiowitz
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| |
Collapse
|
10
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
11
|
Onnainty R, Usseglio N, Bonafé Allende JC, Granero GE. Exploring a new free-standing polyelectrolyte (PEM) thin film as a predictive tool for drug-mucin interactions: Insights on drug transport through mucosal surfaces. Int J Pharm 2021; 604:120764. [PMID: 34087412 DOI: 10.1016/j.ijpharm.2021.120764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
The main objective of the present work was to design a biomimetic free-standing multilayered PEM film, constructed by the layer-by-layer (LbL) assembly approach, based on natural biopolymers and intended to recreate the complex mucus-mimetic matrices in order to provide mechanistic insights into biophysical interactions between drugs and the physiological gel-forming mucin network of mucus that covers the mucosal epithelia named as(CS/ALG)/(PGM) PEM film. The obtained results indicate that mucin may delay or increase drug precipitation on the mucus layer, depending on specific drug-mucin interactions driving drug supersaturation or drug crystallization phenomena. It was found that the drug lipophilicity characteristics governed the mucin binding degree, which had an influencing role on the drug translocation across this gel-like hydrogel. Moreover, the ionization of these drugs did not have a significant role on the drug binding ability to mucin as much as the lipophilicity properties did. The (CS/ALG)/(PGM) PEM film may be a promising tool to routine testing drug-mucus interactions to evaluate biophysical interactions between this protective barrier of the organism against different drug therapeutic products or external aggressive agents, leading to the optimization of drug delivery products or drugs for particular disease states.
Collapse
Affiliation(s)
- R Onnainty
- Unidad de Investigación y Desarrollo en TecnologíaFarmacéutica (UNITEFA), CONICET and Departamento de CienciasFarmacéuticas, Facultad de CienciasQuímicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina
| | - N Usseglio
- Unidad de Investigación y Desarrollo en TecnologíaFarmacéutica (UNITEFA), CONICET and Departamento de CienciasFarmacéuticas, Facultad de CienciasQuímicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina
| | - J C Bonafé Allende
- Departamento de QuímicaOrgánica, Facultad de CienciasQuímicas (Universidad Nacional de Córdoba), IPQA-CONICET, Haya de la Torre y Av. Medina Allende, 5000 Córdoba, Argentina
| | - G E Granero
- Unidad de Investigación y Desarrollo en TecnologíaFarmacéutica (UNITEFA), CONICET and Departamento de CienciasFarmacéuticas, Facultad de CienciasQuímicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000-HUA Córdoba, Argentina.
| |
Collapse
|
12
|
Gelli R, Martini F, Geppi M, Borsacchi S, Ridi F, Baglioni P. Exploring the interplay of mucin with biologically-relevant amorphous magnesium-calcium phosphate nanoparticles. J Colloid Interface Sci 2021; 594:802-811. [PMID: 33794402 DOI: 10.1016/j.jcis.2021.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS It has been recently shown that, in our organism, the secretions of Ca2+, Mg2+ and phosphate ions lead to the precipitation of amorphous magnesium-calcium phosphate nanoparticles (AMCPs) in the small intestine, where the glycoprotein mucin is one of the most abundant proteins, being the main component of the mucus hydrogel layer covering gut epithelium. Since AMCPs precipitate in vivo in a mucin-rich environment, we aim at studying the effect of this glycoprotein on the formation and features of endogenous-like AMCPs. EXPERIMENTS AMCPs were synthesized from aqueous solution in the presence of different concentrations of mucin, and the obtained particles were characterised in terms of crystallinity, composition and morphology. Solid State NMR investigation was also performed in order to assess the interplay between mucin and AMCPs at a sub-nanometric level. FINDING Results show that AMCPs form in the presence of mucin and the glycoprotein is efficiently incorporated in the amorphous particles. NMR indicates the existence of interactions between AMCPs and mucin, revealing how AMCPs in mucin-hybrid nanoparticles affect the features of both proteic and oligosaccharidic portions of the glycoprotein. Considering that the primary function of mucin is the protection of the intestine from pathogens, we speculate that the nature of the interaction between AMCPs and mucin described in the present work might be relevant to the immune system, suggesting a novel type of scenario which could be investigated by combining physico-chemical and biomedical approaches.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR-ICCOM Pisa, via G. Moruzzi 1, Pisa 56124, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43/44, 56126 Pisa, Italy.
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
13
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
14
|
Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2020; 18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..Areas covered: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.Expert opinion: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.
Collapse
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinhao Liu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Wu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Curnutt A, Smith K, Darrow E, Walters KB. Chemical and Microstructural Characterization of pH and [Ca 2+] Dependent Sol-Gel Transitions in Mucin Biopolymer. Sci Rep 2020; 10:8760. [PMID: 32472040 PMCID: PMC7260187 DOI: 10.1038/s41598-020-65392-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Mucus is responsible for controlling transport and barrier function in biological systems, and its properties can be significantly affected by compositional and environmental changes. In this study, the impacts of pH and CaCl2 were examined on the solution-to-gel transition of mucin, the primary structural component of mucus. Microscale structural changes were correlated with macroscale viscoelastic behavior as a function of pH and calcium addition using rheology, dynamic light scattering, zeta potential, surface tension, and FTIR spectroscopic characterization. Mucin solutions transitioned from solution to gel behavior between pH 4–5 and correspondingly displayed a more than ten-fold increase in viscoelastic moduli. Addition of CaCl2 increased the sol-gel transition pH value to ca. 6, with a twofold increase in loss moduli at low frequencies and ten-fold increase in storage modulus. Changing the ionic conditions—specifically [H+] and [Ca2+] —modulated the sol-gel transition pH, isoelectric point, and viscoelastic properties due to reversible conformational changes with mucin forming a network structure via non-covalent cross-links between mucin chains.
Collapse
Affiliation(s)
- Austin Curnutt
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Kaylee Smith
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Emily Darrow
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Keisha B Walters
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
16
|
Pacheco DP, Butnarasu CS, Briatico Vangosa F, Pastorino L, Visai L, Visentin S, Petrini P. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery. J Mater Chem B 2020; 7:4940-4952. [PMID: 31411620 DOI: 10.1039/c9tb00957d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mucus is a natural barrier with a protective role that hinders drug diffusion, representing a steric and interactive barrier to overcome for an effective drug delivery to target sites. In diseases like cystic fibrosis (CF), pulmonary mucus exhibits altered features, which hamper clearance mechanisms and drug diffusion, ultimately leading to lung failure. Effectively modelling the passage through mucus still represents an unmet challenge. An airway CF mucus model is herein proposed to disassemble the complexity of the mucus barrier following a modular approach. A hydrogel, mainly composed of mucin in an alginate (Alg) network, is proposed to specifically model the chemical-physical properties of CF mucus. The steric retention of pathological mucus was reproduced by targeting its mesh size (approximately 50 nm) and viscoelastic properties. The interactive barrier was reproduced by a composition inspired from the CF mucus. Optimized mucus models, composed of 3 mg ml-1 Alg and 25 mg ml-1 mucin, exhibited a G' increasing from ∼21.2 to 55.2 Pa and a G'' ranging from ∼5.26 to 28.8 Pa in the frequency range of 0.1 to 20 Hz. Drug diffusion was tested using three model drugs. The proposed mucus model was able to discriminate between the mucin-drug interaction and the steric barrier of a mucus layer with respect to the parallel artificial membrane permeability (PAMPA) that models the phospholipidic cell membrane, the state-of-the-art screening tool for passive drug diffusion. The mucus model can be proposed as an in vitro tool for early drug discovery, representing a step forward to model the mucus layer. Additionally, the proposed methodology allows to easily include other molecules present within mucus, as relevant proteins, lipids and DNA.
Collapse
Affiliation(s)
- Daniela Peneda Pacheco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| | - Cosmin Stefan Butnarasu
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy.
| | - Francesco Briatico Vangosa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy and Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS, Pavia, Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy.
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" at Politecnico di Milano, Milan, Italy.
| |
Collapse
|
17
|
Instantaneous interaction of mucin with pectin- and carrageenan-coated nanoemulsions. Food Chem 2020; 309:125795. [DOI: 10.1016/j.foodchem.2019.125795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022]
|
18
|
Interaction of particles with mucosae and cell membranes. Colloids Surf B Biointerfaces 2020; 186:110657. [DOI: 10.1016/j.colsurfb.2019.110657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
|
19
|
Butnarasu C, Barbero N, Pacheco D, Petrini P, Visentin S. Mucin binding to therapeutic molecules: The case of antimicrobial agents used in cystic fibrosis. Int J Pharm 2019; 564:136-144. [DOI: 10.1016/j.ijpharm.2019.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/15/2022]
|
20
|
Zhou H, Pandya JK, Tan Y, Liu J, Peng S, Muriel Mundo JL, He L, Xiao H, McClements DJ. Role of Mucin in Behavior of Food-Grade TiO 2 Nanoparticles under Simulated Oral Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5882-5890. [PMID: 31045357 DOI: 10.1021/acs.jafc.9b01732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fine titanium dioxide (TiO2) particles have been used as additives (E171) to modify the optical properties of foods and beverages for many years. Commercial TiO2 additives, however, often contain a significant fraction of nanoparticles (diameter <100 nm), which has led to some concern about their potentially adverse health effects. At present, relatively little is known about how the characteristics of TiO2 particles are altered as they travel through the human gastrointestinal tract. Alterations in their electrical characteristics, surface composition, or aggregation state would be expected to alter their gastrointestinal fate. The main focus of this study was, therefore, to characterize the behavior of TiO2 particles under simulated oral conditions. Changes in the aggregation state and electrical characteristics were monitored using particle size, ζ-potential, turbidity, and electron microscopy measurements, whereas information about mucin-particle interactions were obtained using isothermal titration calorimetry and surface-enhanced Raman spectroscopy. Our results indicate that there was a strong interaction between TiO2 and mucin: mucin absorbed to the surfaces of the TiO2 particles and reduced their tendency to aggregate. The information obtained in this study is useful for better understanding the gastrointestinal fate and potential toxicity of ingested inorganic particles.
Collapse
Affiliation(s)
- Hualu Zhou
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Janam K Pandya
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yunbing Tan
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jinning Liu
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shengfeng Peng
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jorge L Muriel Mundo
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Lili He
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
21
|
Berardi A, Baldelli Bombelli F, Thuenemann EC, Lomonossoff GP. Viral nanoparticles can elude protein barriers: exploiting rather than imitating nature. NANOSCALE 2019; 11:2306-2316. [PMID: 30662985 DOI: 10.1039/c8nr09067j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-corona formation in body fluids and/or entrapment of nanoparticles in protein matrices (e.g. food and mucus) can hinder the delivery of nanoparticles, irrespective of the route of administration. Here we demonstrate that certain viral nanoparticles (VNPs) can evade the adhesion of a broad panel of macromolecules from several biological milieus. We also show that the permeability of VNPs through mucin gels is far superior to that of synthetic nanoparticles. The non-sticky nature of VNPs implies that they will be able to readily cross most non-specific protein and glycoprotein barriers encountered, ubiquitously, upon administration through mucosal, and non-mucosal routes.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | | | | | | |
Collapse
|
22
|
Guo H, Zhang Y, Huang R, Su R, Qi W, He Z. Interactions of Fly Ash Particles with Mucin and Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12251-12258. [PMID: 30230845 DOI: 10.1021/acs.langmuir.8b02188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fly ash particles can contribute to haze and adverse health outcomes. In this study, two mucins, one from bovine submaxillary glands (bovine submaxillary mucin, BSM) and one from porcine stomach (porcine gastric mucin), as well as bovine serum albumin (BSA), which served as the physical barriers against foreign substances entering the tissues and the blood protein, respectively, were chosen as models for the investigations of the interactions between the proteins and the fly ash particles. Their adsorption behaviors were studied using spectroscopy and a quartz crystal microbalance with a dissipation monitor (QCM-D). The results indicated that the fly ash particles can induce the loosening of mucins and BSA, probably via the formation of complexes. Further, the secondary structure of proteins changed in the presence of fly ash particles. The α-helix content decreased with an increasing fly ash particle concentration. The addition of fly ash particles into protein solutions led to fluorescence quenching, which suggested that there were interactions between these particles and the mucins and BSA. The association constants ( Ka) for BSM and BSA were 5.35 and 4.18 L/g, respectively. Furthermore, the results of QCM-D analyses showed that the amount decreased on the mucin surface but increased slightly on the BSA surface, which indicated that the fly ash particles disrupted the mucin layer upon adsorption. These findings provide clear evidence of the interactions between the fly ash particles and the mucins and BSA, which can lead to structural changes. This study contributes to a better understanding of the interactions and adsorptions of atmospheric particulate pollutants with the proteins in the human body.
Collapse
Affiliation(s)
| | | | | | - Rongxin Su
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , PR China
| | - Wei Qi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , PR China
| | | |
Collapse
|