1
|
He W, Shi M, Lu Y, Chu C, Wang X, Wang M, Zhang X. Visualization and quantitative evaluation of aerosol deposition using 3D-printed adult nose cavities. Heliyon 2024; 10:e38179. [PMID: 39524760 PMCID: PMC11550752 DOI: 10.1016/j.heliyon.2024.e38179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Local steroid medication is one of the most important treatment options for chronic rhinosinusitis. Regional deposition has a higher clinical value compared with total deposition in predicting treatment outcomes or evaluating adverse reactions. The goal of this project is to propose an effective technique for visualizing and quantifying aerosol deposition in a three-dimensional adult nasal cavity, and to verify the practicality of this method. Three-dimensional (3D) nasal cavity models were constructed from computed tomography (CT) scans of one post-operative rhinosinusitis subject using imaging software. The nasal cast was coated with a water-indicating paste and deposited with saline; a liquid dressing was added to visualize the progress. The quantity of liquid dressing was evaluated via HPLC and the liquid deposition was analyzed within the nasal cast cavity. Herein, 98.77 % of the particles generated by the nebulizer were over 5 μm, suggesting that most of the aerosol could effectively enter the nasal cavity instead of the lower respiratory system. The liquid dressing was mainly deposited in the nasal cavity, ethmoid sinus, and frontal sinus according to the visualization tests. HPLC results suggested that the main deposits were the frontal sinus (up to 41.80 %) as well as in the sphenoid sinus and ethmoid sinus (14.00 %). The large particle nebulizer (BM-TCA) generally led to better deposition in sinus areas when compared to the smaller particle nebulizer (PARI). This technology allows for in vitro testing of various types of nasal preparations and equipment under various test methods.
Collapse
Affiliation(s)
- Wei He
- Breath Medical Co., Ltd., Hefei, PR China
| | - Muhan Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, Peking University People's Hospital, Xi Zhi Men Nan Da Jie 11#, Beijing, 100044, PR China
| | - Yaozhong Lu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, PR China
| | | | - Xiaolong Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, PR China
| | - Min Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Peking University People's Hospital, Xi Zhi Men Nan Da Jie 11#, Beijing, 100044, PR China
| | | |
Collapse
|
2
|
Rigaut C, Deruyver L, Niesen M, Vander Ghinst M, Goole J, Lambert P, Haut B. What Are the Key Anatomical Features for the Success of Nose-to-Brain Delivery? A Study of Powder Deposition in 3D-Printed Nasal Casts. Pharmaceutics 2023; 15:2661. [PMID: 38140002 PMCID: PMC10747338 DOI: 10.3390/pharmaceutics15122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.
Collapse
Affiliation(s)
- Clément Rigaut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Maxime Niesen
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Marc Vander Ghinst
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Pierre Lambert
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Benoit Haut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| |
Collapse
|
3
|
Pina Costa C, Nižić Nodilo L, Silva R, Martins E, Zadravec D, Kalogjera L, Nuno Moreira J, Manuel Sousa Lobo J, Hafner A, Catarina Silva A. In situ hydrogel containing diazepam-loaded nanostructured lipid carriers (DZP-NLC) for nose-to-brain delivery: development, characterization and deposition studies in a 3D-printed human nasal cavity model. Int J Pharm 2023; 644:123345. [PMID: 37619806 DOI: 10.1016/j.ijpharm.2023.123345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The nasal route has been investigated as a promising alternative for drug delivery to the central nervous system, avoiding passage through the blood-brain barrier and improving bioavailability. In this sense, it is necessary to develop and test the effectiveness of new formulations proposed for the management of neurological disorders. Thereby, the aim of this work was to develop and characterize an ion sensitive in situ hydrogel containing diazepam-loaded nanostructured lipid carriers (DZP-NLC) for nasal delivery in the treatment of epilepsy. Physical characterization of the developed formulations was performed and included the evaluation of rheological features, particle size, polydispersity index (PDI) and zeta potential (ZP) of an in situ hydrogel containing DZP-NLC. Afterwards, in vitro drug release, in vitro mucoadhesion and biocompatibility studies with RPMI 2650 nasal cells were performed. The in situ hydrogel containing DZP-NLC was aerosolized with a nasal spray device specifically designed for nose-to-brain delivery (VP7 multidose spray pump with a 232 N2B actuator) and characterized for droplet size distribution and spray cone angle. Finally, the deposition pattern of this hydrogel was evaluated in a 3D-printed human nasal cavity model. The developed in situ hydrogel containing DZP-NLC presented adequate characteristics for nasal administration, including good gelling ability, mucoadhesiveness and prolonged drug release. In addition, after inclusion in the hydrogel net, the particle size (81.79 ± 0.53 nm), PDI (0.21 ± 0.10) and ZP (-30.90 ± 0.10 mV), of the DZP-NLC remained appropriate for nose-to-brain delivery. Upon aerosolization in a nasal spray device, a suitable spray cone angle (22.5 ± 0.2°) and adequate droplet size distribution (Dv (90) of 317.77 ± 44.12 µm) were observed. Biocompatibility studies have shown that the developed formulation is safe towards RPMI 2650 cells in concentrations up to 100 μg/mL. Deposition studies on a 3D-printed human nasal cavity model revealed that the best nasal deposition profile was obtained upon formulation administration without airflow and at an angle from horizontal plane of 75°, resulting in 47% of administered dose deposited in the olfactory region and 89% recovery. The results of this study suggested that the intranasal administration of the developed in situ hydrogel containing DZP-NLC could be a promising alternative to the conventional treatments for epilepsy.
Collapse
Affiliation(s)
- Cláudia Pina Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Laura Nižić Nodilo
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Renata Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - Eva Martins
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - Dijana Zadravec
- Sestre milosrdnice University Hospital Center "Sestre milosrdnice", University of Zagreb, Zagreb, Croatia
| | - Livije Kalogjera
- Sestre milosrdnice University Hospital Center "Sestre milosrdnice", University of Zagreb, Zagreb, Croatia
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, 3004-531 Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Anita Hafner
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ana Catarina Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
4
|
Smith R, Ruben C, Pradhan O, Brogden N, Fiegel J. Spray coverage analysis of topical sprays formed by cold thermoreversible hydrogels. Drug Dev Ind Pharm 2023; 49:456-466. [PMID: 37354008 PMCID: PMC11172404 DOI: 10.1080/03639045.2023.2229919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE Sprayable hydrogel formulations are promising topical treatments for skin wounds due to their ability to reduce application pain, prolong drug release, and provide moisture to promote skin healing. These viscoelastic materials, however, present challenges in spray ability which can be overcome using a thermoreversible hydrogels sprayed as lower viscosity liquids at cooler temperatures. The purpose of this research was to evaluate the impact of thermoreversible hydrogel formulation and device characteristics on topical spray patterns and to develop metrics to accurately describe surface coverage. METHODS Cold solutions of Pluronic F127 were prepared at 15, 17, and 20% (w/w) and tested to determine their rheological properties. Formulations were sprayed from hand-held atomizing pump dispersers under cold conditions and two distinct areas of their spray patterns analyzed: the concentrated core and the full spray pattern. Traditional analysis of spray patterns was conducted to determine major and minor axes, ovality, and total area. In addition, new scripts were developed to evaluate the concentrated core. RESULTS The full spray pattern analysis quantified the total area over which the spray would extend a flat surface, while the concentrated core analysis quantified the continuous region where a drug dose would be concentrated. The combination of formulation viscosity, sprayer nozzle, and spray distance produced spray patterns from highly concentrated to highly dispersed. These parameters can be controlled to generate desired hydrogel spray patterns for application on skin surfaces. CONCLUSION The developed metrics provide a basis for topical spray analysis that can inform future product performance.
Collapse
Affiliation(s)
- Riannon Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242
| | - Chris Ruben
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242
| | - Ojas Pradhan
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242
| | - Nicole Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
5
|
Hu X, Yue X, Wu C, Zhang X. Factors affecting nasal drug delivery and design strategies for intranasal drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:328-337. [PMID: 37476944 PMCID: PMC10412955 DOI: 10.3724/zdxbyxb-2023-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.
Collapse
Affiliation(s)
- Xiaoyun Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Tianjin Pharmaceutical Research Institute Co., Ltd., Tianjin 300462, China.
| | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Perkušić M, Nižić Nodilo L, Ugrina I, Špoljarić D, Jakobušić Brala C, Pepić I, Lovrić J, Safundžić Kučuk M, Trenkel M, Scherließ R, Zadravec D, Kalogjera L, Hafner A. Chitosan-Based Thermogelling System for Nose-to-Brain Donepezil Delivery: Optimising Formulation Properties and Nasal Deposition Profile. Pharmaceutics 2023; 15:1660. [PMID: 37376108 DOI: 10.3390/pharmaceutics15061660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Donepezil nasal delivery strategies are being continuously investigated for advancing therapy in Alzheimer's disease. The aim of this study was to develop a chitosan-based, donepezil-loaded thermogelling formulation tailored to meet all the requirements for efficient nose-to-brain delivery. A statistical design of the experiments was implemented for the optimisation of the formulation and/or administration parameters, with regard to formulation viscosity, gelling and spray properties, as well as its targeted nasal deposition within the 3D-printed nasal cavity model. The optimised formulation was further characterised in terms of stability, in vitro release, in vitro biocompatibility and permeability (using Calu-3 cells), ex vivo mucoadhesion (using porcine nasal mucosa), and in vivo irritability (using slug mucosal irritation assay). The applied research design resulted in the development of a sprayable donepezil delivery platform characterised by instant gelation at 34 °C and olfactory deposition reaching a remarkably high 71.8% of the applied dose. The optimised formulation showed prolonged drug release (t1/2 about 90 min), mucoadhesive behaviour, and reversible permeation enhancement, with a 20-fold increase in adhesion and a 1.5-fold increase in the apparent permeability coefficient in relation to the corresponding donepezil solution. The slug mucosal irritation assay demonstrated an acceptable irritability profile, indicating its potential for safe nasal delivery. It can be concluded that the developed thermogelling formulation showed great promise as an efficient donepezil brain-targeted delivery system. Furthermore, the formulation is worth investigating in vivo for final feasibility confirmation.
Collapse
Affiliation(s)
- Mirna Perkušić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Laura Nižić Nodilo
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Cvijeta Jakobušić Brala
- Department of Physical Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Dijana Zadravec
- Department of Diagnostic and Interventional Radiology, University Hospital Center Sestre Milosrdnice, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
| | - Livije Kalogjera
- ORL/HNS Department, University Hospital Center Sestre Milosrdnice, Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Deruyver L, Rigaut C, Gomez-Perez A, Lambert P, Haut B, Goole J. In vitro Evaluation of Paliperidone Palmitate Loaded Cubosomes Effective for Nasal-to-Brain Delivery. Int J Nanomedicine 2023; 18:1085-1106. [PMID: 36883068 PMCID: PMC9985876 DOI: 10.2147/ijn.s397650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction This work aimed to develop chitosan-coated cubosomal nanoparticles intended for nose-to-brain delivery of paliperidone palmitate. They were compared with standard and cationic cubosomal nanoparticles. This comparison relies on numerous classical in vitro tests and powder deposition within a 3D-printed nasal cast. Methods Cubosomal nanoparticles were prepared by a Bottom-up method followed by a spray drying process. We evaluated their particle size, polydispersity index, zeta-potential, encapsulation efficiency, drug loading, mucoaffinity properties and morphology. The RPMI 2650 cell line was used to assess the cytotoxicity and cellular permeation. An in vitro deposition test within a nasal cast completed these measurements. Results The selected chitosan-coated cubosomal nanoparticles loaded with paliperidone palmitate had a size of 305.7 ± 22.54 nm, their polydispersity index was 0.166 ± 0.022 and their zeta potential was +42.4 ± 0.2 mV. This formulation had a drug loading of 70% and an encapsulation efficiency of 99.7 ± 0.1%. Its affinity with mucins was characterized by a ΔZP of 20.93 ± 0.31. Its apparent permeability coefficient thought the RPMI 2650 cell line was 3.00E-05 ± 0.24E-05 cm/s. After instillation in a 3D-printed nasal cast, the fraction of the injected powder deposited in the olfactory region reached 51.47 ± 9.30% in the right nostril and 41.20 ± 4.59% in the left nostril, respectively. Conclusion The chitosan coated cubosomal formulation seems to be the most promising formulation for nose-to-brain delivery. Indeed, it has a high mucoaffinity and a significantly higher apparent permeability coefficient than the two other formulations. Finally, it reaches well the olfactory region.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de pharmacie, Université libre de Bruxelles, Brussels, Belgium
| | - Clément Rigaut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | - Pierre Lambert
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Benoit Haut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de pharmacie, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Rigaut C, Deruyver L, Goole J, Haut B, Lambert P. Instillation of a Dry Powder in Nasal Casts: Parameters Influencing the Olfactory Deposition With Uni- and Bi-Directional Devices. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:924501. [PMID: 35832236 PMCID: PMC9273033 DOI: 10.3389/fmedt.2022.924501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Nose-to-brain delivery is a promising way to reach the central nervous system with therapeutic drugs. However, the location of the olfactory region at the top of the nasal cavity complexifies this route of administration. In this study, we used a 3D-printed replica of a nasal cavity (a so-called “nasal cast”) to reproduce in vitro the deposition of a solid powder. We considered two different delivery devices: a unidirectional device generating a classical spray and a bidirectional device that relies on the user expiration. A new artificial mucus also coated the replica. Five parameters were varied to measure their influence on the powder deposition pattern in the olfactory region of the cast: the administration device, the instillation angle and side, the presence of a septum perforation, and the flow rate of possible concomitant inspiration. We found that the unidirectional powder device is more effective in targeting the olfactory zone than the bi-directional device. Also, aiming the spray nozzle directly at the olfactory area is more effective than targeting the center of the nasal valve. Moreover, the choice of the nostril and the presence of a perforation in the septum also significantly influence the olfactory deposition. On the contrary, the inspiratory flow has only a minor effect on the powder outcome. By selecting the more efficient administration device and parameters, 44% of the powder can reach the olfactory region of the nasal cast.
Collapse
Affiliation(s)
- Clément Rigaut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Nižić Nodilo L, Perkušić M, Ugrina I, Špoljarić D, Jakobušić Brala C, Amidžić Klarić D, Lovrić J, Saršon V, Safundžić Kučuk M, Zadravec D, Kalogjera L, Pepić I, Hafner A. In situ gelling nanosuspension as an advanced platform for fluticasone propionate nasal delivery. Eur J Pharm Biopharm 2022; 175:27-42. [PMID: 35489667 DOI: 10.1016/j.ejpb.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
In this work we present the development of in situ gelling nanosuspension as advanced form for fluticasone propionate nasal delivery. Drug nanocrystals were prepared by wet milling technique. Incorporation of drug nanocrystals into polymeric in situ gelling system with pectin and sodium hyaluronate as constitutive polymers was fine-tuned attaining appropriate formulation surface tension, viscosity and gelling ability. Drug nanonisation improved the release profile and enhanced formulation mucoadhesive properties. QbD approach combining formulation and administration parameters resulted in optimised nasal deposition profile, with 51.8% of the dose deposited in the middle meatus, the critical region in the treatment of rhinosinusitis and nasal polyposis. Results obtained in biocompatibility and physico-chemical stability studies confirmed the leading formulation potential for safe and efficient nasal corticosteroid delivery.
Collapse
Affiliation(s)
- Laura Nižić Nodilo
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Mirna Perkušić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ivo Ugrina
- University of Split, Faculty of Science, Split, Croatia
| | | | | | | | - Jasmina Lovrić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Vesna Saršon
- Jadran-galenski laboratorij d.d, Rijeka, Croatia
| | | | - Dijana Zadravec
- Department of Diagnostic and Interventional Radiology, Sestre milosrdnice University Hospital Center, University of Zagreb, Zagreb, Croatia
| | - Livije Kalogjera
- ENT Department, Zagreb School of Medicine; University Hospital Center "Sestre milosrdnice", Zagreb, Croatia
| | - Ivan Pepić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| | - Anita Hafner
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
10
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wang DY, Eccles R, Bell J, Chua AH, Salvi S, Schellack N, Marks P, Wong YC. Management of acute upper respiratory tract infection: the role of early intervention. Expert Rev Respir Med 2021; 15:1517-1523. [PMID: 34613861 DOI: 10.1080/17476348.2021.1988569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Upper respiratory tract infection (URTI) is an illness caused by an acute infection by viruses or bacteria of the nose, sinuses, pharynx, and larynx. Most URTIs are short, mild, and self-limiting, but some can lead to serious complications, resulting in heavy social and economic burden on individuals and society. AREAS COVERED This article presents the management guidelines and consensus established through the Delphi method during an expert roundtable conducted in November 2020 and results of a targeted literature review. EXPERT OPINION The current acute URTI management strategies aim toward symptom alleviation and prevention of URTI virus transmission. The effectiveness of these strategies is highly increased with early intervention, administered prior to the peaking of viral shedding. This reduces the chances of developing a full-blown acute URTI, decreases symptom severity, and reduces viral transmission. Mucoadhesive gel nasal sprays have shown promising results for early intervention of acute URTI. They act by creating a barrier that can trap virus particles, thereby preventing invasion of the mucosa by the virus. Additionally, they deliver broad spectrum activity that is effective against a wide variety of pathogens that cause acute URTI. Acute URTI warrants greater attention and proactive management in reducing its burden.
Collapse
Affiliation(s)
- De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine National University of Singapore, Singapore
| | - Ronald Eccles
- School of Biosciences, Cardiff University, Cardiff, UK
| | - John Bell
- Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Antonio Hao Chua
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Luke's Medical Center- Global City, Philippines
| | - Sundeep Salvi
- Department of Clinical Research, Pulmocare Research and Education (Pure) Foundation, India
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paulette Marks
- Personal Health Care, Procter & Gamble South African Trading (Pty) Ltd, South Africa
| | - Yong Chiat Wong
- Personal Health Care, Procter & Gamble International Operations SA Singapore Branch, Singapore
| |
Collapse
|
12
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
13
|
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13071079. [PMID: 34371770 PMCID: PMC8309016 DOI: 10.3390/pharmaceutics13071079] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders.
Collapse
|
14
|
Gallegos-Catalán J, Warnken Z, Bahamondez-Canas TF, Moraga-Espinoza D. Innovating on Inhaled Bioequivalence: A Critical Analysis of the Current Limitations, Potential Solutions and Stakeholders of the Process. Pharmaceutics 2021; 13:1051. [PMID: 34371741 PMCID: PMC8309038 DOI: 10.3390/pharmaceutics13071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.
Collapse
Affiliation(s)
- Jonattan Gallegos-Catalán
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
| | | | - Tania F. Bahamondez-Canas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniel Moraga-Espinoza
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
15
|
Si XA, Sami M, Xi J. Liquid Film Translocation Significantly Enhances Nasal Spray Delivery to Olfactory Region: A Numerical Simulation Study. Pharmaceutics 2021; 13:pharmaceutics13060903. [PMID: 34207109 PMCID: PMC8235571 DOI: 10.3390/pharmaceutics13060903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Previous in vivo and ex vivo studies have tested nasal sprays with varying head positions to enhance the olfactory delivery; however, such studies often suffered from a lack of quantitative dosimetry in the target region, which relied on the observer’s subjective perception of color changes in the endoscopy images. The objective of this study is to test the feasibility of gravitationally driven droplet translocation numerically to enhance the nasal spray dosages in the olfactory region and quantify the intranasal dose distribution in the regions of interest. A computational nasal spray testing platform was developed that included a nasal spray releasing model, an airflow-droplet transport model, and an Eulerian wall film formation/translocation model. The effects of both device-related and administration-related variables on the initial olfactory deposition were studied, including droplet size, velocity, plume angle, spray release position, and orientation. The liquid film formation and translocation after nasal spray applications were simulated for both a standard and a newly proposed delivery system. Results show that the initial droplet deposition in the olfactory region is highly sensitive to the spray plume angle. For the given nasal cavity with a vertex-to-floor head position, a plume angle of 10° with a device orientation of 45° to the nostril delivered the optimal dose to the olfactory region. Liquid wall film translocation enhanced the olfactory dosage by ninefold, compared to the initial olfactory dose, for both the baseline and optimized delivery systems. The optimized delivery system delivered 6.2% of applied sprays to the olfactory region and significantly reduced drug losses in the vestibule. Rheological properties of spray formulations can be explored to harness further the benefits of liquid film translocation in targeted intranasal deliveries.
Collapse
Affiliation(s)
- Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA;
| | | | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA
- Correspondence: ; Tel.: +1-978-934-3259
| |
Collapse
|
16
|
In vitro - in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev 2021; 170:340-352. [PMID: 32918968 DOI: 10.1016/j.addr.2020.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
In vitro - in vivo correlation (IVIVC) allows prediction of in vivo drug deposition from a nasally inhaled drug based on in vitro drug measurements. In vitro measurements include physical particle characterization and, more recently, deposition studies using anatomical models. Currently, there is a lack of IVIVC for deposition measurements in anatomical models, especially for deposition patterns in various nasal cavity regions. Therefore, improvement of in vitro and in vivo measurement methods and knowledge about nasal deposition mechanisms should help IVIVC in the future.
Collapse
|
17
|
Nižić L, Ugrina I, Špoljarić D, Saršon V, Kučuk MS, Pepić I, Hafner A. Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. Int J Pharm 2019; 563:445-456. [PMID: 30965121 DOI: 10.1016/j.ijpharm.2019.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/18/2019] [Accepted: 04/06/2019] [Indexed: 02/01/2023]
Abstract
The aim of this study was to develop an innovative in situ gelling suspension for effective nasal delivery of fluticasone. Pectin, gellan gum and sodium hyaluronate were used as gelling/thickening agents, and Tween 80 as a suspending agent. The influence of the formulation and/or administration parameters on formulation sprayability and nasal deposition was explored with an appropriate experimental design with the range for parameters in the design obtained from previous research and domain knowledge. All formulations exhibited appropriate sprayability and instant gelation upon mixing with simulated nasal fluid exhibiting weak gel properties convenient for nasal delivery. Targeted turbinate deposition depended on administration and formulation parameters, including their interactions. Decrease in the administration angle from horizontal plane, increase in inspiratory flow and presence of sodium hyaluronate significantly increased deposition in turbinate region. Parameters in interactions included concentration of polymers, surfactant and fluticasone, as well as administration angle. Selected formulations with high turbinate deposition exhibited significant increase in viscosity upon gelation, showing potential to prolong the drug retention at the nasal mucosa. The highest effect on the gel viscosity, strength and fluticasone release profile was observed for gellan gum, thus recognised as crucial parameter for the optimisation of overall therapeutic effect.
Collapse
Affiliation(s)
- Laura Nižić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Ivo Ugrina
- University of Split, Faculty of Science, Department of Mathematics, Split, Croatia
| | | | - Vesna Saršon
- Jadran-galenski laboratorij d.d., Rijeka, Croatia
| | | | - Ivan Pepić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Anita Hafner
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia.
| |
Collapse
|
18
|
Salade L, Wauthoz N, Goole J, Amighi K. How to characterize a nasal product. The state of the art of in vitro and ex vivo specific methods. Int J Pharm 2019; 561:47-65. [PMID: 30822505 DOI: 10.1016/j.ijpharm.2019.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Nasal delivery offers many benefits over other conventional routes of delivery (e.g. oral or intravenous administration). Benefits include, among others, a fast onset of action, non-invasiveness and direct access to the central nervous system. The nasal cavity is not only limited to local application (e.g. rhinosinusitis) but can also provide direct access to other sites in the body (e.g. the central nervous system or systemic circulation). However, both the anatomy and the physiology of the nose impose their own limitations, such as a small volume for delivery or rapid mucociliary clearance. To meet nasal-specific criteria, the formulator has to complete a plethora of tests, in vitro and ex vivo, to assess the efficacy and tolerance of a new drug-delivery system. Moreover, depending on the desired therapeutic effect, the delivery of the drug should target a specific pathway that could potentially be achieved through a modified release of this drug. Therefore, this review focuses on specific techniques that should be performed when a nasal formulation is developed. The review covers both the tests recommended by regulatory agencies (e.g. the Food and Drug Administration) and other complementary experiments frequently performed in the field.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|