1
|
Sahoo L, Paikray SK, Tripathy NS, Fernandes D, Dilnawaz F. Advancements in nanotheranostics for glioma therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03559-w. [PMID: 39480526 DOI: 10.1007/s00210-024-03559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Gliomas are brain tumors mainly derived from glial cells that are difficult to treat and cause high mortality. Radiation, chemotherapy, and surgical excision are the conventional treatments for gliomas. Patients who have surgery or have undergone chemotherapy for glioma treatment have poor prognosis with tumor recurrence. In particular, for glioblastoma, the 5-year average survival rate is 4-7%, and the median survival is 12-18 months. A number of issues hinder effective treatment such as, poor surgical resection, tumor heterogeneity, insufficient drug penetration across the blood-brain barrier, multidrug resistance, and difficulties with drug specificity. Nanotheranostic-mediated drug delivery is becoming a well-researched consideration, and an efficient non-invasive method for delivering chemotherapeutic drugs to the target area. Theranostic nanomedicines, which incorporate therapeutic drugs and imaging agents for personalized therapies, can be used for preventing overdose of non-responders. Through the identification of massive and complicated information from next-generation sequencing, machine learning enables for precise prediction of therapeutic outcomes and post-treatment management for patients with cancer. This article gives a thorough overview of nanocarrier-mediated drug delivery with a brief introduction to drug delivery challenges. In addition, this assessment offers a current summary of preclinical and clinical research on nanomedicines for gliomas. In the future, nanotheranostics will provide personalized treatment for gliomas and other treatable cancers.
Collapse
Affiliation(s)
- Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India
| | | | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
2
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
3
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
4
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
6
|
Sun JW, Thomas JS, Monkovic JM, Gibson H, Nagapurkar A, Frezzo JA, Katyal P, Punia K, Mahmoudinobar F, Renfrew PD, Montclare JK. Supercharged coiled-coil protein with N-terminal decahistidine tag boosts siRNA complexation and delivery efficiency of a lipoproteoplex. J Pept Sci 2024; 30:e3594. [PMID: 38499991 DOI: 10.1002/psc.3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non-palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non-viral materials, while offering safer and non-cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled-coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C-terminal decahistidine tags on α-helical secondary structure. Cross-correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.
Collapse
Affiliation(s)
- Jonathan W Sun
- Department of Chemistry, New York University, New York, New York, USA
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Joseph S Thomas
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Julia M Monkovic
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Halle Gibson
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Akash Nagapurkar
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Joseph A Frezzo
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Jin Kim Montclare
- Department of Chemistry, New York University, New York, New York, USA
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Department of Radiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Biomaterials, NYU College of Dentistry, New York, New York, USA
| |
Collapse
|
7
|
Yan X, Chen Q. Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy. Polymers (Basel) 2024; 16:2022. [PMID: 39065339 PMCID: PMC11280609 DOI: 10.3390/polym16142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain's natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles.
Collapse
Affiliation(s)
- Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. Int J Nanomedicine 2024; 19:4803-4834. [PMID: 38828205 PMCID: PMC11144010 DOI: 10.2147/ijn.s461289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- Department of Chinese Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiwu Rao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Ma M, Zhang C, Zhong Z, Wang Y, He X, Zhu D, Qian Z, Yu B, Kang X. siRNA incorporated in slow-release injectable hydrogel continuously silences DDIT4 and regulates nucleus pulposus cell pyroptosis through the ROS/TXNIP/NLRP3 axis to alleviate intervertebral disc degeneration. Bone Joint Res 2024; 13:247-260. [PMID: 38771134 PMCID: PMC11107476 DOI: 10.1302/2046-3758.135.bjr-2023-0320.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Aims In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel's mechanism in IVDD. Results A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD.
Collapse
Affiliation(s)
- Miao Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongjing Zhang
- Department of Sports Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, China
| | - Zeyuan Zhong
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yajun Wang
- Department of Oncology, Zhangye People’s Hospital Affiliated to Hexi University, Zhangye, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi Qian
- Department of Joint and Sports Medicine, Institute of Orthopaedic Diseases, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Baoqing Yu
- Shanghai Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
10
|
Vahedi F, Javan B, Sharbatkhari M, Soltani A, Shafiee M, Memarian A, Erfani-Moghadam V. Synergistic anticancer effects of co-delivery of linc-RoR siRNA and curcumin using polyamidoamine dendrimers against breast cancer. Biochem Biophys Res Commun 2024; 705:149729. [PMID: 38452515 DOI: 10.1016/j.bbrc.2024.149729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer resistance to chemotherapy necessitates novel combination therapeutic approaches. Linc-RoR is a long intergenic noncoding RNA that regulates stem cell differentiation and promotes metastasis and invasion in breast cancer. Herein, we report a dual delivery system employing polyamidoamine dendrimers to co-administer the natural compound curcumin and linc-RoR siRNA for breast cancer treatment. Polyamidoamine dendrimers efficiently encapsulated curcumin and formed complexes with linc-RoR siRNA at an optimal N/P ratio. In MCF-7 breast cancer cells, the dendriplexes were effectively internalized and the combination treatment synergistically enhanced cytotoxicity, arresting the cell cycle at the G1 phase and inducing apoptosis. Linc-RoR gene expression was also significantly downregulated. Individual treatments showed lower efficacy, indicating synergism between components. Mechanistic studies are warranted to define the molecular underpinnings of this synergistic interaction. Our findings suggest dual delivery of linc-RoR siRNA and curcumin via dendrimers merits further exploration as a personalized therapeutic approach for overcoming breast cancer resistance.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alireza Soltani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shafiee
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
11
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Zeng W, Luo Y, Gan D, Zhang Y, Deng H, Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front Bioeng Biotechnol 2023; 11:1271420. [PMID: 38047286 PMCID: PMC10693343 DOI: 10.3389/fbioe.2023.1271420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Triple positive breast cancer (TPBC) is one of the most aggressive breast cancer. Due to the unique cell phenotype, aggressiveness, metastatic potential and lack of receptors or targets, chemotherapy is the choice of treatment for TNBC. Doxorubicin (DOX), one of the representative agents of anthracycline chemotherapy, has better efficacy in patients with metastatic TNBC (mTNBC). DOX in anthracycline-based chemotherapy regimens have higher response rates. Nano-drug delivery systems possess unique targeting and ability of co-load, deliver and release chemotherapeutic drugs, active gene fragments and immune enhancing factors to effectively inhibit or kill tumor cells. Therefore, advances in nano-drug delivery systems for DOX therapy have attracted a considerable amount of attention from researchers. In this article, we have reviewed the progress of nano-drug delivery systems (e.g., Nanoparticles, Liposomes, Micelles, Nanogels, Dendrimers, Exosomes, etc.) applied to DOX in the treatment of TNBC. We also summarize the current progress of clinical trials of DOX combined with immune checkpoint inhibitors (ICIS) for the treatment of TNBC. The merits, demerits and future development of nanomedicine delivery systems in the treatment of TNBC are also envisioned, with the aim of providing a new class of safe and efficient thoughts for the treatment of TNBC.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yuning Luo
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Gan
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaofeng Zhang
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Huan Deng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guohui Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Fadaka AO, Akinsoji T, Klein A, Madiehe AM, Meyer M, Keyster M, Sikhwivhilu LM, Sibuyi NRS. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach. J Pharm Anal 2023; 13:1235-1251. [PMID: 38174117 PMCID: PMC10759263 DOI: 10.1016/j.jpha.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Taiwo Akinsoji
- School of Medicine, Southern Illinois University, Springfield, IL, 62702, USA
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Lucky Mashudu Sikhwivhilu
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
| |
Collapse
|
14
|
Szénási A, Sivasudhan E, Du H, Zhang P, Huang J, Zhang Z, Rocha S, Wang M. Targeting SOD1 via RNAi with PEGylated graphene oxide nanoparticles in platinum-resistant ovarian cancer. Cancer Gene Ther 2023; 30:1554-1568. [PMID: 37582934 PMCID: PMC10645591 DOI: 10.1038/s41417-023-00659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Acquired platinum resistance poses a significant therapeutic impediment to ovarian cancer patient care, accounting for more than 200,000 deaths annually worldwide. We previously identified that overexpression of the antioxidant superoxide dismutase 1 (SOD1) in ovarian cancer is associated with a platinum-resistant phenotype via conferring oxidative stress resistance against platinum compounds. We further demonstrated that enzymatic inhibition using small-molecule inhibitors or silencing of SOD1 via RNA interference (RNAi) increased cisplatin sensitivity and potency in vitro. We launched this study to explore the potential therapeutic applications of SOD1 silencing in vivo in order to reverse cisplatin resistance using a graphene-based siRNA delivery platform. PEGylated graphene oxide (GO) polyethyleneimine (GOPEI-mPEG) nanoparticle was complexed with SOD1 siRNA. GOPEI-mPEG-siSOD1 exhibited high biocompatibility, siRNA loading capacity, and serum stability, and showed potent downregulation of SOD1 mRNA and protein levels. We further observed that cisplatin and PEI elicited mitochondrial dysfunction and transcriptionally activated the mitochondrial unfolded protein response (UPRmt) used as a reporter for their respective cytotoxicities. SOD1 silencing was found to augment cisplatin-induced cytotoxicity resulting in considerable tumour growth inhibition in cisplatin-sensitive A2780 and cisplatin-resistant A2780DDP subcutaneous mouse xenografts. Our study highlights the potential therapeutic applicability of RNAi-mediated targeting of SOD1 as a chemosensitizer for platinum-resistant ovarian cancers.
Collapse
Affiliation(s)
- Attila Szénási
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Enakshi Sivasudhan
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Hong Du
- Suzhou GenePharma, Suzhou, Jiangsu, 215123, China
| | | | - Jie Huang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Zhijun Zhang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mu Wang
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
15
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
16
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Yan C, Zhang J, Huang M, Xiao J, Li N, Wang T, Ling R. Design, strategies, and therapeutics in nanoparticle-based siRNA delivery systems for breast cancer. J Mater Chem B 2023; 11:8096-8116. [PMID: 37551630 DOI: 10.1039/d3tb00278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Utilizing small interfering RNA (siRNA) as a treatment for cancer, a disease largely driven by genetic aberrations, shows great promise. However, implementing siRNA therapy in clinical practice is challenging due to its limited bioavailability following systemic administration. An attractive approach to address this issue is the use of a nanoparticle (NP) delivery platform, which protects siRNA and delivers it to the cytoplasm of target cells. We provide an overview of design considerations for using lipid-based NPs, polymer-based NPs, and inorganic NPs to improve the efficacy and safety of siRNA delivery. We focus on the chemical structure modification of carriers and NP formulation optimization, NP surface modifications to target breast cancer cells, and the linking strategy and intracellular release of siRNA. As a practical example, recent advances in the development of siRNA therapeutics for treating breast cancer are discussed, with a focus on inhibiting cancer growth, overcoming drug resistance, inhibiting metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Juliang Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
18
|
Wang Y, Wei Y, Chen L, Yang Y, Jia F, Yu W, Zhou S, Yu S. Research progress of siVEGF complex and their application in antiangiogenic therapy. Int J Pharm 2023; 643:123251. [PMID: 37481098 DOI: 10.1016/j.ijpharm.2023.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.
Collapse
Affiliation(s)
- Yan Wang
- Shanxi Medical University, Taiyuan 030001, China
| | - Yingying Wei
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Jia
- Shanxi Medical University, Taiyuan 030001, China
| | - Weiran Yu
- The Affiliated High School of Shanxi University, Taiyuan 030006, China
| | - Shizhao Zhou
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
19
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
20
|
Ni C, Ouyang Z, Li G, Liu J, Cao X, Zheng L, Shi X, Guo R. A tumor microenvironment-responsive core-shell tecto dendrimer nanoplatform for magnetic resonance imaging-guided and cuproptosis-promoted chemo-chemodynamic therapy. Acta Biomater 2023; 164:474-486. [PMID: 37040813 DOI: 10.1016/j.actbio.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Theranostic nanoplatforms for combination tumor therapy have gained lots of attention recently due to the optimized therapeutic efficiency and simultaneous diagnosis performance. Herein, a novel tumor microenvironment (TME)-responsive core-shell tecto dendrimer (CSTD) was assembled by phenylboronic acid- and mannose-modified poly(amidoamine) dendrimers via the phenylboronic ester bonds that are responsive to low pH and reactive oxygen species (ROS), and efficiently loaded with copper ions and chemotherapeutic drug disulfiram (DSF) for tumor-targeted magnetic resonance (MR) imaging and cuproptosis-promoted chemo-chemodynamic therapy. The formed CSTD-Cu(II)@DSF could be specifically taken up by MCF-7 breast cancer cells, accumulated to the tumor model after circulation, and released drugs in response to the weakly acidic TME with overexpressed ROS. The enriched intracellular Cu(II) ions could induce the oligomerization of lipoylated proteins and proteotoxic stress for cuproptosis, and lipid peroxidation for chemodynamic therapy as well. Moreover, the CSTD-Cu(II)@DSF could cause the dysfunction of mitochondria and arrest the cell cycle at the G2/M phase, leading to enhanced DSF-mediated cell apoptosis. As a result, CSTD-Cu(II)@DSF could effectively inhibit the growth of MCF-7 tumors by a combination therapy strategy integrating chemotherapy with cuproptosis and chemodynamic therapy. Lastly, the CSTD-Cu(II)@DSF also displays Cu(II)-associated r1 relaxivity, allowing for T1-weighted real-time MR imaging of tumors in vivo. The developed tumor-targeted and TME-responsive CSTD-based nanomedicine formulation may be developed for accurate diagnosis and synergistic treatment of other cancer types. STATEMENT OF SIGNIFICANCE: Constructing an effective nanoplatform for the combination of therapeutic effects and real-time tumor imaging remains a challenge. In this study, we reported for the first time an all-in-one tumor-targeted and tumor microenvironment (TME) responsive nanoplatform based on core-shell tecto dendrimer (CSTD) for the cuproptosis-promoted chemo-chemodynamic therapy and enhanced MR imaging. The efficient loading, selective tumor-targeting, and TME-responsive release of Cu(II) and disulfiram could enhance the intracellular accumulation of drugs, induce cuproptosis of cancer cells, and amplify the synergistic chemo-chemodynamic therapeutic effect, resulting in enhanced MR imaging and accelerated tumor eradication. This study sheds new light on the development of theranostic nanoplatforms for early accurate diagnosis and effective treatment of cancers.
Collapse
Affiliation(s)
- Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
21
|
Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15051502. [PMID: 37242744 DOI: 10.3390/pharmaceutics15051502] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems. In this manuscript, we describe several representative cationic polymers, especially biodegradable cationic polymers, and provide an outlook on cationic polymers as nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiajuan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), China National Center for Bioinformation, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
22
|
Jin Y, Fan J, Wang R, Wang X, Li N, You Q, Jiang Z. Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. J Am Chem Soc 2023; 145:7218-7229. [PMID: 36971523 DOI: 10.1021/jacs.2c12809] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Event-driven bifunctional molecules, typified by proteolysis targeting chimera (PROTAC) technology, have been successfully applied in degrading many proteins of interest (POI). Due to the unique catalytic mechanism, PROTACs will induce multiple cycles of degradation until the elimination of the target protein. Here, we propose a versatile "Ligation to scavenging" approach to terminate event-driven degradation for the first time. Ligation to the scavenging system consists of a TCO-modified dendrimer (PAMAM-G5-TCO) and tetrazine-modified PROTACs (Tz-PROTACs). PAMAM-G5-TCO can rapidly scavenge intracellular free PROTACs via an inverse electron demand Diels-Alder reaction and terminate the degradation of certain proteins in living cells. Thus, this work proposes a flexible chemical knockdown approach to adjust the levels of POI on-demand in living cells, which paves the way for controlled target protein degradation.
Collapse
|
23
|
Joubert F, Munson MJ, Sabirsh A, England RM, Hemmerling M, Alexander C, Ashford MB. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J Control Release 2023; 356:580-594. [PMID: 36918085 DOI: 10.1016/j.jconrel.2023.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Here, we aimed to chemically modify PAMAM dendrimers using lysine as a site-selective anchor for successfully delivering mRNA while maintaining a low toxicity profile. PAMAM dendrimers were multi-functionalised by amidation reactions in a regioselective, quantitative and stepwise manner with carefully selected property-modifying surface groups. Alternatively, novel lysine-based dendrimers were prepared in the same manner with the aim to unlock their potential in gene delivery. The modified dendrimers were then formulated with Cy5-EGFP mRNA by bulk mixing via liquid handling robotics across different nitrogen to phosphate ratios. The resulting dendriplexes were characterised by size, charge, mRNA encapsulation, and mRNA binding affinity. Finally, their in-vitro delivery activity was systematically investigated across key cellular trafficking stages to relate chemical design to cellular effect. We demonstrate our findings in different cell lines and benchmarked relative to a commercially available transfection agent, jetPEI®. We demonstrate that specific surface modifications are required to generate small, reliable and well-encapsulated positively charged dendriplex complexes. Furthermore, we show that introduction of fusogenic groups is essential for driving endosomal escape and achieving cellular delivery and translation of mRNA in these cell lines.
Collapse
Affiliation(s)
- Fanny Joubert
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
| | - Martin Hemmerling
- Medicinal Chemistry, Early Respiratory & Immunology, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
24
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
25
|
Hassani F, Heydarinasab A, Ahmad Panahi H, Moniri E. Surface modification of tungsten disulfide nanosheets with pH/Thermosensitive polymer and polyethylenimine dendrimer for near-infrared triggered drug delivery of letrozole. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Kurawattimath V, Wilson B, Geetha KM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
27
|
Le M, Huang W, Ma Z, Shi Z, Li Q, Lin C, Wang L, Jia YG. Facially Amphiphilic Skeleton-Derived Antibacterial Cationic Dendrimers. Biomacromolecules 2023; 24:269-282. [PMID: 36495302 DOI: 10.1021/acs.biomac.2c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to develop biocompatible and high-efficiency antimicrobial agents since microbial infections have always posed serious challenges to human health. Herein, through the marriage of facially amphiphilic skeletons and cationic dendrimers, high-density positively charged dendrimers D-CA6-N+ (G2) and D-CA2-N+ (G1) were designed and synthesized using the "branch" of facially amphiphilic bile acids, followed by their modification with quaternary ammonium charges. Both dendrimers could self-assemble into nanostructured micelles in aqueous solution. D-CA6-N+ displays potent antibacterial activity against Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) as low as 7.50 and 7.79 μM, respectively, and has an evidently stronger antibacterial activity than D-CA2-N+. Moreover, D-CA6-N+ can kill S. aureus faster than E. coli. The facial amphiphilicity of the bile acid skeleton facilitates the selective destruction of bacterial membranes and endows dendrimers with negligible hemolysis and cytotoxicity even under a high concentration of 16× MIC. In vivo studies show that D-CA6-N+ is much more effective and safer than penicillin G in treating S. aureus infection and promoting wound healing, which suggests facially amphiphilic skeleton-derived cationic dendrimers can be a promising approach to effectively enhance antibacterial activity and biocompatibility of antibacterial agent, simultaneously.
Collapse
Affiliation(s)
- Mengqi Le
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
28
|
Kim HT, Yoo M, Yang E, Song K, Park EJ, Na DH. The importance of
pH
for the formation of stable and active quercetin–polyamidoamine dendrimer complex. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hong Taek Kim
- College of Pharmacy, Chung‐Ang University Seoul Republic of Korea
| | - Miri Yoo
- College of Pharmacy, Kyungpook National University Daegu Republic of Korea
| | - Eun‐Ju Yang
- College of Pharmacy, Chung‐Ang University Seoul Republic of Korea
| | - Kyung‐Sik Song
- College of Pharmacy, Kyungpook National University Daegu Republic of Korea
| | - Eun Ji Park
- D&D Pharmatech Seongnam Gyeonggi‐do Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
29
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
30
|
Akhtar S, Babiker F, Akhtar UA, Benter IF. Mitigating Cardiotoxicity of Dendrimers: Angiotensin-(1-7) via Its Mas Receptor Ameliorates PAMAM-Induced Cardiac Dysfunction in the Isolated Mammalian Heart. Pharmaceutics 2022; 14:pharmaceutics14122673. [PMID: 36559167 PMCID: PMC9781033 DOI: 10.3390/pharmaceutics14122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
AIM The influence of the physiochemical properties of dendrimer nanoparticles on cardiac contractility and hemodynamics are not known. Herein, we investigated (a) the effect of polyamidoamine (PAMAM) dendrimer generation (G7, G6, G5, G4 and G3) and surface chemistry (-NH2, -COOH and -OH) on cardiac function in mammalian hearts following ischemia-reperfusion (I/R) injury, and (b) determined if any PAMAM-induced cardiotoxicity could be mitigated by Angiotensin-(1-7) (Ang-(1-7), a cardioprotective agent. METHODS Hearts isolated from male Wistar rats underwent regional I/R and/or treatment with different PAMAM dendrimers, Ang-(1-7) or its MAS receptors antagonists. Thirty minutes of regional ischemia through ligation of the left anterior descending coronary artery was followed by 30 min of reperfusion. All treatments were initiated 5 min prior to reperfusion and maintained during the first 10 min of reperfusion. Cardiac function parameters for left ventricular contractility, hemodynamics and vascular dynamics data were acquired digitally, whereas cardiac enzymes and infarct size were used as measures of cardiac injury. RESULTS Treatment of isolated hearts with increasing doses of G7 PAMAM dendrimer progressively exacerbated recovery of cardiac contractility and hemodynamic parameters post-I/R injury. Impairment of cardiac function was progressively less on decreasing dendrimer generation with G3 exhibiting little or no cardiotoxicity. Cationic PAMAMs (-NH2) were more toxic than anionic (-COOH), with neutral PAMAMs (-OH) exhibiting the least cardiotoxicity. Cationic G7 PAMAM-induced cardiac dysfunction was significantly reversed by Ang-(1-7) administration. These cardioprotective effects of Ang-(1-7) were significantly revoked by administration of the MAS receptor antagonists, A779 and D-Pro7-Ang-(1-7). CONCLUSIONS PAMAM dendrimers can impair the recovery of hearts from I/R injury in a dose-, dendrimer-generation-(size) and surface-charge dependent manner. Importantly, PAMAM-induced cardiotoxicity could be mitigated by Ang-(1-7) acting through its MAS receptor. Thus, this study highlights the activation of Ang-(1-7)/Mas receptor axis as a novel strategy to overcome dendrimer-induced cardiotoxicity.
Collapse
Affiliation(s)
- Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (S.A.); (F.B.)
| | - Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Safat P.O. Box 24923, Kuwait
- Correspondence: (S.A.); (F.B.)
| | - Usman A. Akhtar
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ibrahim F. Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta 99628, North Cyprus, Turkey
| |
Collapse
|
31
|
Tan Q, Zhao S, Xu T, Wang Q, Lan M, Yan L, Chen X. Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier. J Mater Chem B 2022; 10:9314-9333. [PMID: 36349976 DOI: 10.1039/d2tb01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The blood-brain barrier (BBB) plays an irreplaceable role in protecting the central nervous system (CNS) from bloodborne pathogens. However, the BBB complicates the treatment of CNS diseases because it prevents almost all therapeutic drugs from getting into the CNS. With the growing understanding of the physiological characteristics of the BBB and the development of nanotechnology, nanomaterial-based drug delivery systems have become promising tools for delivering drugs across the BBB to the CNS. Herein, we systematically summarize the recent progress in organic-nanoparticle delivery systems for treating CNS diseases and evaluate their mechanisms in overcoming the BBB with the aim to provide a comprehensive understanding of the advantages, disadvantages, and challenges of organic nanoparticles in delivering drugs across the BBB. This review may inspire new research ideas and directions for applying nanotechnology to treat CNS diseases.
Collapse
Affiliation(s)
- Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK.
| |
Collapse
|
32
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
33
|
Petrovic M, Porcello A, Tankov S, Majchrzak O, Kiening M, Laingoniaina AC, Jbilou T, Walker PR, Borchard G, Jordan O. Synthesis, Formulation and Characterization of Immunotherapeutic Glycosylated Dendrimer/cGAMP Complexes for CD206 Targeted Delivery to M2 Macrophages in Cold Tumors. Pharmaceutics 2022; 14:pharmaceutics14091883. [PMID: 36145631 PMCID: PMC9503622 DOI: 10.3390/pharmaceutics14091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Anti-tumor responses can be achieved via the stimulation of the immune system, a therapeutic approach called cancer immunotherapy. Many solid tumor types are characterized by the presence of immune-suppressive tumor-associated macrophage (TAMs) cells within the tumor microenvironment (TME). Moreover, TAM infiltration is strongly associated with poor survival in solid cancer patients and hence a low responsiveness to cancer immunotherapy. Therefore, 2′3′ Cyclic GMP-AMP (2′3′ cGAMP) was employed for its ability to shift macrophages from pro-tumoral M2-like macrophages (TAM) to anti-tumoral M1. However, cGAMP transfection within macrophages is limited by the molecule’s negative charge, poor stability and lack of targeting. To circumvent these barriers, we designed nanocarriers based on poly(amidoamine) dendrimers (PAMAM) grafted with D-glucuronic acid (Glu) for M2 mannose-mediated endocytosis. Two carriers were synthesized based on different dendrimers and complexed with cGAMP at different ratios. Orthogonal techniques were employed for synthesis (NMR, ninhydrin, and gravimetry), size (DLS, NTA, and AF4-DLS), charge (DLS and NTA), complexation (HPLC-UV and AF4-UV) and biocompatibility and toxicity (primary cells and hen egg chorioallantoic membrane model) evaluations in order to evaluate the best cGAMP carrier. The best formulation was selected for its low toxicity, biocompatibility, monodispersed distribution, affinity towards CD206 and ability to increase M1 (STAT1 and NOS2) and decrease M2 marker (MRC1) expression in macrophages.
Collapse
Affiliation(s)
- Marija Petrovic
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Stoyan Tankov
- Translational Research Centre in Oncohaematology, University of Geneva, 1206 Geneva, Switzerland
| | - Oliwia Majchrzak
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Martin Kiening
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Annick Clara Laingoniaina
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Tayeb Jbilou
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Paul R. Walker
- Translational Research Centre in Oncohaematology, University of Geneva, 1206 Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Correspondence: ; Tel.: +41-223796586
| |
Collapse
|
34
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
35
|
Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14081620. [PMID: 36015246 PMCID: PMC9416290 DOI: 10.3390/pharmaceutics14081620] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Rakesh Pemmada
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: (M.M.); (V.T.)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
| | | | - James M. Donahue
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Vinoy Thomas
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), Center for Clinical and Translational Science (CCTS), University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Correspondence: (M.M.); (V.T.)
| |
Collapse
|
36
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
37
|
Guizze F, Serra CHR, Giarolla J. PAMAM Dendrimers: A Review of Methodologies Employed in Biopharmaceutical Classification. J Pharm Sci 2022; 111:2662-2673. [PMID: 35850238 DOI: 10.1016/j.xphs.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
The oral route is the preferred way of drug administration for most drugs, whose treatment success is directly related to the compound intestinal absorption. This absorption process, in its turn, is influenced by several factors impacting the drug bioavailability, which is extremely dependent on the maximum solubility and permeability. However, optimizing these last two factors, without chemical structural modification, is challenging. Although poly(amidoamine) dendrimers (PAMAM) are an innovative and promising strategy as drug delivery compounds, there are few studies that determine the permeability and solubility of PAMAM-drugs derivatives. Considering this scenario, this paper aimed to carry out a literature review of the last five years concerning biopharmaceutical characterizations of dendrimer delivery systems. In vitro methodologies, such as the Parallel artificial membrane permeability assay (PAMPA) (non-cellular based model) and Caco-2 cells (cellular based model), used for the permeability evaluation in the early stages of drug discovery proved to be the most promising methodologies. As a result, we discussed, for instance, that through the usage of PAMPA it was possible to evaluate the higher capacity for transdermal delivery of DNA of TAT-conjugated PAMAM, when in comparison with unmodified PAMAM dendrimer with a P<0.05. We also presented the importance of choosing the best methods of biopharmaceutical characterization, which will be essential to guarantee the efficacy and safety of the drug candidate.
Collapse
Affiliation(s)
- Felipe Guizze
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil
| | - Cristina Helena Reis Serra
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| | - Jeanine Giarolla
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| |
Collapse
|
38
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
39
|
Cojocaru E, Ghitman J, Stan R. Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers (Basel) 2022; 14:2647. [PMID: 35808692 PMCID: PMC9269101 DOI: 10.3390/polym14132647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitzescu”, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| |
Collapse
|
40
|
Folic acid conjugated PAMAM-modified mesoporous silica-coated superparamagnetic iron oxide nanoparticles for potential cancer therapy. J Colloid Interface Sci 2022; 625:711-721. [PMID: 35772201 DOI: 10.1016/j.jcis.2022.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023]
Abstract
In this study, novel folate-receptor-targeted polyamidoamine (PAMAM) dendrimer functional mesoporous silica-coated magnetic nanoparticles were prepared for drug delivery agents for photodynamic therapy applications. The surface of the magnetic nanoparticles was coated with mesoporous silica (M-MSN). The M-MSN nanoparticles were functionalized with siloxane-cored PAMAM dendrons (generation 1 to 3). The surface of the M-MSN-PAMAM nanocarriers was targeted with folic acid. Indocyanine green (ICG) a near-infrared dye was loaded in the M-MSN-PAMAM nanocarriers and the photodynamic therapy efficiency of the drug-loaded nanocarriers was evaluated on MCF-7 cells. MCF-7 cells were subjected to tissue culture E-Plate that was used to generate dynamic real-time data by measuring electrical impedance across interdigitated microelectrodes on the bottom of the plate. Light source (LEDs) was designed as a system that fit 96 well-plate and cells were irradiated at 785 nm for 20 min. Also, these results were confirmed by WST-1 assay in dark and light conditions for MCF-7 cells. The results showed that in vitro application of ICG loaded M-MSN-PAMAM-FA causes apoptosis in the MCF-7 cell line.
Collapse
|
41
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
42
|
Insights into Aptamer-Drug Delivery Systems against Prostate Cancer. Molecules 2022; 27:molecules27113446. [PMID: 35684384 PMCID: PMC9182114 DOI: 10.3390/molecules27113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is a common cancer in elderly males. Significant progress has been made in the drug therapies for prostate cancer in recent years. However, side effects are still problems that have not been overcome by the currently used anti-prostate cancer drugs. Novel technologies can be applied to reduce or even eliminate the side effects of drugs. An aptamer may be a sequence of nucleic acids or peptides that can specifically recognize proteins or cells. Taking advantage of this feature, scientists have designed aptamer-drug delivery systems for the development of anti-prostate cancer agents. Theoretically, these aptamer-drug delivery systems can specifically recognize prostate cancer cells and then induce cell death without attacking normal cells. We collected the relevant literature in this field and found that at least nine compounds have been prepared as aptamer-drug delivery systems to evaluate their precise anti-prostate cancer effects. However, the currently studied aptamer-drug delivery systems have not yet entered the market due to defects. Here, we analyze the published data, summarize the characteristics of these delivery systems, and propose ways to promote their application, thus promoting the development of the aptamer-drug delivery systems against prostate cancer.
Collapse
|
43
|
Chen S, Ouyang H, He D, Liu D, Wang X, Chen H, Pan W, Li Q, Xie W, Yu C. Functionalized PAMAM-Based Nanoformulation for Targeted Delivery of 5-Fluorouracil in Hepatocellular Carcinoma. Curr Pharm Des 2022; 28:2113-2125. [PMID: 35524673 DOI: 10.2174/1381612828666220506111918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Efficacy of a traditional anticancer drug is challenged by adverse effects of the drug including its nonspecific bio-distribution, short half-life and side effects. Dendrimer-based targeted drug delivery sysytem has been considered as a promising strategy to increase targeting ability and reduce adverse effects of anti-cancer drugs. OBJECTIVE This study analyzed the feasibility whether the anticancer drug 5-fluorouracil (5-FU) could be delivered by functionalized fifth-poly(amidoamine) (PAMAM) with the peptide WP05 and the acetic anhydride to the liver cancer cells, reducing toxicity of the PAMAM and improving the targeting property of 5-FU during delivery. METHODS The functionalized PAMAM-based nanoformulation (WP05-G5.0NHAC-FUA) was fabricated through an amide condensation reaction to improve therapeutic efficacy of 5-Fluorouracil (5-FU) in hepatocellular carcinoma (HCC). The physicochemical structure, particle size, zeta potential, stability and in vitro release characteristics of WP05-G5.0NHAC-FUA were evaluated. In addition, the targeting, biocompatibility, anti-proliferation and anti-migration of WP05-G5.0NHAC-FUA were investigated. The anti-tumor effect of WP05-G5.0NHAC-FUA in vivo was evaluated by constructing xenograft tumor models of hunman hepatoma cells (Bel-7402) implanted in nude mice. RESULTS The resultant WP05-G5.0NHAC-FUA displayed spherical-like nanoparticles with the size of 174.20 ± 3.59 nm. Zeta potential and the drug loading of WP05-G5.0NHAC-FUA were 5.62 ± 0.41mV and 28.67 ± 1.25 %, respectively. Notably, the optimized 5-FU-loaded formulation showed greater cytotoxicity with an IC50 of 30.80 ±4.04 μg/mL than free 5-FU (114.93 ±1.43 μg/mL) in Bel-7402 cancer liver cells, but a significantly reduced side effect relative to free 5-FU in L02 normal liver cells. In vivo animal study further confirmed efficient tumor accumulation and enhanced therapeutic efficiency. CONCLUSION The developed nanoformulation is a promising platform for the targeting delivery of 5-FU and provides a promising solution for improving the efficacy of hepatocellular carcinoma chemotherapy.
Collapse
Affiliation(s)
- Siwei Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Hu Ouyang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Dongxiu He
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Daquan Liu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Xiao Wang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Hongyuan Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Wei Pan
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Qi Li
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Weiquan Xie
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Cuiyun Yu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| |
Collapse
|
44
|
Patel V, Patel P, Patel JV, Patel PM. Dendrimer as a versatile platform for biomedical application: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra-Articular Drug Delivery Systems. Drug Des Devel Ther 2022; 16:1311-1347. [PMID: 35547865 PMCID: PMC9081192 DOI: 10.2147/dddt.s357386] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery for osteoarthritis (OA) treatment is a continuous challenge because of their poor bioavailability and rapid clearance in joints. Intra-articular (IA) drug delivery is a common strategy and its therapeutic effects depend mainly on the efficacy of the drug-delivery system used for OA therapy. Different types of IA drug-delivery systems, such as microspheres, nanoparticles, and hydrogels, have been rapidly developed over the past decade to improve their therapeutic effects. With the continuous advancement in OA mechanism research, new drugs targeting specific cell/signaling pathways in OA are rapidly evolving and effective drug delivery is critical for treating OA. In this review, recent advances in various IA drug-delivery systems for OA treatment, OA targeted strategies, and related signaling pathways in OA treatment are summarized and analyzed based on current publications.
Collapse
Affiliation(s)
- Luoyang Ma
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xiaoyan Zheng
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
| | - Rui Lin
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Antonia RuJia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen City, Guangdong Province, 518055, People’s Republic of China
| | - Jintong Song
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Zhiqiang Ye
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Dahong Liang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Jia Tian
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Xin Zhou
- Marine Medical Research Institute of Zhanjiang, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Liao Cui
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yuyu Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
| | - Yanzhi Liu
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang City, Guangdong Province, 524023, People’s Republic of China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang city, Guangdong province, 524045, People's Republic of China
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen city, Guangdong Province, 518118, People’s Republic of China
- Correspondence: Yanzhi Liu; Yuyu Liu, Tel +86-759-2388405; +86-759-2388588, Email ;
| |
Collapse
|
46
|
Guo D, Zhou X, Muhammad N, Huang S, Zhu Y. An overview of poly (amide-amine) dendrimers functionalized chromatographic separation materials. J Chromatogr A 2022; 1669:462960. [PMID: 35305456 DOI: 10.1016/j.chroma.2022.462960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023]
Abstract
Chromatography is one of the most important separation techniques in analytical chemistry. In which, the separation materials are the core for good separation results. Poly (amide-amine) dendrimers with regular three-dimensional structure, abundant terminal groups, controllable molecule chains, and unique cavities appear to have a positive impact on chromatographic separation materials. In the past decades, poly (amide-amine) grafted adsorbents and stationary phases have presented high grafting efficiency, controllable surface structure, good dispersion, and wide practical applications. In this review, the prepared poly (amide-amine) functionalized separation materials and their applications are systematically summarized. Functions, significance, structure-actvity relationships and benefits of poly (amide-amine) dendrimers in the proposed separation materials are discussed in detail. And we hope to provide a useful reference for the future development of chromatographic separation materials and inspire new discoveries in the study of poly (amide-amine) functionalized materials.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China; Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Xiaoqian Zhou
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Nadeem Muhammad
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan 430223, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China.
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
47
|
Thambi T, Lee J, Yoon AR, Kasala D, Yun CO. A pH- and Bioreducible Cationic Copolymer with Amino Acids and Piperazines for Adenovirus Delivery. Pharmaceutics 2022; 14:pharmaceutics14030597. [PMID: 35335972 PMCID: PMC8950541 DOI: 10.3390/pharmaceutics14030597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoviruses (Ads) are attractive nonviral vectors and show great potential in cancer gene therapy. However, inherent properties of Ads, including immunogenicity, nonspecific toxicity, and coxsackie and adenovirus receptor (CAR)-dependent cell uptake, limit their clinical use. To surmount these issues, we developed a pH- and glutathione-responsive poly(ethylene glycol)-poly(ꞵ-aminoester)-polyethyleneimine (PPA) for conjugation with Ad. The pH sensitivity of the PPA copolymer was elegantly tuned by substitution with different amino acids (arginine, histidine, and tryptophan), piperazines (Pip1, Pip2, and Pip3), and guanidine residues in the backbone of the PPA conjugate. PPA copolymer was further functionalized with short-chain cross-linker succinimidyl 3-(2-pyridyldithio)propionate) (SPDP) to obtain PPA-SPDP for facile conjugation with Ad. The PPA-conjugated Ad (PPA-Ad) conjugate was obtained by reacting PPA-SPDP conjugate with thiolated Ad (Ad-SH). Ad-SH was prepared by reacting Ad with 2-iminothiolane. The size distribution and zeta potential results of PPA-Ad conjugate showed an increasing trend with an increase in copolymer dose. From in vitro test, it was found that the transduction efficiency of PPA-Ad conjugate in CAR-positive cells (A549 and H460 cells) was remarkably increased at the acidic pH condition (pH 6.2) when compared with PPA-Ad conjugate incubated under the physiological condition (pH 7.4). Interestingly, the increase in transduction efficiency was evidenced in CAR-negative cells (MDA-MB-231 and T24 cells). These results demonstrated that biocompatible and biodegradable PPA copolymers can efficiently cover the surface of Ad and can increase the transduction efficiency, and hence PPA copolymers can be a useful nanomaterial for viral vector delivery in cancer therapy.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
| | - Jeongmin Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea; (T.T.); (J.L.); (A.-R.Y.); (D.K.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-0491; Fax: +82-2-2220-4850
| |
Collapse
|
48
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
49
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
50
|
Li Z, Zhang L, Jiang K, Zhang Y, Liu Y, Hu G, Song J. Biosafety assessment of delivery systems for clinical nucleic acid therapeutics. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|