1
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
3
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
4
|
Bugybayeva D, Dumkliang E, Patil V, Yadagiri G, Suresh R, Singh M, Schrock J, Dolatyabi S, Shekoni OC, Yassine HM, Opanasopit P, HogenEsch H, Renukaradhya GJ. Evaluation of Efficacy of Surface Coated versus Encapsulated Influenza Antigens in Mannose-Chitosan Nanoparticle-Based Intranasal Vaccine in Swine. Vaccines (Basel) 2024; 12:647. [PMID: 38932376 PMCID: PMC11209417 DOI: 10.3390/vaccines12060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
This study focuses on the development and characterization of an intranasal vaccine platform using adjuvanted nanoparticulate delivery of swine influenza A virus (SwIAV). The vaccine employed whole inactivated H1N2 SwIAV as an antigen and STING-agonist ADU-S100 as an adjuvant, with both surface adsorbed or encapsulated in mannose-chitosan nanoparticles (mChit-NPs). Optimization of mChit-NPs included evaluating size, zeta potential, and cytotoxicity, with a 1:9 mass ratio of antigen to NP demonstrating high loading efficacy and non-cytotoxic properties suitable for intranasal vaccination. In a heterologous H1N1 pig challenge trial, the mChit-NP intranasal vaccine induced cross-reactive sIgA antibodies in the respiratory tract, surpassing those of a commercial SwIAV vaccine. The encapsulated mChit-NP vaccine induced high virus-specific neutralizing antibody and robust cellular immune responses, while the adsorbed vaccine elicited specific high IgG and hemagglutinin inhibition antibodies. Importantly, both the mChit-NP vaccines reduced challenge heterologous viral replication in the nasal cavity higher than commercial swine influenza vaccine. In summary, a novel intranasal mChit-NP vaccine platform activated both the arms of the immune system and is a significant advancement in swine influenza vaccine design, demonstrating its potential effectiveness for pig immunization.
Collapse
Affiliation(s)
- Dina Bugybayeva
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ekachai Dumkliang
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
- Drug Delivery System Excellence Center (DDSEC), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkhla University, Songkhla 90110, Thailand
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Ganesh Yadagiri
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Mithilesh Singh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Olaitan C. Shekoni
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA;
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA; (D.B.); (E.D.); (V.P.); (G.Y.); (R.S.); (M.S.); (J.S.); (S.D.); (O.C.S.)
| |
Collapse
|
5
|
Ding P, Liu H, Zhu X, Chen Y, Zhou J, Chai S, Wang A, Zhang G. Thiolated chitosan encapsulation constituted mucoadhesive nanovaccine confers broad protection against divergent influenza A viruses. Carbohydr Polym 2024; 328:121689. [PMID: 38220319 DOI: 10.1016/j.carbpol.2023.121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.
Collapse
Affiliation(s)
- Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China.
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China.
| |
Collapse
|
6
|
Koirala P, Shalash AO, Chen SPR, Faruck MO, Wang J, Hussein WM, Khalil ZG, Capon RJ, Monteiro MJ, Toth I, Skwarczynski M. Polymeric Nanoparticles as Oral and Intranasal Peptide Vaccine Delivery Systems: The Role of Shape and Conjugation. Vaccines (Basel) 2024; 12:198. [PMID: 38400181 PMCID: PMC10893271 DOI: 10.3390/vaccines12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucosal vaccines are highly attractive due to high patient compliance and their suitability for mass immunizations. However, all currently licensed mucosal vaccines are composed of attenuated/inactive whole microbes, which are associated with a variety of safety concerns. In contrast, modern subunit vaccines use minimal pathogenic components (antigens) that are safe but typically poorly immunogenic when delivered via mucosal administration. In this study, we demonstrated the utility of various functional polymer-based nanostructures as vaccine carriers. A Group A Streptococcus (GAS)-derived peptide antigen (PJ8) was selected in light of the recent global spread of invasive GAS infection. The vaccine candidates were prepared by either conjugation or physical mixing of PJ8 with rod-, sphere-, worm-, and tadpole-shaped polymeric nanoparticles. The roles of nanoparticle shape and antigen conjugation in vaccine immunogenicity were demonstrated through the comparison of three distinct immunization pathways (subcutaneous, intranasal, and oral). No additional adjuvant or carrier was required to induce bactericidal immune responses even upon oral vaccine administration.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Sung-Po R. Chen
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Mohammad O. Faruck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Jingwen Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (S.-P.R.C.); (M.J.M.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (P.K.); (A.O.S.); (M.O.F.); (J.W.); (W.M.H.)
| |
Collapse
|
7
|
Li X, Xiu X, Su R, Ma S, Li Z, Zhang L, Wang Z, Zhu Y, Ma F. Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery. NANOTECHNOLOGY 2024; 35:125101. [PMID: 38100843 DOI: 10.1088/1361-6528/ad1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Xueliang Xiu
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou 310023, People's Republic of China
| |
Collapse
|
8
|
Ruiz-Dávila CE, Solís-Andrade KI, Olvera-Sosa M, Palestino G, Rosales-Mendoza S. Core-shell chitosan/Porphyridium-exopolysaccharide microgels: Synthesis, properties, and biological evaluation. Int J Biol Macromol 2023; 246:125655. [PMID: 37399864 DOI: 10.1016/j.ijbiomac.2023.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Advanced materials used in the biomedicine field comprises a diverse group of organic molecules, including polymers, polysaccharides, and proteins. A significant trend in this area is the design of new micro/nano gels whose small size, physical stability, biocompatibility, and bioactivity could lead to new applications. Herein a new synthesis route is described to obtain core-shell microgels based on chitosan and Porphyridium exopolysaccharides (EPS) crosslinked with sodium tripolyphosphate (TPP). First, the synthesis of EPS-chitosan gels through ionic interactions was explored, leading to the formation of unstable gels. Alternatively, the use of TTP as crosslinker agent led to stable core-shell structures. The influence of reaction temperature, sonication time, and exopolysaccharide concentration, pH and TPP concentration were determined as a function of particle size and polydispersity index (PDI). The obtained EPS-chitosan gels were characterized by TEM, TGA, and FTIR; followed by the assessment of protein load capacity, stability upon freezing, cytotoxicity, and mucoadhesivity. Experimentation revealed that the core-shell particles size ranges 100-300 nm, have a 52 % loading capacity for BSA and a < 90 % mucoadhesivity, and no toxic effects in mammalian cell cultures. The potential application of the obtained microgels in the biomedical field is discussed.
Collapse
Affiliation(s)
- Claudia Elizabeth Ruiz-Dávila
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
| | - Karla Ivón Solís-Andrade
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico
| | - Miguel Olvera-Sosa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICYT), Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí C.P. 78216, SLP, Mexico
| | - Gabriela Palestino
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico.
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSaB), Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
9
|
Sinani G, Durgun ME, Cevher E, Özsoy Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023; 15:2021. [PMID: 37631235 PMCID: PMC10457940 DOI: 10.3390/pharmaceutics15082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acids can modulate gene expression specifically. They are increasingly being utilized and show huge potential for the prevention or treatment of various diseases. However, the clinical translation of nucleic acids faces many challenges due to their rapid clearance after administration, low stability in physiological fluids and limited cellular uptake, which is associated with an inability to reach the intracellular target site and poor efficacy. For many years, tremendous efforts have been made to design appropriate delivery systems that enable the safe and effective delivery of nucleic acids at the target site to achieve high therapeutic outcomes. Among the different delivery platforms investigated, polymeric micelles have emerged as suitable delivery vehicles due to the versatility of their structures and the possibility to tailor their composition for overcoming extracellular and intracellular barriers, thus enhancing therapeutic efficacy. Many strategies, such as the addition of stimuli-sensitive groups or specific ligands, can be used to facilitate the delivery of various nucleic acids and improve targeting and accumulation at the site of action while protecting nucleic acids from degradation and promoting their cellular uptake. Furthermore, polymeric micelles can be used to deliver both chemotherapeutic drugs and nucleic acid therapeutics simultaneously to achieve synergistic combination treatment. This review focuses on the design approaches and current developments in polymeric micelles for the delivery of nucleic acids. The different preparation methods and characteristic features of polymeric micelles are covered. The current state of the art of polymeric micelles as carriers for nucleic acids is discussed while highlighting the delivery challenges of nucleic acids and how to overcome them and how to improve the safety and efficacy of nucleic acids after local or systemic administration.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| |
Collapse
|
10
|
Davut Arpa M, Üstündağ Okur N, Koray Gök M, Özgümüş S, Cevher E. Chitosan-based buccal mucoadhesive patches to enhance the systemic bioavailability of tizanidine. Int J Pharm 2023:123168. [PMID: 37356512 DOI: 10.1016/j.ijpharm.2023.123168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Tizanidine hydrochloride (TZN) is a muscle relaxant used to treat a variety of disorders such as painful muscle spasms and chronic spasticity. TZN has low oral bioavailability due to extensive first-pass metabolism and is used orally at a dose of 6-24 mg per day. In the present study, buccal patches were prepared by solvent casting method using chitosan glutamate (Chi-Glu) and novel chitosan azelate (Chi-Aze) which was synthesised in-house for the first time, to enhance the bioavailability of TZN by bypassing first-pass metabolism. The characterisation, mucoadhesion and drug release studies were performed. Chi-Aze patches retained their integrity longer in the buccal medium and showed higher ex vivo drug permeability compared to that prepared with Chi-Glu. In vivo studies revealed that buccal formulation fabricated with Chi-Aze (3%) showed approx 3 times more bioavailability than the orally administered commercial product. Results of the studies indicate that Chi-Aze, prepared by conjugation of chitosan and a fatty acid, the patch formulation is a promising buccal mucoadhesive system due to the physical stability in buccal medium, the good mucoadhesiveness and the high TZN bioavailability. Moreover, Chi-Aze patch might be an alternative to oral formulations of TZN to reduce the dose and frequency of drug administration.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Türkiye
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Türkiye
| | - Mehmet Koray Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Saadet Özgümüş
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Erdal Cevher
- Istanbul University, Department of Pharmaceutical Technology, Faculty of Pharmacy, 34116, Istanbul, Türkiye.
| |
Collapse
|
11
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
12
|
Freire Haddad H, Roe EF, Collier JH. Expanding opportunities to engineer mucosal vaccination with biomaterials. Biomater Sci 2023; 11:1625-1647. [PMID: 36723064 DOI: 10.1039/d2bm01694j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal vaccines are receiving increasing interest both for protecting against infectious diseases and for inducing therapeutic immune responses to treat non-infectious diseases. However, the mucosal barriers of the lungs, gastrointestinal tract, genitourinary tract, nasal, and oral tissues each present unique challenges for constructing efficacious vaccines. Vaccination through each of these mucosae requires transport through the mucus and across specialized epithelia to reach tissue-specific immune cells and lymphoid structures, necessitating finely tuned and multifunctional strategies. Serving as inspiration for mucosal vaccine design, pathogens have evolved elaborate, diverse, and multipronged approaches to penetrate and infect mucosae. This review is focused on biomaterials-based strategies, many inspired by pathogens, for designing mucosal vaccine platforms. Passive and active technologies are discussed, along with the microbial processes that they seek to mimic.
Collapse
Affiliation(s)
- Helena Freire Haddad
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Emily F Roe
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Joel H Collier
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
13
|
Wu YW, Wang WY, Chen YH. Positively charged nanocomplex modulates dendritic cell differentiation to enhance Th1 immune response. Mater Today Bio 2022; 17:100480. [PMID: 36353390 PMCID: PMC9638821 DOI: 10.1016/j.mtbio.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Most existing vaccines use activators that polarize the immune response to T-helper (Th) 2 response for antibody production. Our positively charged chitosan (Cs)-based nanocomplex (CNC) drives the Th1 response through unknown mechanisms. As receptors for the positively charged CNC are not determined, the physico-chemical properties are hypothesized to correlate with its immunomodulatory effects. To clarify the effects of surface charge and size on the immune response, smaller CNC and negatively charged CNC encapsulating ovalbumin are tested on dendritic cell (DC) 2.4 cells. The negatively charged CNC loses activity, but the smaller CNC does not. To further evaluate the material effects, we replace Cs by poly-amino acids. Compared with the negatively charged nanocomplex, the positively charged one preserves its activity. Using immature bone marrow-derived DCs (BMDC) enriched from BALB/c mice as a model to analyze DC differentiation, treatments with positively charged nanocomplexes evidently increase the proportions of Langerin+ dermal DC, CD11blo interstitial DC, and CD8a+ conventional DC. Additionally, vaccination with two doses containing positively charged nanocomplexes are safe and increase ovalbumin-specific IgG and recall T-cell responses in mice. Overall, a positive charge seems to contribute to the immunological effect of nanocomplexes on elevating the Th1 response by modulating DC differentiation.
Collapse
|
14
|
Achmad H, Saleh Ibrahim Y, Mohammed Al-Taee M, Gabr GA, Waheed Riaz M, Hamoud Alshahrani S, Alexis Ramírez-Coronel A, Turki Jalil A, Setia Budi H, Sawitri W, Elena Stanislavovna M, Gupta J. Nanovaccines in cancer immunotherapy: Focusing on dendritic cell targeting. Int Immunopharmacol 2022; 113:109434. [DOI: 10.1016/j.intimp.2022.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
|
15
|
Teng Z, Meng LY, Yang JK, He Z, Chen XG, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J Control Release 2022; 351:456-475. [PMID: 36174803 DOI: 10.1016/j.jconrel.2022.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Vaccination is an urgently needed and effective option to address epidemic, cancers, allergies, and other diseases. Nasal administration of vaccines offers many benefits over needle-based injection including high compliance and less risk of infection. Inactivated or attenuated vaccines as convention vaccine present potential risks of pathogenic virulence reversal, the focus of nasal vaccine development has shifted to the use of next-generation (subunit and nucleic acid) vaccines. However, subunit and nucleic acid vaccine intranasally have numerous challenges in development and utilization due to mucociliary clearance, mucosal epithelial tight junction, and enzyme/pH degradation. Nanoplatforms as ideal delivery systems, with the ability to enhance the retention, penetration, and uptake of nasal mucosa, shows great potential in improving immunogenic efficacy of nasal vaccine. This review provides an overview of delivery strategies for overcoming nasal barrier, including mucosal adhesion, mucus penetration, targeting of antigen presenting cells (APCs), enhancement of paracellular transportation. We discuss methods of enhancing antigen immunogenicity by nanoplatforms as immune-modulators or multi-antigen co-delivery. Meanwhile, we describe the application status and development prospect of nanoplatforms for nasal vaccine administration. Development of nanoplatforms for vaccine delivery via nasal route will facilitate large-scale and faster global vaccination, helping to address the threat of epidemics.
Collapse
Affiliation(s)
- Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ling-Yang Meng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
16
|
Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients Used for Modified Nasal Drug Delivery: A Mini-Review of the Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6547. [PMID: 36233902 PMCID: PMC9571052 DOI: 10.3390/ma15196547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. Thus, there is an urgent need to develop effective new strategies for drug delivery to the nose, using cutting edge technology and materials for this particular type of drug delivery. This review gives an account of the critical components of nasal drug delivery and the parameters influencing drug absorption in the nose, including the excipients required for modified drug administration.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
17
|
Yadav N, Mudgal D, Anand R, Jindal S, Mishra V. Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int J Biol Macromol 2022; 220:537-572. [PMID: 35987359 DOI: 10.1016/j.ijbiomac.2022.08.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 12/19/2022]
Abstract
Nowadays, nano/micro-encapsulation as a pioneering technique may significantly improve the bioavailability and durability of Natural bioactives. For this purpose, chitosan as a bioactive cationic natural polysaccharide has been frequently used as a carrier because of its distinct chemical and biological properties, including polycationic nature, biocompatibility, and biodegradability. Moreover, polysaccharide-based nano/micro-formulations are a new and extensive trend in scientific research and development in the disciplines of biomedicine, bioorganic/ medicinal chemistry, pharmaceutics, agrochemistry, and the food industry. It promises a new paradigm in drug delivery systems and nanocarrier formulations. This review aims to summarize current developments in approaches for designing innovative chitosan micro/nano-matrix, with an emphasis on the encapsulation of natural bioactives. The special emphasis led to a detailed integrative scientific achievement of the functionalities and abilities for encapsulating natural bioactives and mechanisms regulated in vitro/in vivo release in various biological/physiological environments.
Collapse
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Deeksha Mudgal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Ritesh Anand
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Simran Jindal
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP-201313, India.
| |
Collapse
|
18
|
Recent progress in application of nanovaccines for enhancing mucosal immune responses. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
20
|
de Figueiredo DB, Kaneko K, Rodrigues TDC, MacLoughlin R, Miyaji EN, Saleem I, Gonçalves VM. Pneumococcal Surface Protein A-Hybrid Nanoparticles Protect Mice from Lethal Challenge after Mucosal Immunization Targeting the Lungs. Pharmaceutics 2022; 14:pharmaceutics14061238. [PMID: 35745810 PMCID: PMC9230107 DOI: 10.3390/pharmaceutics14061238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Pneumococcal disease remains a global burden, with current conjugated vaccines offering protection against the common serotype strains. However, there are over 100 serotype strains, and serotype replacement is now being observed, which reduces the effectiveness of the current vaccines. Pneumococcal surface protein A (PspA) has been investigated as a candidate for new serotype-independent pneumococcal vaccines, but requires adjuvants and/or delivery systems to improve protection. Polymeric nanoparticles (NPs) are biocompatible and, besides the antigen, can incorporate mucoadhesive and adjuvant substances such as chitosans, which improve antigen presentation at mucosal surfaces. This work aimed to define the optimal NP formulation to deliver PspA into the lungs and protect mice against lethal challenge. We prepared poly(glycerol-adipate-co-ω-pentadecalactone) (PGA-co-PDL) and poly(lactic-co-glycolic acid) (PLGA) NPs using an emulsion/solvent evaporation method, incorporating chitosan hydrochloride (HCl-CS) or carboxymethyl chitosan (CM-CS) as hybrid NPs with encapsulated or adsorbed PspA. We investigated the physicochemical properties of NPs, together with the PspA integrity and biological activity. Furthermore, their ability to activate dendritic cells in vitro was evaluated, followed by mucosal immunization targeting mouse lungs. PGA-co-PDL/HCl-CS (291 nm) or CM-CS (281 nm) NPs produced smaller sizes compared to PLGA/HCl-CS (310 nm) or CM-CS (299 nm) NPs. Moreover, NPs formulated with HCl-CS possessed a positive charge (PGA-co-PDL +17 mV, PLGA + 13 mV) compared to those formulated with CM-CS (PGA-co-PDL -20 mV, PLGA -40 mV). PspA released from NPs formulated with HCl-CS preserved the integrity and biological activity, but CM-CS affected PspA binding to lactoferrin and antibody recognition. PspA adsorbed in PGA-co-PDL/HCl-CS NPs stimulated CD80+ and CD86+ cells, but this was lower compared to when PspA was encapsulated in PLGA/HCl-CS NPs, which also stimulated CD40+ and MHC II (I-A/I-E)+ cells. Despite no differences in IgG being observed between immunized animals, PGA-co-PDL/HCl-CS/adsorbed-PspA protected 83% of mice after lethal pneumococcal challenge, while 100% of mice immunized with PLGA/HCl-CS/encapsulated-PspA were protected. Therefore, this formulation is a promising vaccine strategy, which has beneficial properties for mucosal immunization and could potentially provide serotype-independent protection.
Collapse
Affiliation(s)
- Douglas Borges de Figueiredo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-070, Brazil;
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Tasson da Costa Rodrigues
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-070, Brazil;
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, IDA Business Park, H91 HE94 Galway, Ireland;
| | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Correspondence: (I.S.); (V.M.G.); Tel.: +55-112-6279819 (V.M.G.)
| | - Viviane Maimoni Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Correspondence: (I.S.); (V.M.G.); Tel.: +55-112-6279819 (V.M.G.)
| |
Collapse
|
21
|
Frigaard J, Jensen JL, Galtung HK, Hiorth M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front Pharmacol 2022; 13:880377. [PMID: 35600854 PMCID: PMC9115560 DOI: 10.3389/fphar.2022.880377] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The unique properties and applications of nanotechnology in targeting drug delivery, cosmetics, fabrics, water treatment and food packaging have received increased focus the last two decades. The application of nanoparticles in medicine is rapidly evolving, requiring careful investigation of toxicity before clinical use. Chitosan, a derivative of the natural polysaccharide chitin, has become increasingly relevant in modern medicine because of its unique properties as a nanoparticle. Chitosan is already widely used as a food additive and in food packaging, bandages and wound dressings. Thus, with an increasing application worldwide, cytotoxicity assessment of nanoparticles prepared from chitosan is of great interest. The purpose of this review is to provide an updated status of cytotoxicity studies scrutinizing the safety of chitosan nanoparticles used in biomedical research. A search in Ovid Medline from 23 March 1998 to 4 January 2022, with the combination of the search words Chitosan or chitosan, nanoparticle or nano particle or nanosphere or nanocapsule or nano capsule, toxicology or toxic or cytotoxic and mucosa or mucous membrane resulted in a total of 88 articles. After reviewing all the articles, those involving non-organic nanoparticles and cytotoxicity assays conducted exclusively on nanoparticles with anti-tumor effect (i.e., having cytotoxic effect) were excluded, resulting in 70 articles. Overall, the chitosan nanoparticles included in this review seem to express low cytotoxicity regardless of particle composition or cytotoxicity assay and cell line used for testing. Nonetheless, all new chitosan derivatives and compositions are recommended to undergo careful characterization and cytotoxicity assessment before being implemented on the market.
Collapse
Affiliation(s)
- Julie Frigaard
- Department of Oral Surgery and Oral Medicine, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
- *Correspondence: Julie Frigaard,
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
| | | | - Marianne Hiorth
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Candela F, Quarta E, Buttini F, Ancona A, Bettini R, Sonvico F. Recent Patents on Nasal Vaccines Containing Nanoadjuvants. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:103-121. [PMID: 35450539 PMCID: PMC10184237 DOI: 10.2174/2667387816666220420124648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 05/17/2023]
Abstract
Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.
Collapse
Affiliation(s)
- Francesco Candela
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Adolfo Ancona
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Özkahraman B, Özbaş Z, Yaşayan G, Akgüner ZP, Yarımcan F, Alarçin E, Bal-Öztürk A. Development of mucoadhesive modified kappa-carrageenan/pectin patches for controlled delivery of drug in the buccal cavity. J Biomed Mater Res B Appl Biomater 2021; 110:787-798. [PMID: 34846796 DOI: 10.1002/jbm.b.34958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
In this study, modified kappa-carrageenan/pectin hydrogel patches were fabricated for treatment of buccal fungal infections. For this purpose, kappa-carrageenan-g-acrylic acid was modified with different thiolated agents (L-cysteine and 3-mercaptopropionic acid), and the thiol content of the resulting modified kappa-carrageenan was confirmed by elemental analyzer. Then, the hydrogel patches were fabricated, and characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, ex vivo mucoadhesion test, and swelling behavior. Triamcinolone acetonide was added either directly or by encapsulating within the poly(lactic-co-glycolic acid) nanoparticles. The release amount of the drug from the directly loaded patch was 7.81 mg/g polymer, while it was 3.28 mg/g polymer for the encapsulated patch with the same content at 7 hr. The hydrogel patches had no cytotoxicity by cell culture studies. Finally, the drug loaded hydrogel patches were demonstrated antifungal activity against Aspergillus fumigatus and Aspergillus flavus. These results provide that the novel modified kappa-carrageenan and pectin based buccal delivery system has promising antifungal property, and could have advantages compared to conventional buccal delivery systems.
Collapse
Affiliation(s)
- Bengi Özkahraman
- Department of Polymer Materials Engineering, Faculty of Engineering, Hitit University, Corum, Turkey
| | - Zehra Özbaş
- Department of Chemical Engineering, Faculty of Engineering, Çankırı Karatekin University, Çankırı, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Zeynep Püren Akgüner
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Filiz Yarımcan
- Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Emine Alarçin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| |
Collapse
|
24
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
25
|
Cho CS, Hwang SK, Gu MJ, Kim CG, Kim SK, Ju DB, Yun CH, Kim HJ. Mucosal Vaccine Delivery Using Mucoadhesive Polymer Particulate Systems. Tissue Eng Regen Med 2021; 18:693-712. [PMID: 34304387 PMCID: PMC8310561 DOI: 10.1007/s13770-021-00373-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Vaccination has been recently attracted as one of the most successful medical treatments of the prevalence of many infectious diseases. Mucosal vaccination has been interested in many researchers because mucosal immune responses play part in the first line of defense against pathogens. However, mucosal vaccination should find out an efficient antigen delivery system because the antigen should be protected from degradation and clearance, it should be targeted to mucosal sites, and it should stimulate mucosal and systemic immunity. Accordingly, mucoadhesive polymeric particles among the polymeric particles have gained much attention because they can protect the antigen from degradation, prolong the residence time of the antigen at the target site, and control the release of the loaded vaccine, and results in induction of mucosal and systemic immune responses. In this review, we discuss advances in the development of several kinds of mucoadhesive polymeric particles for mucosal vaccine delivery.
Collapse
Affiliation(s)
- Chong-Su Cho
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Soo-Kyung Hwang
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Lab. of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Min-Jeong Gu
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Cheol-Gyun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Seo-Kyung Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Do-Bin Ju
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. .,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyun-Joong Kim
- Lab. of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
27
|
Yu Z, Ding W, Aleem MT, Su J, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Toxoplasma gondii Proteasome Subunit Alpha Type 1 with Chitosan: A Promising Alternative to Traditional Adjuvant. Pharmaceutics 2021; 13:pharmaceutics13050752. [PMID: 34069589 PMCID: PMC8161231 DOI: 10.3390/pharmaceutics13050752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
As an important zoonotic protozoan, Toxoplasma gondii (T. gondii) has spread around the world, leading to infections in one-third of the population. There is still no effective vaccine or medicine against T. gondii, and recombinant antigens entrapped within nanospheres have benefits over traditional vaccines. In the present study, we first expressed and purified T. gondii proteasome subunit alpha type 1 (TgPSA1), then encapsulated the recombinant TgPSA1 (rTgPSA1) in chitosan nanospheres (CS nanospheres, rTgPSA1/CS nanospheres) and incomplete Freund’s adjuvant (IFA, rTgPSA1/IFA emulsion). Antigens entrapped in CS nanospheres reached an encapsulation efficiency of 67.39%, and rTgPSA1/CS nanospheres showed a more stable release profile compared to rTgPSA1/IFA emulsion in vitro. In vivo, Th1-biased cellular and humoral immune responses were induced in mice and chickens immunized with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion, accompanied by promoted production of antibodies, IFN-γ, IL-4, and IL-17, and modulated production of IL-10. Immunization with rTgPSA1/CS nanospheres and rTgPSA1/IFA emulsion conferred significant protection, with prolonged survival time in mice and significantly decreased parasite burden in chickens. Furthermore, our results also indicate that rTgPSA1/CS nanospheres could be used as a substitute for rTgPSA1/IFA emulsion, with the optimal administration route being intramuscular in mass vaccination. Collectively, the results of this study indicate that rTgPSA1/CS nanospheres represent a promising vaccine to protect animals against acute toxoplasmosis.
Collapse
Affiliation(s)
- Zhengqing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Wenxi Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Junzhi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China; (Z.Y.); (W.D.); (M.T.A.); (J.S.); (R.Y.); (L.X.); (X.S.)
- Correspondence: ; Tel.: +86-025-84399000
| |
Collapse
|
28
|
Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:57-68. [PMID: 33388128 DOI: 10.1016/j.ddtec.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy.
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici (NA), Italy.
| |
Collapse
|
29
|
Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo ARN, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020; 12:E669. [PMID: 32708823 PMCID: PMC7407519 DOI: 10.3390/pharmaceutics12070669] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.
Collapse
Affiliation(s)
- Anastasia Detsi
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Eleni Kavetsou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Kostopoulou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Ioanna Pitterou
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Antonella Rozaria Nefeli Pontillo
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Andromachi Tzani
- Department of Chemical Sciences, Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (E.K.); (I.K.); (I.P.); (A.R.N.P.); (A.T.)
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
| | - Aristeia Siliachli
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Ave. 48, 116 35 Athens, Greece; (P.C.); (A.S.)
- Department of Food Science and Technology, Universisty of West Attica, Ag. Spyridonos Str., Egaleo, 12243 Athens, Greece
| |
Collapse
|
30
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Skwarczynski M, Toth I. Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin Drug Deliv 2020; 17:435-437. [PMID: 32059625 DOI: 10.1080/17425247.2020.1731468] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
32
|
Kapoor D, Chourasiya Y, Pethe A, Maheshwari R, Tekade RK. Small interfering RNA-based advanced nanoparticles for the treatment of cancer. THE FUTURE OF PHARMACEUTICAL PRODUCT DEVELOPMENT AND RESEARCH 2020:341-365. [DOI: 10.1016/b978-0-12-814455-8.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
34
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine. Carbohydr Polym 2019; 229:115423. [PMID: 31826462 DOI: 10.1016/j.carbpol.2019.115423] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Chitosan (CS) and its water-soluble derivatives, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and sulfated chitosan (SCS), were used as adjuvants of inactivated Newcastle disease (ND) vaccine. First, NDV-loaded and blank CS, HACC/CS and SCS nanoparticles were prepared. The particle sizes were respectively 343.43 ± 4.12, 320.03 ± 0.84, 156.2 ± 9.29 nm and the zeta potentials were respectively +19.67 ± 0.58, +18.3 ± 0.5, -17.8 ± 2.65 mV under the optimal conditions. Then chickens were immunized with nanoparticles or commercial inactivated oil emulsion vaccine. After immunization, the humoral immunity levels of the chickens were evaluated. The cellular immunity levels were determined by the quantification of cytokines, lymphocyte proliferation assay, the percentages of CD4+ and CD8+ T lymphocytes. Finally, the chickens were challenged with highly virulent virus. The results demonstrated that the humoral immunity levels in NDV-loaded CS and HACC/CS nanoparticles groups were lower than commercial vaccine but the cellular immunity levels are better. Moreover, the prevention effects of NDV-loaded CS and HACC/CS nanoparticles against highly virulent NDV are comparable to commercial vaccine. Our study provides the basis of developing HACC and CS as effective vaccine adjuvants.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
35
|
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019; 9:E470. [PMID: 31509976 PMCID: PMC6770583 DOI: 10.3390/biom9090470] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.
Collapse
Affiliation(s)
- Bolat Sultankulov
- Department of Chemical Engineering, School of Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Berillo
- Water Technology Center (WATEC) Department of Bioscience - Microbiology, Aarhus University, Aarhus 8000, Denmark
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Tursonjan Tokay
- School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|