1
|
Hiew TN, Solomos MA, Kafle P, Polyzois H, Zemlyanov DY, Punia A, Smith D, Schenck L, Taylor LS. The importance of surface composition and wettability on the dissolution performance of high drug loading amorphous dispersion formulations. J Pharm Sci 2025; 114:289-303. [PMID: 39349295 DOI: 10.1016/j.xphs.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
One of the limitations with an amorphous solid dispersion (ASD) formulation strategy is low drug loading. Hydrophobic drugs have poor wettability and require a substantial amount of polymer to stabilize the amorphous drug and facilitate release. Using grazoprevir and hypromellose acetate succinate as model drug and polymer, respectively, the interplay between particle surface composition, particle wettability, and release performance was investigated. A hierarchical particle approach was used where the surfaces of high drug loading ASDs generated by either solvent evaporation or co-precipitation were further modified with a secondary excipient (i.e., polymer or wetting agent). The surface-modified particles were characterized for drug release, wettability, morphology, and surface composition using two-stage dissolution studies, contact angle measurements, scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Despite surface modification with hydrophilic polymers, the hierarchical particles did not consistently exhibit good release performance. Contact angle measurements showed that the secondary excipient had a profound impact on particle wettability. Particles with good wettability showed improved drug release relative to particles that did not wet well, even with similar drug loadings. These observations underscore the intricate interplay between particle wettability and performance in amorphous dispersion formulations and illustrate a promising hierarchical particle approach to formulate high drug loading amorphous dispersions with improved dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marina A Solomos
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prapti Kafle
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hector Polyzois
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashish Punia
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
2
|
Orr RK, Rawalpally T, Gorka LS, Bonaga LR, Schenck L, Osborne S, Erdemir D, Timpano RJ, Zhang H. Regulatory Considerations for Stability Studies of Co-Processed Active Pharmaceutical Ingredient. AAPS J 2024; 27:16. [PMID: 39690373 DOI: 10.1208/s12248-024-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/09/2024] [Indexed: 12/19/2024] Open
Abstract
A co-processed active pharmaceutical ingredient (CP API) is the combination of an active pharmaceutical ingredient (API) with non-active component(s). This technology has been demonstrated to offer numerous benefits, including but not limited to improved API properties and stability. The infrastructure requirements are such that the manufacture of a CP API is typically best suited for an API facility. CP API has been regulated as either an API or as a drug product intermediate (DPI). This variability in the designation has led to ambiguities on the regulatory CMC expectations in the CP API including the stability of CP API and CP API containing products which, in turn has hampered the broader application of this technology in the pharmaceutical industry. This difference in designation also resulted in challenges to the lifecycle management of the regulatory documentation for the CMC information of the CP API.This white paper represents the proposals for the regulatory requirements on stability studies related to CP API and to drug product containing CP API by the CP API Working Group (WG) of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). Additionally, considerations and the WG's recommendations on the stability studies of CP API from different manufacturing sites or processes and post-approval changes for product containing CP API are described.
Collapse
Affiliation(s)
- Robert K Orr
- Global Regulatory Affairs, Chemistry Manufacturing and Controls, Merck & Co., Inc., 126 E. Lincoln Ave, PO Box 2000, Rahway, New Jersey, 07065, USA.
| | - Thimma Rawalpally
- Regulatory Affairs, Chemistry, Manufacturing and Controls, AstraZeneca BioPharmaceutical Inc., 1 Medimmune Way, Gaithersburg, MD, 20878, USA.
| | - Lindsey Saunders Gorka
- Global Regulatory Sciences, Chemistry Manufacturing and Controls, Pfizer Inc., Pfizer Research and Development, New York, NY, 10001, USA.
| | - Llorente R Bonaga
- Global Regulatory Affairs, Chemistry Manufacturing and Controls, Merck & Co., Inc., 126 E. Lincoln Ave, PO Box 2000, Rahway, New Jersey, 07065, USA
| | - Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Stacy Osborne
- Global Regulatory Affairs - Chemistry, Manufacturing and Controls, Eli Lilly & Company, Indianapolis, Indiana, 46285, USA
| | - Deniz Erdemir
- Drug Product Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08903, USA
| | - Robert J Timpano
- Global Regulatory Sciences, Chemistry Manufacturing and Controls, Pfizer Inc., Pfizer Research and Development, Groton, CT, 06340, USA
| | - Haitao Zhang
- Chemical Process R&D, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| |
Collapse
|
3
|
Dhondale MR, Nambiar AG, Singh M, Mali AR, Agrawal AK, Shastri NR, Kumar P, Kumar D. Current Trends in API Co-Processing: Spherical Crystallization and Co-Precipitation Techniques. J Pharm Sci 2023; 112:2010-2028. [PMID: 36780986 DOI: 10.1016/j.xphs.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Active Pharmaceutical Ingredients (APIs) do not always exhibit processable physical properties, which makes their processing in an industrial setup very demanding. These issues often lead to poor robustness and higher cost of the drug product. The issue can be mitigated by co-processing the APIs using suitable solvent media-based techniques to streamline pharmaceutical manufacturing operations. Some of the co-processing methods are the amalgamation of API purification and granulation steps. These techniques also exhibit adequate robustness for successful adoption by the pharmaceutical industry to manufacture high quality drug products. Spherical crystallization and co-precipitation are solvent media-based co-processing approaches that enhances the micromeritic and dissolution characteristics of problematic APIs. These methods not only improve API characteristics but also enable direct compression into tablets. These methods are economical and time-saving as they have the potential for effectively circumventing the granulation step, which can be a major source of variability in the product. This review highlights the recent advancements pertaining to these techniques to aid researchers in adopting the right co-processing method. Similarly, the possibility of scaling up the production of co-processed APIs by these techniques is discussed. The continuous manufacturability by co-processing is outlined with a short note on Process Analytical Technology (PAT) applicability in monitoring and improving the process.
Collapse
Affiliation(s)
- Madhukiran R Dhondale
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Amritha G Nambiar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Maan Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek R Mali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ashish K Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nalini R Shastri
- Consultant, Solid State Pharmaceutical Research, Hyderabad 500037, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
4
|
Solomos MA, Punia A, Saboo S, John C, Boyce CW, Chin A, Taggart RV, Smith D, Lamm MS, Schenck L. Evaluating Spray Drying and Co-Precipitation as Manufacturing Processes for Amorphous Solid Dispersions of a Low T g API. J Pharm Sci 2023:S0022-3549(23)00062-X. [PMID: 36822272 DOI: 10.1016/j.xphs.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Amorphous solid dispersions feature prominently in the approach to mitigate low bioavailability of poorly water-soluble small molecules, particularly in the early development space focusing on toxicity evaluations and clinical studies in normal healthy volunteers, where high exposures are needed to establish safety margins. Spray drying has been the go-to processing route for a number of reasons, including ubiquitous availability of equipment, the ability to accommodate small scale deliveries, and established processes for delivering single phase amorphous material. Active pharmaceutical ingredients (APIs) with low glass transition temperatures (Tg) can pose challenges to this approach. This study addresses multiple routes towards overcoming issues encountered with a low Tg (∼ 12 °C) API during manufacture of a spray dry intermediate (SDI). Even once formulated as an amorphous solid dispersion (ASD) with HPMCAS-LG, the Tg of the ASD was sufficiently low to require the use of non-ideal solvents, posing safety concerns and ultimately resulting in low yields with frequent process interruptions to resolve product build-up. To resolve challenges with spray drying the HPMCAS-L SDI, higher Tg polymers were assessed during spray drying, and an alternative antisolvent precipitation-based process was evaluated to generate co-precipitated amorphous dispersions (cPAD) with either HPMCAS-L or the additional higher Tg polymers. Both approaches were found to be viable alternatives to achieve single phase ASDs while demonstrating comparable in vitro and in vivo bioperformance compared to the SDI. The results of this effort offer valuable considerations for future early-stage activities for ASDs with low Tg APIs.
Collapse
Affiliation(s)
- Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States.
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Sugandha Saboo
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Christopher John
- Formerly at Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ 07033, United States; Currently at Discovery Pharmaceutics, Janssen Research and Development, Spring House, PA, 19477, United States
| | - Christopher W Boyce
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Alexander Chin
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Robert V Taggart
- Pharmaceutical Sciences, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Matthew S Lamm
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, 07033, United States
| |
Collapse
|
5
|
Myślińska M, Stocker MW, Ferguson S, Healy AM. A Comparison of Spray-Drying and Co-Precipitation for the Generation of Amorphous Solid Dispersions (ASDs) of Hydrochlorothiazide and Simvastatin. J Pharm Sci 2023:S0022-3549(23)00064-3. [PMID: 36805392 DOI: 10.1016/j.xphs.2023.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Co-processing of APIs, the practice of creating multi-component APIs directly in chemical processing facilities used to make drug substance, is gaining increased attention with a view to streamlining manufacturing, improving supply chain robustness and accessing enhanced product attributes in terms of stability and bioavailability. Direct co-precipitation of amorphous solid dispersions (ASDs) at the final step of chemical processing is one such example of co-processing. The purpose of this work was to investigate the application of different advanced solvent-based processing techniques - direct co-precipitation (CP) and the benchmark well-established spray-drying (SD) process - to the production of ASDs comprised of a drug with a high Tg (hydrochlorothiazide, HCTZ) or a low Tg (simvastatin, SIM) molecularly dispersed in a PVP/VA 64 or Soluplus® matrix. ASDs of the same composition were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Both methods produced ASDs that were PXRD amorphous, with some differences, depending on the process used, in glass transition temperature and particle size distribution. Irrespective of manufacturing method used, all ASDs remained PXRD amorphous when subjected to high relative humidity conditions (75% RH, 25°C) for four weeks, although changes in the colour and physical characteristics were observed on storage for spray-dried systems with SIM and PVP/VA 64 copolymer. The particle morphology differed for co-precipitated compared to spray dried systems, with powder generated by the former process being comprised of more irregularly shaped particles of larger particle size when compared to the equivalent spray-dried systems which may enable more streamlined drug product processes to be used for CP materials. These differences may have implications in downstream drug product processing. A limitation identified when applying the solvent/anti-solvent co-precipitation method to SIM was the high antisolvent to solvent ratios required to effect the precipitation process. Thus, while similar outcomes may arise for both co-precipitation and spray drying processes in terms of ASD critical quality attributes, practical implications of applying the co-precipitation method and downstream processability of the resulting ASDs should be considered when choosing one solvent-based ASD production process over another.
Collapse
Affiliation(s)
- Monika Myślińska
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland
| | - Michael W Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; National Institute for Bioprocess Research and Training, Dublin, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| |
Collapse
|
6
|
Combining Isolation-Free and Co-processing Manufacturing Approaches to Access Room Temperature Ionic Liquid Forms of APIs. J Pharm Sci 2023:S0022-3549(23)00052-7. [PMID: 36806585 DOI: 10.1016/j.xphs.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
The addition of non-active components at the point of active pharmaceutical ingredient (API) isolation by means of co-processing is an attractive approach for improving the material properties of APIs. Simultaneously, there is increased interest in the pharmaceutical industry in continuous manufacturing processes. These often consist of liquid feeds which maintain materials in solution and mean that solids handling is avoided until the final step. Such techniques enable new forms of APIs to be used in final dosage forms which have been overlooked due to unfavourable material properties. API-based ionic liquids (API-ILs) are an example of a class of compounds that exhibit exceptional solubility and stability qualities at the cost of their physical characteristics. API-ILs could benefit from isolation-free manufacturing in combination with co-processing approaches to circumvent handling issues and make them viable routes to formulating poorly soluble APIs. However, API-ILs are most commonly synthesised via a batch reaction that produces an insoluble solid by-product. To avoid this, an ion exchange resin protocol was developed to enable the API-IL to be synthesised and purified in a single step, and also produce it in a liquid effluent that can be integrated with other unit operations. Confined agitated bed crystallisation and spray drying are examples of processes that have been adapted to produce or consume liquid feeds and were combined with the ion exchange process to incorporate the API-IL synthesis into isolation-free frameworks and continuous manufacturing streams. This combination of isolation-free and co-processing techniques paves the way towards end-to-end continuous manufacturing of API-IL drug products.
Collapse
|
7
|
Hiew TN, Saboo S, Zemlyanov DY, Punia A, Wang M, Smith D, Lowinger M, Solomos MA, Schenck L, Taylor LS. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. J Pharm Sci 2022:S0022-3549(22)00583-4. [PMID: 36574837 DOI: 10.1016/j.xphs.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/26/2022]
Abstract
Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Sugandha Saboo
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wang
- Biopharmaceutics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Lowinger
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
8
|
Jia W, Yawman PD, Pandya KM, Sluga K, Ng T, Kou D, Nagapudi K, Luner PE, Zhu A, Zhang S, Hou HH. Assessing the Interrelationship of Microstructure, Properties, Drug Release Performance, and Preparation Process for Amorphous Solid Dispersions Via Noninvasive Imaging Analytics and Material Characterization. Pharm Res 2022; 39:3137-3154. [PMID: 35661085 DOI: 10.1007/s11095-022-03308-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this work is to evaluate the interrelationship of microstructure, properties, and dissolution performance for amorphous solid dispersions (ASDs) prepared using different methods. METHODS ASD of GDC-0810 (50% w/w) with HPMC-AS was prepared using methods of spray drying and co-precipitation via resonant acoustic mixing. Microstructure, particulate and bulk powder properties, and dissolution performance were characterized for GDC-0810 ASDs. In addition to application of typical physical characterization tools, we have applied X-Ray Microscopy (XRM) to assess the contribution of microstructure to the characteristics of ASDs and obtain additional quantification and understanding of the drug product intermediates and tablets. RESULTS Both methods of spray drying and co-precipitation produced single-phase ASDs. Distinct differences in microstructure, particle size distribution, specific surface area, bulk and tapped density, were observed between GDC-0810 spray dried dispersion (SDD) and co-precipitated amorphous dispersion (cPAD) materials. The cPAD powders prepared by the resonant acoustic mixing process demonstrated superior compactibility compared to the SDD, while the compressibility of the ASDs were comparable. Both SDD powder and tablets showed higher in vitro dissolution than those of cPAD powders. XRM calculated total solid external surface area (SA) normalized by calculated total solid volume (SV) shows a strong correlation with micro dissolution data. CONCLUSION Strong interrelationship of microstructure, physical properties, and dissolution performance was observed for GDC-0810 ASDs. XRM image-based analysis is a powerful tool to assess the contribution of microstructure to the characteristics of ASDs and provide mechanistic understanding of the interrelationship.
Collapse
Affiliation(s)
- Wei Jia
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Phillip D Yawman
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Keyur M Pandya
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kellie Sluga
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tania Ng
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dawen Kou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Paul E Luner
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA.,Triform Sciences LLC, Waterford, Connecticut, 06385, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
9
|
Frank DS, Punia A, Fahy M, Dalton C, Rowe J, Schenck L. Densifying Co-Precipitated Amorphous Dispersions to Achieve Improved Bulk Powder Properties. Pharm Res 2022; 39:3197-3208. [PMID: 36271203 DOI: 10.1007/s11095-022-03416-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Precipitation of amorphous solid dispersions has gained traction in the pharmaceutical industry given its application to pharmaceuticals with varying physicochemical properties. Although preparing co-precipitated amorphous dispersions (cPAD) in high-shear rotor-stator devices allows for controlled shear conditions during precipitation, such aggressive mixing environments can result in materials with low bulk density and poor flowability. This work investigated annealing cPAD after precipitation by washing with heated anti-solvent to improve bulk powder properties required for downstream drug product processing. METHODS Co-precipitation dispersions were prepared by precipitation into pH-modified aqueous anti-solvent. Amorphous dispersions were washed with heated anti-solvent and assessed for bulk density, flowability, and dissolution behavior relative to both cPAD produced without a heated wash and spray dried intermediate. RESULTS Washing cPAD with a heated anti-solvent resulted in an improvement in flowability and increased bulk density. The mechanism of densification was ascribed to annealing over the wetted Tg of the material, which lead to collapse of the porous co-precipitate structure into densified granules without causing crystallization. In contrast, an alternative approach to increase bulk density by precipitating the ASD using low shear conditions showed evidence of crystallinity. The dissolution rate of the densified cPAD granules was lower than that of the low-bulk density dispersions, although both samples reached concentrations equivalent to that of the spray dried intermediate after 90 min dissolution. CONCLUSIONS Hot wash densification was a tenable route to produce co-precipitated amorphous dispersions with improved properties for downstream processing compared to non-densified powders.
Collapse
Affiliation(s)
- Derek S Frank
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Mairead Fahy
- Pharmaceutical Commercialization Technology, Merck & Co., Inc., Rahway, NJ, USA
| | - Chad Dalton
- Formulation Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Jasmine Rowe
- Formulation Sciences, Merck & Co., Inc., Rahway, NJ, USA
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
10
|
High Bulk-Density Amorphous Dispersions to Enable Direct Compression of Reduced Tablet Size Amorphous Dosage Units. J Pharm Sci 2022:S0022-3549(22)00409-9. [PMID: 36115592 DOI: 10.1016/j.xphs.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Amorphous solid dispersions (ASDs) are an attractive option to improve the bioavailability of poorly water-soluble compounds. However, the material attributes of ASDs can present formulation and processability challenges, which are often mitigated by the addition of excipients albeit at the expense of tablet size. In this work, an ASD manufacturing train combining co-precipitation and thin film evaporation (TFE) was used to generate high bulk-density co-precipitated amorphous dispersion (cPAD). The cPAD/TFE material was directly compressed into tablets at amorphous solid dispersion loadings up to 89 wt%, representing a greater than 60% reduction in tablet size relative to formulated tablets containing spray dried intermediate (SDI). This high ASD loading was possible due to densification of the amorphous dispersion during drying by TFE. Pharmacokinetic performance of the TFE-isolated, co-precipitated dispersion was shown to be equivalent to an SDI formulation. These data highlight the downstream advantages of this novel ASD manufacturing pathway to facilitate reduced tablet size via high ASD loading in directly compressed tablets.
Collapse
|
11
|
Moseson DE, Benson EG, Nguyen HT, Wang F, Wang M, Zheng K, Narwankar PK, Taylor LS. Atomic Layer Coating to Inhibit Surface Crystallization of Amorphous Pharmaceutical Powders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40698-40710. [PMID: 36054111 DOI: 10.1021/acsami.2c12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preventing crystallization is a primary concern when developing amorphous drug formulations. Recently, atomic layer coatings (ALCs) of aluminum oxide demonstrated crystallization inhibition of high drug loading amorphous solid dispersions (ASDs) for over 2 years. The goal of the current study was to probe the breadth and mechanisms of this exciting finding through multiple drug/polymer model systems, as well as particle and coating attributes. The model ASD systems selected provide for a range of hygroscopicity and chemical functional groups, which may contribute to the crystallization inhibition effect of the ALC coatings. Atomic layer coating was performed to apply a 5-25 nm layer of aluminum oxide or zinc oxide onto ASD particles, which imparted enhanced micromeritic properties, namely, reduced agglomeration and improved powder flowability. ASD particles were stored at 40 °C and a selected relative humidity level between 31 and 75%. Crystallization was monitored by X-ray powder diffraction and scanning electron microscopy (SEM) up to 48 weeks. Crystallization was observable by SEM within 1-2 weeks for all uncoated samples. After ALC, crystallization was effectively delayed or completely inhibited in some systems up to 48 weeks. The delay achieved was demonstrated regardless of polymer hygroscopicity, presence or absence of hydroxyl functional groups in drugs and/or polymers, particle size, or coating properties. The crystallization inhibition effect is attributed primarily to decreased surface molecular mobility. ALC has the potential to be a scalable strategy to enhance the physical stability of ASD systems to enable high drug loading and enhanced robustness to temperature or relative humidity excursions.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emily G Benson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Avenue, Santa Clara, California 95054, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Frank DS, Prasad P, Iuzzolino L, Schenck L. Dissolution Behavior of Weakly Basic Pharmaceuticals from Amorphous Dispersions Stabilized by a Poly(dimethylaminoethyl Methacrylate) Copolymer. Mol Pharm 2022; 19:3304-3313. [PMID: 35985017 DOI: 10.1021/acs.molpharmaceut.2c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amorphous solid dispersions (ASDs) are a well-documented formulation approach to improve the rate and extent of dissolution for hydrophobic pharmaceuticals. However, weakly basic compounds can complicate standard approaches to ASDs due to pH-dependent solubility, resulting in uncontrolled drug release in gastric conditions and unstabilized supersaturated solutions prone to precipitation at neutral pH. This work examines the release mechanisms of amorphous dispersions containing model weakly basic pharmaceuticals posaconazole and lumefantrine from a basic poly(dimethylaminoethyl methacrylate) copolymer (Eudragit EPO) and compares their dissolution behavior with ASDs stabilized by acidic and neutral polymers to understand potential benefits to release from a basic polymeric stabilizer. It was found that dissolution of Eudragit EPO ASDs resulted in supersaturation under gastric conditions, which could be sustained upon adjustment to neutral pH. However, the dissolution behavior of Eudragit EPO ASDs was sensitive to the initial pH of the gastric media. For lumefantrine, elevated initial gastric pH resulted in precipitation of amorphous nanoparticles; for posaconazole, elevated gastric pH led to crystallization of the pharmaceutical from solution. This sensitivity to gastric pH was found to originate from the impact of Eudragit EPO on gastric pH and the solubility of each pharmaceutical in the first stage of dissolution. In total, these data illustrate benefits and liabilities for the use of Eudragit EPO for ASDs containing weak pharmaceutical bases to guide the design of robust pharmaceutical formulations.
Collapse
Affiliation(s)
- Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prateek Prasad
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luca Iuzzolino
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
13
|
Chasse T, Conway SL, Danzer GD, Feng L, Leone AM, McNevin M, Smoliga J, Stroud PA, van Lishaut H. Industry White Paper: Contemporary Opportunities and Challenges in Characterizing Crystallinity in Amorphous Solid Dispersions. J Pharm Sci 2022; 111:1543-1555. [PMID: 35041831 DOI: 10.1016/j.xphs.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Members of the IQ Consortium ″Working Group on Characterization on Amorphous Solid Dispersions″ shares here a perspective on the analytical challenges, and limitations of detecting low levels of crystalline drug substance in amorphous solid dispersions (ASDs) and associated drug products. These companies aim to employ highly sensitive commercially available analytical technologies to guide development, support control strategies, and enable registration of quality products. We hope to promote consistency in development and registration approaches and guide the industry in development of "characterization best practices" in the interest of providing high quality products for patients. The first half of this perspective highlights the unique challenges of analytical methodologies to monitor crystalline drug substance in ASDs and their associated drug products. Challenges around use of limit tests, analyte spiking experiments, and method robustness are also underscored. The latter half describes the merits and limitations of the diverse analytical "toolbox" (such as XRPD, NIR and DSC), which can be readily applied during development and, in some cases, considered for potential application and validation in the commercial QC setting when necessary.
Collapse
Affiliation(s)
- Tyson Chasse
- Agios Pharmaceuticals, Chemistry Manufacturing and Controls, 88 Sidney Street, Cambridge, MA, USA
| | - Stephen L Conway
- Merck & Co., Inc., Global Pharmaceutical Commercialization, Kenilworth, NJ, USA
| | - Gerald D Danzer
- AbbVie Inc., Analytical Research & Development, 1 N Waukegan Road, North Chicago, IL 60064, USA.
| | - Lili Feng
- Bristol Myers Squibb Co., Product Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Anthony M Leone
- Bristol Myers Squibb Co., Product Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Michael McNevin
- Merck & Co., Inc., Analytical R&D, Materials and Biophysical Characterization, West Point, Pennsylvania 19486, USA
| | - John Smoliga
- Boehringer Ingelheim Pharmaceuticals, Inc, Material and Analytical Sciences, 900 Ridgebury Road, Ridgefield, CT USA
| | - Paul A Stroud
- Eli Lilly & Company, Inc, Material Science and Physical Characterization, 1400 W. Raymond Street, Indianapolis, IN USA
| | - Holger van Lishaut
- AbbVie Deutschland GmbH & Co. KG, Analytical Research & Development, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
14
|
Strotman NA, Schenck L. Coprecipitated Amorphous Dispersions as Drug Substance: Opportunities and Challenges. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
15
|
Optimizing Solvent Selection and Processing Conditions to Generate High Bulk-Density, Co-Precipitated Amorphous Dispersions of Posaconazole. Pharmaceutics 2021; 13:pharmaceutics13122017. [PMID: 34959298 PMCID: PMC8705469 DOI: 10.3390/pharmaceutics13122017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Co-precipitation is an emerging method to generate amorphous solid dispersions (ASDs), notable for its ability to enable the production of ASDs containing pharmaceuticals with thermal instability and limited solubility. As is true for spray drying and other unit operations to generate amorphous materials, changes in processing conditions during co-precipitation, such as solvent selection, can have a significant impact on the molecular and bulk powder properties of co-precipitated amorphous dispersions (cPAD). Using posaconazole as a model API, this work investigates how solvent selection can be leveraged to mitigate crystallization and maximize bulk density for precipitated amorphous dispersions. A precipitation process is developed to generate high-bulk-density amorphous dispersions. Insights from this system provide a mechanistic rationale to control the solid-state and bulk powder properties of amorphous dispersions.
Collapse
|
16
|
Schenck L, Boyce C, Frank D, Koranne S, Ferguson HM, Strotman N. Hierarchical Particle Approach for Co-Precipitated Amorphous Solid Dispersions for Use in Preclinical In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13071034. [PMID: 34371726 PMCID: PMC8308979 DOI: 10.3390/pharmaceutics13071034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Amorphous solid dispersions (ASD) have become a well-established strategy to improve exposure for compounds with insufficient aqueous solubility. Of methods to generate ASDs, spray drying is a leading route due to its relative simplicity, availability of equipment, and commercial scale capacity. However, the broader industry adoption of spray drying has revealed potential limitations, including the inability to process compounds with low solubility in volatile solvents, inconsistent molecular uniformity of spray dried amorphous dispersions, variable physical properties across batches and scales, and challenges containing potent compounds. In contrast, generating ASDs via co-precipitation to yield co-precipitated amorphous dispersions (cPAD) offers solutions to many of those challenges and has been shown to achieve ASDs comparable to those manufactured via spray drying. This manuscript applies co-precipitation for early safety studies, developing a streamlined process to achieve material suitable for dosing as a suspension in conventional toxicity studies. Development targets involved achieving a rapid, safely contained process for generating ASDs with high recovery yields. Furthermore, a hierarchical particle approach was used to generate composite particles where the cPAD material is incorporated in a matrix of water-soluble excipients to allow for rapid re-dispersibility in the safety study vehicle to achieve a uniform suspension for consistent dosing. Adopting such an approach yielded a co-precipitated amorphous dispersion with comparable stability, thermal properties, and in vivo pharmacokinetics to spray dried amorphous materials of the same composition.
Collapse
Affiliation(s)
- Luke Schenck
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
- Correspondence:
| | - Christopher Boyce
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (C.B.); (H.M.F.)
| | - Derek Frank
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
| | - Sampada Koranne
- Preformulation, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Heidi M. Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (C.B.); (H.M.F.)
| | - Neil Strotman
- Process Research & Development, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (D.F.); (N.S.)
| |
Collapse
|
17
|
Tsolaki E, Stocker MW, Healy AM, Ferguson S. Formulation of ionic liquid APIs via spray drying processes to enable conversion into single and two-phase solid forms. Int J Pharm 2021; 603:120669. [PMID: 33989753 DOI: 10.1016/j.ijpharm.2021.120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Ionic liquid (IL) forms of drugs are increasingly being explored to address problems presented by poorly water-soluble drugs and solid-state stability. However, before ILs of active pharmaceutical ingredients (APIs) can be routinely incorporated into oral solid dosage forms (OSDs), challenges surrounding their ease of handling and manufacture must be addressed. To this end a framework for transforming API-ILs into solid forms at high loadings based on spray encapsulation using an immiscible polymer has recently been demonstrated. The current work demonstrates that this framework can be applied to a broad range of newly synthesized low glass transition temperature (Tg) API-ILs. Furthermore, the work explores a second novel approach to solidification of API-ILs based on polymer-API-IL miscibility that, to the best of our knowledge, has not been previously demonstrated. Modulated differential scanning calorimetry (mDSC) and attenuated total reflectance Fourier transform infrared spectroscopy showed that it was possible to produce spray dried solid materials, at acceptable loadings and yields for OSD applications in the form of both two-phase phase encapsulated systems and single phase amorphous solid dispersions (ASDs). This was achieved by the appropriate selection of an API-IL insoluble polymer (ethyl cellulose) for phase separated systems, or a miscible polymer with an exceptionally high Tg (the polysaccharide, maltodextrin) for the ASDs. Both approaches successfully overcame the Tg suppression associated with room temperature ILs. This work represents the first step to understanding the fundamental critical physical attributes of these systems to facilitate a more mechanistic methodology for their design.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Michael W Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland.
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; National Institute for Bioprocess Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
18
|
Stocker MW, Healy AM, Ferguson S. Spray Encapsulation as a Formulation Strategy for Drug-Based Room Temperature Ionic Liquids: Exploiting Drug–Polymer Immiscibility to Enable Processing for Solid Dosage Forms. Mol Pharm 2020; 17:3412-3424. [DOI: 10.1021/acs.molpharmaceut.0c00467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael W. Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
- I-form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
19
|
Schenck L, Erdemir D, Saunders Gorka L, Merritt JM, Marziano I, Ho R, Lee M, Bullard J, Boukerche M, Ferguson S, Florence AJ, Khan SA, Sun CC. Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Mol Pharm 2020; 17:2232-2244. [DOI: 10.1021/acs.molpharmaceut.0c00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Schenck
- Process Research and Development, Merck & Co. Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Deniz Erdemir
- Drug Product Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick New Jersey 08903, United States
| | | | - Jeremy M. Merritt
- Small Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46221, United States
| | - Ivan Marziano
- Pfizer R&D UK Limited, Discovery Park, Ramsgate Road, Sandwich CT13 9NJ, United Kingdom
| | - Raimundo Ho
- Solid State Chemistry, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Mei Lee
- Chemical Development, Product Development and Supply, GlaxoSmithKline, Gunnelswood Road, Stevenage SG1 2NY, United Kingdom
| | - Joseph Bullard
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | - Moussa Boukerche
- Center of Excellence for Isolation and Separation Technologies, AbbVie Inc., 1 North Waukegan Road, Chicago, Illinois 60064, United States
| | - Steven Ferguson
- SSPC, The SFI Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belifield, Dublin 4, Ireland
| | - Alastair J. Florence
- EPSRC Future Continuous Manufacturing and Advanced Crystallization Hub, CMAC, University of Strathclyde Glasgow, Glasgow, United Kingdom
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Tran PH, Tran TT. Dosage form designs for the controlled drug release of solid dispersions. Int J Pharm 2020; 581:119274. [DOI: 10.1016/j.ijpharm.2020.119274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
|
21
|
Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. Recent progress in preparation and agricultural application of microcapsules. J Biomed Mater Res A 2019; 107:2371-2385. [PMID: 31161699 DOI: 10.1002/jbm.a.36739] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in life science technology have prompted the need to develop microcapsule delivery systems that can encapsulate many different functional or active materials such as drugs, peptides, and live cells, etc. The encapsulation technology is now commonly used in medicine, agriculture, food, and other many fields. The application of biodegradable microcapsule systems can not only effectively prevent the degradation of core materials in the body or the biological environment, but also improve the bioavailability, control the release and prolong the halftime or storage of core active materials. Various wall materials, preparation methods, encapsulation processes, and release mechanisms are covered in this review, as well as several main factors including pH values, temperatures, particle sizes, and additives, which can strongly influence the encapsulation efficiency, the strength, and release of microcapsules. The improvement of coating materials, preparation techniques, and challenges are also highlighted, as well as application prospects.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|