1
|
Steiner K, Hübel P, Srndic A, Klang V. Optimizing ex vivo penetration tests via quantitative confocal Raman spectroscopy: Impact of incubation time, skin hydration, surfactant treatment and UVA irradiation on caffeine distribution. Int J Pharm 2024:124932. [PMID: 39528143 DOI: 10.1016/j.ijpharm.2024.124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo penetration tests are important tools in cosmetic and pharmaceutical research. However, variability of experimental setups is challenging when reviewing literature. Different skin models, pre-treatments and experimental parameters render comparison difficult. Thus, our aim was to conduct ex vivo penetration tests using caffeine in different setups with varying incubation conditions (ambient vs. Franz cells, infinite vs. finite dose). Additionally, the impact of skin pre-treatment with different aggressors (surfactants, UVA irradiation) should be considered. Possible synergistic barrier damage of surfactants and UVA irradiation should be explored. Analysis was conducted using quantitative confocal Raman spectroscopy. Results showed that incubation time and extensive hydration (20 h in Franz cells) had the greatest impact on penetration behavior. Additional irradiation after pre-treatment with oil-in-water nanoemulsions showed no strong impact on caffeine penetration in general, irrespective of surfactant type. However, in case of sodium lauryl ether sulfate, a trend towards enhanced values was observed due to irradiation (1.3-fold). This suggests cumulative skin barrier damage of irritant surfactants and UVA irradiation, potentially due to stratum corneum alterations. Further studies using different irradiation regimens are planned to confirm this hypothesis.
Collapse
Affiliation(s)
- Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Pia Hübel
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Azra Srndic
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| |
Collapse
|
2
|
Cavallari N, Johnson A, Nagl C, Seiser S, Rechberger GN, Züllig T, Kufer TA, Elbe-Bürger A, Geiselhart S, Hoffmann-Sommergruber K. Nonspecific lipid-transfer proteins trigger TLR2 and NOD2 signaling and undergo ligand-dependent endocytosis in epithelial cells. J Allergy Clin Immunol 2024; 154:1289-1299. [PMID: 39084297 DOI: 10.1016/j.jaci.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Allergens can cross the epithelial barrier to enter the body but how this cellular passage affects protein structures and the downstream interactions with the immune system are still open questions. OBJECTIVE We sought to show the molecular details and the effects of 3 nonspecific lipid transfer proteins (nsLTPs; Mal d 3 [allergenic nsLTP1 from apple], Cor a 8 [allergenic nsLTP1 from hazelnut], and Pru p 3 [allergenic nsLTP1 from peach]) on epithelial cell uptake and transport. METHODS We used fluorescent imaging, flow cytometry, and proteomic and lipidomic screenings to identify the mechanism involved in nsLTP cellular uptake and signaling on selected epithelial and transgenic cell lines. RESULTS nsLTPs are transported across the epithelium without affecting cell membrane stability or viability, and allergen uptake was largely impaired by inhibition of clathrin-mediated endocytosis. Analysis of the lipidome associated with nsLTPs showed a wide variety of lipid ligands predicted to bind inside the allergen hydrophobic cavity. Importantly, the internalization of nsLTPs was contingent on these ligands in the protein complex. nsLTPs were found to initiate cellular signaling via Toll-like receptor 2 but not the cluster of differentiation 1 protein receptor, despite neither being essential for nsLTP endocytosis. We also provide evidence that the 3 allergens induced intracellular stress signaling through activation of the NOD2 pathway. CONCLUSIONS Our work consolidates the current model on nsLTP-epithelial cell interplay and adds molecular details about cell transport and signaling. In addition, we have developed a versatile toolbox to extend these investigations to other allergens and cell types.
Collapse
Affiliation(s)
- Nicola Cavallari
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Alexander Johnson
- Center for Anatomy & Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria; Medical Imaging Cluster, Vienna, Austria
| | - Christoph Nagl
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Saskia Seiser
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria
| | - Karin Hoffmann-Sommergruber
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Vienna, Austria.
| |
Collapse
|
3
|
Abdelrahman N, Drescher S, Ann Dailey L, Klang V. Investigation of keratolytic impact of synthetic bolalipids on skin penetration of a model hydrophilic permeant. Eur J Pharm Biopharm 2024; 203:114433. [PMID: 39098617 DOI: 10.1016/j.ejpb.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Synthetic single-chain bolalipids (SSCBs) are novel excipients in drug delivery, with potential as stabilizers or solubilizers. However, their impact on skin barrier function has not been comprehensively studied. Therefore, two SSCBs (PC-C24-PC and PC-C32-PC) were studied in aqueous systems for their impact on penetration of a model permeant into porcine skin. Concentrations of 0.05 - 5 % w/w were tested; PC-C24-PC formulations were low-viscosity liquids while PC-C32-PC formed viscous dispersions to gels at room temperature. Formulations were compared for their ability to enhance sodium fluorescein penetration (SF, 0.1 % w/w) into skin via tape stripping. Using NIR-densitometry, the effect of SSCB formulations on corneocyte cohesion was evaluated. Data were compared with phospholipid mixture Lipoid S-75, sodium dodecyl sulfate (SDS), and polyethylene glycol 12-hydroxystearate (PEG-HS), and distilled water as negative control. Contrary to the hypothesis, both SSCBs failed to increase SF penetration into the stratum corneum, but rather showed a significant decrease in penetration depth compared to water. Both SSCBs exhibited a keratolytic effect at 5 % w/w, leading to substantial removal of proteins from the skin surface. Consequently, SSCBs may not enhance penetration of hydrophilic drugs into skin, but could be used as keratolytic agents.
Collapse
Affiliation(s)
- Namarig Abdelrahman
- University of Vienna, Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, 1090, Vienna, Austria
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Lea Ann Dailey
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Pinnarò V, Kirchberger S, Künig S, Gil Cantero S, Ciardulli MC, Della Porta G, Blüml S, Elbe-Bürger A, Bochkov V, Stöckl J. Oxidized Phospholipids Regulate Tenocyte Function via Induction of Amphiregulin in Dendritic Cells. Int J Mol Sci 2024; 25:7600. [PMID: 39062855 PMCID: PMC11277520 DOI: 10.3390/ijms25147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammation is a driving force of tendinopathy. The oxidation of phospholipids by free radicals is a consequence of inflammatory reactions and is an important indicator of tissue damage. Here, we have studied the impact of oxidized phospholipids (OxPAPC) on the function of human tenocytes. We observed that treatment with OxPAPC did not alter the morphology, growth and capacity to produce collagen in healthy or diseased tenocytes. However, since OxPAPC is a known modulator of the function of immune cells, we analyzed whether OxPAPC-treated immune cells might influence the fate of tenocytes. Co-culture of tenocytes with immature, monocyte-derived dendritic cells treated with OxPAPC (Ox-DCs) was found to enhance the proliferation of tenocytes, particularly those from diseased tendons. Using transcriptional profiling of Ox-DCs, we identified amphiregulin (AREG), a ligand for EGFR, as a possible mediator of this proliferation enhancing effect, which we could confirm using recombinant AREG. Of note, diseased tenocytes were found to express higher levels of EGFR compared to tenocytes isolated from healthy donors and show a stronger proliferative response upon co-culture with Ox-DCs, as well as AREG treatment. In summary, we identify an AREG-EGFR axis as a mediator of a DC-tenocyte crosstalk, leading to increased tenocyte proliferation and possibly tendon regeneration.
Collapse
Affiliation(s)
- Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | | | - Sarojinidevi Künig
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Sara Gil Cantero
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (G.D.P.)
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria;
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria; (V.P.); (S.K.); (S.G.C.)
| |
Collapse
|
5
|
Steiner K, Josef Schmolz J, Hoang F, Wolf H, Seiser S, Elbe-Bürger A, Klang V. Surfactants for stabilization of dermal emulsions and their skin compatibility under UVA irradiation: Diacyl phospholipids and polysorbate 80 result in high viability rates of primary human skin cells. Int J Pharm 2024; 653:123903. [PMID: 38350500 DOI: 10.1016/j.ijpharm.2024.123903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Phospholipids are versatile formulation compounds with high biocompatibility. However, no data on their effect on skin in combination with UVA radiation exist. Thus, it was the aim of this work to (i) develop o/w nanoemulsions (NEs) differing in surfactant type and to investigate their physicochemical stability at different storage temperatures, (ii) establish a standardized protocol for in vitro phototoxicity testing using primary human skin cells and (iii) investigate the phototoxicity of amphoteric phospholipids (S45, S75, E80, S100, LPC80), sodium lauryl ether sulfate (SLES) and polysorbate 80 (PS80). Satisfying systems were developed with all surfactants except S100 due to low zeta potential (-21.4 mV ± 4.69). SLES and PS80-type NEs showed the highest stability after eight weeks; temperature-dependent variations in storage stability were most noticeable for phospholipid surfactants. For phospholipid-based NEs, higher phosphatidylcholine content led to unstable formulations. Phototoxicity assays with primary skin fibroblasts confirmed the lack of UVA-related phototoxicity but revealed cytotoxic effects of LPC80 and SLES, resulting in cell viability as low as 2.7 % ±0.78 and 1.9 % ±1.57 compared to the control. Our findings suggest that surfactants S45, S75 and PS80 are the most promising candidates for skin-friendly emulsifiers in sensitive applications involving exposure to UV light.
Collapse
Affiliation(s)
- Katja Steiner
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jakob Josef Schmolz
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Felisa Hoang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Hanna Wolf
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Hogarth C, Arnold K, Wright S, Elkateb H, Rannard S, McDonald TO. Navigating the challenges of lipid nanoparticle formulation: the role of unpegylated lipid surfactants in enhancing drug loading and stability. NANOSCALE ADVANCES 2024; 6:669-679. [PMID: 38235101 PMCID: PMC10791113 DOI: 10.1039/d3na00484h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Lipid nanoparticles have proved an attractive approach for drug delivery; however, the challenges of optimising formulation stability and increasing drug loading have limited progression. In this work, we investigate the role of unpegylated lipid surfactants (helper lipids) in nanoparticle formation and the effect of blending helper lipids with pegylated lipid surfactants on the formation and stability of lipid-based nanoparticles by nanoprecipitation. Furthermore, blends of unpegylated/pegylated lipid surfactants were examined for ability to accommodate higher drug loading formulations by means of a higher weight percentage (wt%) of drug relative to total mass of formulation components (i.e. drug, surfactants and lipids). Characterisation included evaluation of particle diameter, size distribution, drug loading and nanoformulation stability. Our findings demonstrate that the addition of unpegylated lipid surfactant (Lipoid S100) to pegylated lipid surfactant (Brij S20) enhances stability, particularly at higher weight percentages of the core material. This blending approach enables drug loading capacities exceeding 10% in the lipid nanoparticles. Notably, Lipoid S100 exhibited nucleating properties that aided in the formation and stabilisation of the nanoparticles. Furthermore, we examined the incorporation of a model drug into the lipid nanoparticle formulations. Blending the model drug with the core material disrupted the crystallinity of the core, offering additional potential benefits in terms of drug release and stability. This comprehensive investigation provides valuable insights into the interplay between surfactant properties, core material composition, and nanoparticle behaviour. The study enhances our understanding of lipid materials and offers guidance for the design and optimisation of lipid nanoparticle formulations.
Collapse
Affiliation(s)
- Cameron Hogarth
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Keith Arnold
- Material Innovation Factory, University of Liverpool Liverpool L7 3NY UK
| | - Steve Wright
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Heba Elkateb
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Material Innovation Factory, University of Liverpool Liverpool L7 3NY UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
- Henry Royce Institute, The University of Manchester Oxford Road Manchester UK
| |
Collapse
|
7
|
Stengel D, Demirel BH, Knoll P, Truszkowska M, Laffleur F, Bernkop-Schnürch A. PEG vs. zwitterions: How these surface decorations determine cellular uptake of lipid-based nanocarriers. J Colloid Interface Sci 2023; 647:52-64. [PMID: 37244176 DOI: 10.1016/j.jcis.2023.05.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
AIM To evaluate the impact of polyethylene glycol (PEG) and zwitterionic surface decoration of lipid-based nanocarriers (NC) on cellular uptake. METHODS Anionic, neutral and cationic zwitterionic lipid-based NCs based on lecithin were compared with conventional PEGylated lipid-based NCs regarding stability in biorelevant fluids, interaction with endosome mimicking membranes, cytocompatibility, cellular uptake and permeation across intestinal mucosa. RESULTS PEGylated and zwitterionic lipid-based NCs exhibited a droplet size between 100 and 125 nm with a narrow size distribution. For the PEGylated and zwitterionic lipid-based NCs only minor alterations in size and PDI in fasted state intestinal fluid and mucus containing buffer were observed, demonstrating similar bioinert properties. Erythrocytes interaction studies revealed enhanced endosomal escape properties for zwitterionic lipid-based NCs compared to PEGylated lipid-based NCs. For the zwitterionic lipid-based NCs negligible cytotoxicity on Caco-2 and HEK cells, even in the highest tested concentration of 1 % (v/v) was recorded. The PEGylated lipid-based NCs showed a cell survival of ≥75 % for concentrations ≤0.05 % on Caco-2 and HEK cells, which was considered as non-toxic. For the zwitterionic lipid-based NCs up to 60-fold higher cellular uptake on Caco-2 cells was determined compared to PEGylated lipid-based NCs. For the cationic zwitterionic lipid-based NCs the highest cellular uptake with 58.5 % and 40.0 % in Caco-2 and HEK cells, respectively, was determined. The results were confirmed visually by life cell imaging. Ex-vivo permeation experiments using rat intestinal mucosa demonstrated up to 8.6-fold enhanced permeation of the lipophilic marker coumarin-6 in zwitterionic lipid-based NCs compared to the control. Up to 6.9-fold enhanced permeation of coumarin-6 in neutral zwitterionic lipid-based NCs compared to the PEGylated counterpart was recorded. CONCLUSION The replacement of PEG surfactants with zwitterionic surfactants is a promising approach to overcome the drawbacks of conventional PEGylated lipid-based NCs regarding intracellular drug delivery.
Collapse
Affiliation(s)
- Daniel Stengel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Betül Hilal Demirel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Martínez-Olivo AO, Zamora-Gasga VM, Medina-Torres L, Pérez-Larios A, Sáyago-Ayerdi SG, Sánchez-Burgos JA. Biofunctionalization of natural extracts, trends in biological activity and kinetic release. Adv Colloid Interface Sci 2023; 318:102938. [PMID: 37329675 DOI: 10.1016/j.cis.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
The health benefits provided by plant matrices is due to the presence of certain compounds that, in studies carried out in vitro and in vivo, have shown to have biological activity in certain conditions, not only as a natural treatment against various conditions, but also for the quality of preventing chronic diseases, these compounds, already identified and studied, they can increase their biological function by undergoing structural chemical modifications or by being incorporated into polymer matrices that allow, in the first instance, to protect said compound and increase its bioaccessibility, as well as to preserve or increase the biological effects. Although the stabilization of compounds is an important aspect, it is also the study of the kinetic parameters of the system that contains them, since, due to these studies, the potential application to these systems can be designated. In this review we will address some of the work focused on obtaining compounds with biological activity from plant sources, the functionalization of extracts through double emulsions and nanoemulsions, as well as their toxicity and finally the pharmacokinetic aspects of entrapment systems.
Collapse
Affiliation(s)
- Abraham Osiris Martínez-Olivo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Víctor Manuel Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico
| | - Alejandro Pérez-Larios
- Universidad de Guadalajara, Centro Universitario de los Altos, División de Ciencias Agropecuarias e Ingenierías, Laboratorio de Materiales, Agua y Energía, Av. Rafael Casillas Aceves 1200, C.P. 47600, Tepatitlán de Morelos, Mexico
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico
| | - Jorge Alberto Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
9
|
Ogino M, Yamada K, Sato H, Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Azmi NAN, Elgharbawy AAM, Salleh HM, Moniruzzaman M. Preparation, Characterization and Biological Activities of an Oil-in-Water Nanoemulsion from Fish By-Products and Lemon Oil by Ultrasonication Method. Molecules 2022; 27:6725. [PMID: 36235261 PMCID: PMC9570546 DOI: 10.3390/molecules27196725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Fish by-product oil and lemon oil have potential applications as active ingredients in many industries, including cosmetics, pharmaceuticals and food. However, the physicochemical properties, especially the poor stability, compromised the usage. Generally, nanoemulsions were used as an approach to stabilize the oils. This study employed an ultrasonication method to form oil-in-water nanoemulsion of lemon and fish by-product oils (NE-FLO). The formulation is produced at a fixed amount of 2 wt% fish by-product oil, 8 wt% lemon oil, 10 wt% surfactant, 27.7 wt% co-surfactants and 42 min of ultrasonication time. The size, polydispersity index (PDI) and zeta potential obtained were 44.40 nm, 0.077, and -5.02 mV, respectively. The biological properties, including antioxidant, antibacterial, cell cytotoxicity, and anti-inflammatory, showed outstanding performance. The antioxidant activity is comparable without any significant difference with ascorbic acid as standard and is superior to pure lemon oil. NE-FLO successfully inhibits seven Gram-positive and seven Gram-negative bacterial strains. NE-FLO's anti-inflammatory activity is 99.72%, comparable to nordihydroguaiaretic acid (NDGA) as the standard. At a high concentration of 10,000 µg·mL-1, NE-FLO is non-toxic to normal skin cells. These findings demonstrate that the NE-FLO produced in this study has significant potential for usage in various industries.
Collapse
Affiliation(s)
- Nor Azrini Nadiha Azmi
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
| | - Amal A. M. Elgharbawy
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
| | - Hamzah Mohd Salleh
- International Institute of Halal Research and Training (INHART), International Islamic University Malaysia, Gombak 53100, Malaysia
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- Center for Research in Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| |
Collapse
|
11
|
Hu X, Carter J, Ge T, Liao M, Margaret Stephens A, Mclnnes EF, Padia F, Lu JR. Impacts of chain and head lengths of nonionic alkyl ethoxylate surfactants on cytotoxicity to human corneal and skin cells in agri-spraying processes*. J Colloid Interface Sci 2022; 628:162-173. [DOI: 10.1016/j.jcis.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
12
|
Liposomes Encapsulating Morin: Investigation of Physicochemical Properties, Dermal Absorption Improvement and Anti-Aging Activity in PM-Induced Keratinocytes. Antioxidants (Basel) 2022; 11:antiox11061183. [PMID: 35740084 PMCID: PMC9229511 DOI: 10.3390/antiox11061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, a global market for anti-aging skin care using botanicals has been noticeably developing. Morin, 3,5,7,2',4'-pentahydroxyflavone, is a polyphenol with many pharmacological properties including antioxidant, anti-inflammation and photoprotection. However, poor aqueous solubility of morin restricts its application in pharmaceuticals. The present study aimed to encapsulate morin into liposomal vesicles to improve its water solubility and skin penetration, and further investigated its ROS inhibition and anti-aging activity in HaCaT keratinocytes induced by particulate matters (PMs). Our data presented that morin was a strong DPPH• radical scavenger. Morin displayed a remarkable ROS inhibitory ability and protected keratinocytes against PMs by downregulating matrix metalloproteinase-1 (MMP-1) expression via suppressing p-ERK and p-p38 in the MAPK pathway. Moreover, water solubility of liposomal morin (LM) prepared by the thin film hydration method was significantly better than free form of morin due to particle size reduction of LM. Our results also demonstrated that deformable liposomal vesicles were achieved for increasing dermal absorption. Additionally, LM (morin:lecinolws-50:tween-80:PF-68, 1:2.5:2.5:5) was able to effectively reduce generation of ROS, inactivate p-ERK, p-p38 and MMP-1 in HaCaT cells exposed to PM. In conclusion, our findings suggested that LM would be a bright candidate for various topical anti-aging and anti-pollution products.
Collapse
|
13
|
Ogino M, Nakazawa A, Shiokawa KI, Kikuchi H, Sato H, Onoue S. Krill oil-based self-emulsifying drug delivery system to improve oral absorption and renoprotective function of ginger extract. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2021.100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Vater C, Bosch L, Mitter A, Göls T, Seiser S, Heiss E, Elbe-Bürger A, Wirth M, Valenta C, Klang V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur J Pharm Biopharm 2021; 170:1-9. [PMID: 34798283 DOI: 10.1016/j.ejpb.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/11/2023]
Abstract
In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Leonie Bosch
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Alexandra Mitter
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Göls
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Elke Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Yang J, Feng J, He K, Chen Z, Chen W, Cao H, Yuan S. Preparation of thermosensitive buprofezin-loaded mesoporous silica nanoparticles by the sol-gel method and their application in pest control. PEST MANAGEMENT SCIENCE 2021; 77:4627-4637. [PMID: 34087044 DOI: 10.1002/ps.6502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Environmental stimuli-responsive release is one important way to reduce the dosage of pesticide, increase the usage efficiency and improve environmental compatibility. RESULTS On this basis, we synthesized mesoporous silica nanoparticles (MSNs) and modified them to develop a thermosensitive pesticide controlled release formulation (CRF). In this study, MSNs prepared by the sol-gel method were used as the core, poly (N-IsoPropylAcrylaMide) [P (NIPAM-MAA)] was used as the shell, and buprofezin (Bup) was loaded by adsorption. The prepared Bup@MSNs@P(NIPAM-MAA) could effectively prevent the degradation of buprofezin under UV light and exhibited excellent adhesion to rice leaves. The bioassay results showed that the mortality of Nilaparvata lugens (Stål) treated by Bup@MSNs@P(NIPAM-MAA) was positively correlated with temperature, resulting mainly from the change of release amount of buprofezin caused by temperature variation. Bup@MSNs@P(NIPAM-MAA) had long duration (20 days) for controlling N. lugens, and did not hinder the growth of rice. Meanwhile, Bup@MSNs@P(NIPAM-MAA) had low toxicity to zebrafish and human pneumonocyte BEAS-2B cells. CONCLUSION This novel thermosensitive pesticide CRF can be applied widely to other insecticides, thus greatly promoting the development of intelligent pesticide formulations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hongen Cao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Yuan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Tang X, Dong Q, Li J, Li F, Michniak-Kohn BB, Zhao D, Ho CT, Huang Q. Anti-Melanogenic Mechanism of Tetrahydrocurcumin and Enhancing Its Topical Delivery Efficacy Using a Lecithin-Based Nanoemulsion. Pharmaceutics 2021; 13:pharmaceutics13081185. [PMID: 34452146 PMCID: PMC8397971 DOI: 10.3390/pharmaceutics13081185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tetrahydrocurcumin (THC) has been well known for its superior antioxidant properties. Therefore, it is speculated that it might be effective to relieve oxidative stress-induced diseases, such as skin hyperpigmentation. In this work, an in vitro B16F10 melanoma cell model was used to study the impact of THC on the melanogenic process under stressed conditions. It was demonstrated that THC could effectively inhibit the α-MSH (melanocyte-stimulating hormone) induced melanin production in B16F10 melanoma cells and the expressions of three key enzymes involved with the biosynthetic process of melanin, tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2), were all significantly reduced. In addition, an in vitro human keratinocyte cell model was used to investigate the potential protective role of THC on H2O2-induced cytotoxicity. It was found that THC could prevent H2O2-induced oxidative stress based on the results of both the cell viability study and the intracellular ROS (reactive oxygen species) study assessed by the flow cytometry. Last, THC was formulated into a lecithin based nanoemulsion, and an in vitro Franz diffusion cell study using Strat-M® membrane concluded that the nanoemulsion could significantly enhance the membrane permeation compared to the unformatted THC suspension. This research demonstrated the anti-melanogenic benefits of THC on the melanoma and keratinocyte cell models and the topical delivery efficacy could be significantly enhanced using a lecithin based nanoemulsion.
Collapse
Affiliation(s)
- Xudong Tang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (X.T.); (Q.D.); (C.-T.H.)
| | - Qiaoru Dong
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (X.T.); (Q.D.); (C.-T.H.)
| | - Jun Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Fang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Bozena B. Michniak-Kohn
- Center of Dermal Research (CDR) and Ernest Mario School of Pharmacy, Life Sciences Building, Rutgers University, Piscataway, NJ 08854, USA;
| | - Denggao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (X.T.); (Q.D.); (C.-T.H.)
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (X.T.); (Q.D.); (C.-T.H.)
- Correspondence: ; Tel.: +1-848-932-5514
| |
Collapse
|
17
|
Changes in Skin Barrier Function after Repeated Exposition to Phospholipid-Based Surfactants and Sodium Dodecyl Sulfate In Vivo and Corneocyte Surface Analysis by Atomic Force Microscopy. Pharmaceutics 2021; 13:pharmaceutics13040436. [PMID: 33804924 PMCID: PMC8063842 DOI: 10.3390/pharmaceutics13040436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: The aim of the study was to evaluate the effect of pure lecithins in comparison to a conventional surfactant on skin in vivo. (2) Methods: Physiological skin parameters were evaluated at the beginning and the end of the study (day 1 and day 4) (n = 8, healthy forearm skin) with an Aquaflux®, skin-pH-Meter, Corneometer® and an Epsilon® sensor. Confocal Raman spectroscopy was employed to monitor natural moisturizing factor, urea and water content of the participants' skin. Tape strips of treated skin sites were taken and the collected corneocytes were subjected to atomic force microscopy. Circular nano objects were counted, and dermal texture indices were determined. (3) Results: Transepidermal water loss was increased, and skin hydration was decreased after treatment with SDS and LPC80. Natural moisturizing factor and urea concentrations within the outermost 10 µm of the stratum corneum were lower than after treatment with S75 or water. Dermal texture indices of skin treated with SDS were higher than skin treated with water (control). (4) Conclusions: Results suggest very good (S75) or good (LPC80) skin-tolerability of lecithin-based surfactants in comparison to SDS and encourage further investigation.
Collapse
|
18
|
Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. Fruit oil for topical drug delivery. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
García-García P, Briffault E, Landin M, Evora C, Diaz-Rodriguez P, Delgado A. Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Deliv Transl Res 2021; 11:598-607. [PMID: 33625680 DOI: 10.1007/s13346-021-00926-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Gene therapy has emerged as a tool for the treatment of systemic metabolic disorders as osteoporosis (OP). However, the design of a suitable vehicle able to efficiently load and release the genetic material on the target cells is still a challenge. Moreover, the internalization pathway of nanosystems has been described to be dependent on their surface characteristics and the cell type evaluated. In this study, we aim at obtaining PEGylated lipid-PLGA nanoparticles (NPs) with variable surface charge able to incorporate GapmeRs (single-strand antisense oligonucleotides) for OP treatment. Nanoparticles showing negative, positive, and neutral surface charge were obtained by modulating the lipid composition. All formulations showed a remarkably low polydispersity index with adequate size. NPs were loaded with GapmeRs showing a high encapsulation efficiency and a surface charge-independent oligonucleotide loading. All the formulations were adequately internalized by MSCs. Future experiments will be devoted to use the developed formulations to clarify if the intracellular distribution of hybrid NPs on mesenchymal stem cells (MSCs) is dependent on surface charge. This portfolio of NPs will serve as a tool to analyze the effect of NP surface charge on gene therapy efficiency.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain
| | - Erik Briffault
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain
| | - Mariana Landin
- R+D Pharma Group (GI-1645); Strategic Grouping in Materials (AEMAT)Department of Pharmacology, Pharmacy and Pharmaceutical TechnologyFaculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782, Santiago de Compostela, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain.,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain
| | - Patricia Diaz-Rodriguez
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain. .,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain. .,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain.
| |
Collapse
|
20
|
Liu Q, Gao Y, Fu X, Chen W, Yang J, Chen Z, Wang Z, Zhuansun X, Feng J, Chen Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201:111626. [PMID: 33631642 DOI: 10.1016/j.colsurfb.2021.111626] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
Peppermint oil (PO) is one of the most popular and widely used essential oils. However, due to volatile and poor water solubility of volatile oil, its application in the fields of medicine and food is limited. In order to solve this problem, the high speed shearing technology was used to prepare the nanoemulsion from PO. By using a series of characterization methods, such as turbiscan scanning spectrum, dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), the best nanoemulsion formula was identified as PO 10 %, surfactant 8 % (Tween-60: EL-20 = 3:1) and deionized water 82 % (w/w). The inhibition strength of nanoemulsion on bacteria was evaluated by detecting the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) treated with peppermint oil nanoemulsion (PON) and observing the morphology of bacteria with biological scanning electron microscope (SEM). The results showed that PON had strong inhibitory effect on E. coli. At the concentration range of 0.02 μg/μL-0.2 μg/μL, the apoptosis rate of BEAS-2B cells was less than 10 % compared with control cells. All in all, the PON prepared under this formula is stable, which provides a reference for further exploration of essential oil as natural antibacterial materials in the future.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiangxun Zhuansun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Functional Examination Department of Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
21
|
Gledovic A, Janosevic Lezaic A, Nikolic I, Tasic-Kostov M, Antic-Stankovic J, Krstonosic V, Randjelovic D, Bozic D, Ilic D, Tamburic S, Savic S. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. NANOMATERIALS 2021; 11:nano11010217. [PMID: 33467701 PMCID: PMC7830947 DOI: 10.3390/nano11010217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/15/2023]
Abstract
This study focuses on the development of biocompatible oil-in-water (O/W) nanoemulsions based on polyglycerol esters, as promising carriers for natural actives: red raspberry seed oil—RO and hydro-glycolic fruit extracts from red raspberry—RE and French oak—FE. Nanoemulsions were obtained via phase inversion composition (PIC) method at room temperature by dilution of microemulsion phase, confirmed by visual appearance, percentage of transmittance, microscopic, rheological and differential scanning calorimetry (DSC) investigations. The results have shown that the basic RO-loaded formulation could be further enriched with hydro-glycolic fruit extracts from red raspberry or French oak, while keeping a semi-transparent appearance due to the fine droplet size (Z-ave: 50 to 70 nm, PDI value ≤ 0.1). The highest antioxidant activity (~92% inhibition of the DPPH radical) was achieved in the formulation containing both lipophilic (RO) and hydrophilic antioxidants (FE), due to their synergistic effect. The nanoemulsion carrier significantly increased the selective cytotoxic effect of RO towards malignant melanoma (Fem-X) cells, compared to normal human keratinocytes (HaCaT). In vivo study on human volunteers showed satisfactory safety profiles and significant improvement in skin hydration during 2 h after application for all nanoemulsions. Therefore, polyglycerol ester-based nanoemulsions can be promoted as effective carriers for red raspberry seed oil and/or hydro-glycolic fruit extracts in topical formulations intended for skin protection and hydration.
Collapse
Affiliation(s)
- Ana Gledovic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
- Correspondence: (A.G.); (S.S.); Tel.: +381-113951367 (A.G.); +381-113951288 (S.S.)
| | - Aleksandra Janosevic Lezaic
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
| | - Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
| | - Marija Tasic-Kostov
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia; (M.T.-K.); (D.I.)
| | - Jelena Antic-Stankovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia; (J.A.-S.); (D.B.)
| | - Veljko Krstonosic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Randjelovic
- Department of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Bozic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia; (J.A.-S.); (D.B.)
| | - Dusan Ilic
- Department of Pharmacy, Faculty of Medicine, University of Nis, 18000 Nis, Serbia; (M.T.-K.); (D.I.)
| | - Slobodanka Tamburic
- Cosmetic Science Research Group, London College of Fashion, University of the Arts London, London WC1V 7EY, UK;
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11121 Belgrade, Serbia;
- Correspondence: (A.G.); (S.S.); Tel.: +381-113951367 (A.G.); +381-113951288 (S.S.)
| |
Collapse
|
22
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
23
|
Drescher S, van Hoogevest P. The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12121235. [PMID: 33353254 PMCID: PMC7766331 DOI: 10.3390/pharmaceutics12121235] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the research on phospholipids and their use for drug delivery related to the Phospholipid Research Center Heidelberg (PRC). The focus is on projects that have been approved by the PRC since 2017 and are currently still ongoing or have recently been completed. The different projects cover all facets of phospholipid research, from basic to applied research, including the use of phospholipids in different administration forms such as liposomes, mixed micelles, emulsions, and extrudates, up to industrial application-oriented research. These projects also include all routes of administration, namely parenteral, oral, and topical. With this review we would like to highlight possible future research directions, including a short introduction into the world of phospholipids.
Collapse
|
24
|
Hu W, Liu P, Liu G, Lu X. Recovered Camellia oleiferalecithin by acid and enzymatic oil‐degumming: chemical composition and emulsifying properties. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenna Hu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Pengzhan Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou 510640 China
| | - Xiaozhu Lu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
25
|
Vater C, Hlawaty V, Werdenits P, Cichoń MA, Klang V, Elbe-Bürger A, Wirth M, Valenta C. Effects of lecithin-based nanoemulsions on skin: Short-time cytotoxicity MTT and BrdU studies, skin penetration of surfactants and additives and the delivery of curcumin. Int J Pharm 2020; 580:119209. [PMID: 32165223 DOI: 10.1016/j.ijpharm.2020.119209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/26/2022]
Abstract
Surfactants are important ingredients in pharmaceutical and cosmetic formulations, as in creams, shampoos or shower gels. As conventional emulsifiers such as sodium dodecyl sulfate (SDS) have fallen into disrepute due to their skin irritation potential, the naturally occurring lecithins are being investigated as a potential alternative. Thus, lecithin-based nanoemulsions with and without the drug curcumin, known for its wound healing properties, were produced and characterised in terms of their particle size, polydispersity index (PDI) and zeta potential and compared to SDS-based formulations. In vitro toxicity of the produced blank nanoemulsions was assessed with primary human keratinocytes and fibroblasts using two different cell viability assays (BrdU and EZ4U). Further, we investigated the penetration profiles of the deployed surfactants and oil components using combined ATR-FTIR/tape stripping experiments and confirmed the ability of the lecithin-based nanoemulsions to deliver curcumin into the stratum corneum in tape stripping-UV/Vis experiments. All manufactured nanoemulsions showed droplet sizes under 250 nm with satisfying PDI and zeta potential values. Viability assays with human skin cells clearly indicated that lecithin-based nanoemulsions were superior to SDS-based formulations. ATR-FTIR tests showed that lecithin and oil components remained in the superficial layers of the stratum corneum, suggesting a low risk for skin irritation. Ex vivo tape stripping experiments revealed that the kind of oil used in the nanoemulsion seemed to influence the depth of curcumin penetration into the stratum corneum.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Hlawaty
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Patricia Werdenits
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Małgorzata Anna Cichoń
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
26
|
Liu Y, Lunter DJ. Systematic Investigation of the Effect of Non-Ionic Emulsifiers on Skin by Confocal Raman Spectroscopy-A Comprehensive Lipid Analysis. Pharmaceutics 2020; 12:pharmaceutics12030223. [PMID: 32131544 PMCID: PMC7150945 DOI: 10.3390/pharmaceutics12030223] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
Non-ionic emulsifiers are commonly found in existing pharmaceutical and cosmetic formulations and have been widely employed to enhance the penetration and permeation of active ingredients into the skin. With the potential of disrupting skin barrier function and increasing fluidity of stratum corneum (SC) lipids, we herein examined the effects of two kinds of non-ionic emulsifiers on intercellular lipids of skin, using confocal Raman spectroscopy (CRS) with lipid signals on skin CRS spectrum. Non-ionic emulsifiers of polyethylene glycol alkyl ethers and sorbitan fatty acid esters were studied to obtain a deep understanding of the mechanism between non-ionic emulsifiers and SC lipids. Emulsifier solutions and dispersions were prepared and applied onto excised porcine skin. Water and sodium laureth sulfate solution (SLS) served as controls. SC lipid signals were analysed by CRS regarding lipid content, conformation and lateral packing order. Polyethylene glycol (PEG) sorbitan esters revealed no alteration of intercellular lipid properties while PEG-20 ethers appeared to have the most significant effects on reducing lipid content and interrupting lipid organization. In general, the polyoxyethylene chain and alkyl chain of PEG derivative emulsifiers might indicate their ability of interaction with SC components. HLB values remained critical for complete explanation of emulsifier effects on skin lipids. With this study, it is possible to characterize the molecular effects of non-ionic emulsifiers on skin lipids and further deepen the understanding of enhancing substance penetration with reduced skin barrier properties and increased lipid fluidity.
Collapse
|
27
|
Affiliation(s)
- Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Molecular Cancer Therapy and Drug Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|