1
|
Gong H, Hua Y, Wang Y, Zhang X, Wang H, Zhao Z, Zhang Y. Fabrication of a novel macrophage-targeted biomimetic delivery composite hydrogel with multiple-sensitive properties for tri-modal combination therapy of rheumatoid arthritis. Int J Pharm 2024; 665:124708. [PMID: 39284423 DOI: 10.1016/j.ijpharm.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
In this study, a porous polydopamine (PDA) nanoparticle-decorated β-glucan microcapsules (GMs) nanoplatform (PDA/GMs) were developed with macrophage-targeted biomimetic features and a carriers-within-carriers structure. Indocyanine green (ICG) and catalase (CAT) were subsequently co-encapsulated within the PDA/GMs to create a multifunctional nanotherapeutic agent, termed CIPGs. Furthermore, CIPGs and sinomenine (SIN) were co-loaded within a thermo-sensitive hydrogel to design an injectable delivery system, termed CIPG/SH, with potential for multi-modal therapy of rheumatoid arthritis (RA). Photothermal studies indicated that the CIPGs hold excellent photothermal conversion ability and thermal stability, as they combined the photothermal performance of both PDA and ICG. Meanwhile, the CIPGs displayed favorable oxygen self-supplying and photodynamic performance. The CIPGs showed near-infrared (NIR)-induced phototoxicity, effectively inhibiting macrophage proliferation and displaying remarkable antibacterial activity. In vitro drug release from the prepared CIPG/SH showed a controlled release pattern. Animal experiments conducted on an RA mice model confirmed that the formulated CIPG/SH exhibited significant therapeutic effects. By integrating the biological advantages, photothermal/photodynamic performance of the CIPGs, and controlled drug release performance of the thermo-sensitive hydrogels in a single delivery system, the prepared injectable CIPG/SH represents a novel versatile delivery system with great potential for multi-modal combination targeting therapy in RA.
Collapse
Affiliation(s)
- Haoyang Gong
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yabing Hua
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yicheng Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinyi Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Hospital of TCM, Xuzhou 221000, China.
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yanzhuo Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
2
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
3
|
Chen X, Wu Y, Jia R, Fang Y, Cao K, Yang X, Qu X, Xia H. Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis. Int J Mol Sci 2024; 25:7676. [PMID: 39062919 PMCID: PMC11276951 DOI: 10.3390/ijms25147676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sinomenine hydrochloride is an excellent drug with anti-inflammatory, antioxidant, immune-regulatory, and other functions. Atopic dermatitis is an inherited allergic inflammation that causes itchiness, redness, and swelling in the affected area, which can have a significant impact on the life of the patient. There are many therapeutic methods for atopic dermatitis, and sinomenine with immunomodulatory activity might be effective in the treatment of atopic dermatitis. In this study, the atopic dermatitis model was established in experimental mice, and physical experiments were carried out on the mice. In the experiment, sinomenine hydrochloride liposomes-in-hydrogel as a new preparation was selected for delivery. In this case, liposomes were dispersed in the colloidal hydrogel on a mesoscopic scale and could provide specific transfer properties. The results showed that the sinomenine hydrochloride-loaded liposomes-in-hydrogel system could effectively inhibit atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (X.C.); (Y.W.); (R.J.); (Y.F.); (K.C.); (X.Y.); (X.Q.)
| |
Collapse
|
4
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Cui M, Li Y, Li J, Jia N, Cao W, Li Z, Li X, Chu X. Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride. J Microencapsul 2024; 41:157-169. [PMID: 38451031 DOI: 10.1080/02652048.2024.2324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
Collapse
Affiliation(s)
- Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengguang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
An M, Zhang J, Zhang X, Zhao Y, Liu Y. Nanomedicine targeted anti-inflammatory therapy to deal with the 'crux' of rheumatoid arthritis. J Drug Target 2024; 32:381-392. [PMID: 38321981 DOI: 10.1080/1061186x.2024.2315475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Rheumatoid arthritis is a chronic and complex autoimmune disease that is marked by an inflammatory response, synovial hyperplasia, vascularisation, fascial formation, cartilage and bone destruction, which can lead to joint deformity and even loss of function, ultimately affecting a person's health and quality of life. Although the pathogenesis of RA is unclear, growing evidence suggests that inflammation-associated cells infiltrate joints, causing tissue damage, inflammation and pain. This disruption in the balance between host tolerance and immune homeostasis the progression of RA. Existing drug therapy and surgical treatments for RA are unable to completely cure the disease or reverse its accelerated progression. Therefore, the design and development of an appropriate and effective drug delivery system will substantially improve the therapeutic effect. In this review, by describing the inflammatory microenvironment of rheumatoid arthritis and the associated inflammatory cells, the progress of targeting strategies and applications of nanotechnology in the disease is summarised, which will be helpful in providing new ideas for the subsequent treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations. Curr Drug Deliv 2024; 21:1082-1105. [PMID: 37622715 DOI: 10.2174/1567201821666230825102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient. METHOD The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA. RESULTS The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA. CONCLUSION In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.
Collapse
Affiliation(s)
- Jyoti Prabha
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh - 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| |
Collapse
|
9
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
10
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
11
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
12
|
Sun D, Zhang G, Xie M, Wang Y, Liang X, Tu M, Su Z, Zeng R. Softness enhanced macrophage-mediated therapy of inhaled apoptotic-cell-inspired nanosystems for acute lung injury. J Nanobiotechnology 2023; 21:172. [PMID: 37248505 DOI: 10.1186/s12951-023-01930-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
Engineered nanosystems offer a promising strategy for macrophage-targeted therapies for various diseases, and their physicochemical parameters including surface-active ligands, size and shape are widely investigated for improving their therapeutic efficacy. However, little is known about the synergistic effect of elasticity and surface-active ligands. Here, two kinds of anti-inflammatory N-acetylcysteine (NAC)-loaded macrophage-targeting apoptotic-cell-inspired phosphatidylserine (PS)-containing nano-liposomes (PSLipos) were constructed, which had similar size and morphology but different Young's modulus (E) (H, ~ 100 kPa > Emacrophage vs. L, ~ 2 kPa < Emacrophage). Interestingly, these PSLipos-NAC showed similar drug loading and encapsulation efficiency, and in vitro slow-release behavior of NAC, but modulus-dependent interactions with macrophages. Softer PSLipos-L-NAC could resist macrophage capture, but remarkably prolong their targeting effect period on macrophages via durable binding to macrophage surface, and subsequently more effectively suppress inflammatory response in macrophages and then hasten inflammatory lung epithelial cell wound healing. Especially, pulmonary administration of PSLipos-L-NAC could significantly reduce the inflammatory response of M1-like macrophages in lung tissue and promote lung injury repair in a bleomycin-induced acute lung injury (ALI) mouse model, providing a potential therapeutic approach for ALI. The results strongly suggest that softness may enhance ligand-directed macrophage-mediated therapeutic efficacy of nanosystems, which will shed new light on the design of engineered nanotherapeutics.
Collapse
Affiliation(s)
- Dazheng Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Guanglin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Henry Fok Colloge of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, P. R. China
| | - Mingyang Xie
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Yina Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangchao Liang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Mei Tu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, P. R. China.
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, P. R. China.
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
13
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
14
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
15
|
Sinomenine ameliorates adjuvant-induced arthritis by inhibiting the autophagy/NETosis/inflammation axis. Sci Rep 2023; 13:3933. [PMID: 36894604 PMCID: PMC9998614 DOI: 10.1038/s41598-023-30922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Studies have found that neutrophil extracellular traps (NETs) which are the specific dying form of neutrophil upon activation have fundamental role in the rheumatoid arthritis onset and progression. The purpose of this study was to explore the therapeutic effect of Sinomenine on adjuvant-induced arthritis in mice, and the neutrophil activities regulated by Sinomenine. The rheumatoid arthritis model was established by local injection of adjuvant and the Sinomenine treatment was administered orally for 30 days, during which, arthritic scores were evaluated and the joint diameter was measured to determine disease progression. The joint tissues and serum were acquired for further tests after sacrifice. Cytometric beads assay was performed to measure the concentration of cytokines. For paraffin-embedded ankle tissues, hematoxylin and erosin staining and Safranin O-fast staining were adopted to monitor the tissue changes of joint. In order to analyze the inflammation, NETs and autophagy of neutrophils in vivo, immunohistochemistry assays were applied to detect the protein expression levels in the local joints. To describe the effect brought by Sinomenine on inflammation, autophagy and NETs in vitro, the western blotting and the immunofluorescence assays were performed. The joint symptoms of the adjuvant induced arthritis were alleviated by the Sinomenine treatment significantly in terms of the ankle diameter and scores. The improvement of local histopathology changes and decrease of inflammatory cytokines in the serum also confirmed the efficacy. The expression levels of interleukin-6, P65 and p-P65 in the ankle areas of mice were remarkably reduced by Sinomenine. Compared with the model group, the decreased expression levels of lymphocyte antigen 6 complex and myeloperoxidase in the Sinomenine treating group showed the inhibitory effect of Sinomenine on the neutrophil migration. The expression of protein arginine deiminase type 4 (PAD4), ctrullinated histone H3 (CitH3) and microtubule-associated protein 1 light chain 3B (LC3B) had the similar tendency. Upon activation of lipopolysaccharide (LPS) in vitro, Sinomenine suppressed the phosphorylation of P65, extracellular signal-regulated kinase (ERK) and P38 of neutrophil. Meanwhile, Sinomenine inhibited NETs formation induced by phorbol 12-myristate 13-acetate (PMA), which were demonstrated by the decreased expression of neutrophil elastase (NE), PAD4 and CitH3. Sinomenine also inhibited PMA-induced autophagy in vitro based on the changes of Beclin-1 and LC3B. Sinomenine has good efficacy in treating adjuvant induced arthritis via regulating neutrophil activities. Apart from inhibiting activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, the mechanism includes suppression of NETs formation via autophagy inhibition.
Collapse
|
16
|
Xiang G, Gao M, Qin H, Shen X, Huang H, Hou X, Feng Z. Benefit-risk assessment of traditional Chinese medicine preparations of sinomenine using multicriteria decision analysis (MCDA) for patients with rheumatoid arthritis. BMC Complement Med Ther 2023; 23:37. [PMID: 36747185 PMCID: PMC9901080 DOI: 10.1186/s12906-023-03864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE A multicriteria decision analysis (MCDA) model was used to evaluate the benefits and risks of traditional Chinese medicine preparations of sinomenine alone or in combination with conventional drugs in the treatment of rheumatoid arthritis (RA) and to provide a basis for the rational clinical application of sinomenine. METHODS A study search was performed using six major databases, and Review Manager 5.3 was used for data analysis. Then, an MCDA model evaluation system was established for the treatment of RA with sinomenine preparations, and the benefit values, risk values, and total benefit-risk values of sinomenine preparations alone or in combination with conventional drugs were calculated using Hiview 3.2 software. Finally, Monte Carlo simulations were performed using Crystal Ball embedded in Excel software to calculate the 95% confidence intervals (95% CI), and the probability of the differences between the 2 drug regimens was determined to optimize the evaluation results. RESULTS Forty-four randomized controlled trials (RCTs) were included. Quantitative assessment of the MCDA model showed that the sinomenine preparation alone offered less benefits than when combined with conventional drugs with a benefit difference of 20 (95% CI 3.06, 35.71). However, the risk of the combination was significantly lower with a risk difference of 13(95% CI -10.26, 27.52). The total value of the benefit-risk of sinomenine alone and in combination with conventional drugs was 46 and 53 at 60% and 40% of the benefit-risk ratio of the two dosing regimens, respectively, with a difference of 7 (95% CI -4.26, 22.12). The probability that the comprehensive score of the combined regimen is greater than that of sinomenine alone is 90.1%, and the evaluation was steady. CONCLUSION The benefit-risk of the combined application regimen of sinomenine is greater than that of sinomenine alone.
Collapse
Affiliation(s)
- Gao Xiang
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Min Gao
- Yichuan Community Health Service Center, Shanghai, 200065 China
| | - Huirong Qin
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Xiaolan Shen
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Huilian Huang
- grid.254148.e0000 0001 0033 6389Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001 Hubei China
| | - Xiaoqiang Hou
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China ,grid.254148.e0000 0001 0033 6389Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Zhitao Feng
- grid.254148.e0000 0001 0033 6389Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China ,grid.254148.e0000 0001 0033 6389Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
17
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
18
|
Selvaraj S, Inbasekar C, Pandurangan S, Nishter NF. Collagen-coated silk fibroin nanofibers with antioxidants for enhanced wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:35-52. [PMID: 35892281 DOI: 10.1080/09205063.2022.2106707] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Silk fibroin nanofibers find broader applications in skin tissue engineering as wound dressings. In this study, we have prepared biocompatible collagen-coated silk fibroin nanofibers with two small molecules: sinomenine hydrochloride (SH) and kaempferol hydrate (KH) with bioactive properties for wound healing applications. The prepared nanofibrous scaffolds were characterized via different experimental techniques and the biocompatibility of the nanofibrous scaffolds was assessed using MTT assay and live/dead cell assay. The wound healing potential of the nanofibrous scaffolds was evaluated through in vivo animal model. Notably, the collagen-coated scaffolds showed improved biocompatibility and fibroblast viability over the uncoated scaffolds. The collagen-coated silk nanofibers containing KH showed good antioxidant properties and promoted wound healing in in vivo studies by minimizing inflammation and enhancing collagen deposition. Thus, the incorporation of antioxidant molecules along with collagen coating enhanced the wound healing efficiency of silk nanofibers.
Collapse
Affiliation(s)
- Sowmya Selvaraj
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Chandrasekar Inbasekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry and Biotechnology Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| | - Nishad Fathima Nishter
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research-Central Leather Research Institute, Chennai, India
| |
Collapse
|
19
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
20
|
Chen X, Lu C, Duan Y, Huang Y. Recent Advancements in Drug Delivery of Sinomenine, A Disease-Modifying Anti-Rheumatic Drug. Pharmaceutics 2022; 14:pharmaceutics14122820. [PMID: 36559313 PMCID: PMC9781253 DOI: 10.3390/pharmaceutics14122820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sinomenine (SIN) is a benzyltetrahydroisoquinoline-type alkaloid isolated from the dried plant root and stem of Sinomenium acutum (Thumb.) Rehd.et Wils, which shows potent anti-inflammatory and analgesic effects. As a transforming disease-modifying anti-rheumatic drug, SIN has been used to treat rheumatoid arthritis over twenty-five years in China. In recent years, SIN is also in development for use against other disorders, including colitis, pain, traumatic brain injury, and uveitis. However, its commercial hydrochloride (SIN-HCl) shows low oral bioavailability and certain allergic reactions in patients, due to the release of histamine. Therefore, a large number of pharmaceutical strategies have been explored to address these liabilities, such as prolonging release behaviors, enhancing skin permeation and adsorption for transdermal delivery, targeted SIN delivery using new material or conjugates, and co-amorphous technology. This review discusses these different delivery strategies and approaches employed to overcome the limitations of SIN for its efficient delivery, in order to achieve improved bioavailability and reduced side effects. The potential advantages and limitations of SIN delivery strategies are elaborated along with discussions of potential future SIN drug development strategies.
Collapse
Affiliation(s)
- Xin Chen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Chengcheng Lu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410011, China
- Correspondence:
| |
Collapse
|
21
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
22
|
Yang X, Xia H, Li Y, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Chu Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sinomenine (SIN), a natural product, has been used to treat rheumatoid arthritis (RA) in China for thousands of years. SIN has been developed for the treatment of RA by way of tablets and injections, but both dosage forms have been associated with severe adverse reactions. Making SIN into liposomes-in-hydrogel biomaterials for external use has a good slow-release effect and can play an important role in avoiding the first-pass effect, gastrointestinal reaction, and increasing the local action time of drugs. SIN-loaded liposomes were formed by the thin-film dispersion method, then SIN-loaded liposomes-in-hydrogels were prepared by combining the SIN-L with hyaluronic acid (HA) hydrogels. In this paper, the basic characteristics, In vitro and Ex vivo release, and antioxidant activity of SIN-loaded liposomes-in-hydrogels were studied. The results showed that SIN-loaded liposomes-in-hydrogels have good sustained-release and antioxidant effects, and the preparation is expected to be a good biomaterial.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei, People's Republic of China
- School of life science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Zhaoxing Chu
- Hefei Yigong Pharmaceutical Co., Ltd, Hefei, People's Republic of China
| |
Collapse
|
23
|
Chen X, Li D, Duan Y, Huang Y. Characterization of co-amorphous sinomenine-tranilast systems with strong intermolecular interactions and sustained release profiles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Tehrani MHH, Soltani M, Moradi Kashkooli F, Mahmoudi M, Raahemifar K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics 2021; 14:35. [PMID: 35056931 PMCID: PMC8778939 DOI: 10.3390/pharmaceutics14010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Combination therapy, a treatment modality that combines two or more therapeutic methods, provides a novel pathway for cancer treatment, as it targets the region of interest (ROI) in a characteristically synergistic or additive manner. To date, liposomes are the only nano-drug delivery platforms that have been used in clinical trials. Here, we speculated that it could be promising to improve treatment efficacy and reduce side effects by intravenous administration of thermo-sensitive liposomes loaded with doxorubicin (TSL-Dox) during magnetic hyperthermia (MHT). A multi-scale computational model using the finite element method was developed to simulate both MHT and temperature-sensitive liposome (TSL) delivery to a solid tumor to obtain spatial drug concentration maps and temperature profiles. The results showed that the killing rate of MHT alone was about 15%, which increased to 50% using the suggested combination therapy. The results also revealed that this combination treatment increased the fraction of killed cells (FKCs) inside the tumor compared to conventional chemotherapy by 15% in addition to reducing side effects. Furthermore, the impacts of vessel wall pore size, the time interval between TSL delivery and MHT, and the initial dose of TSLs were also investigated. A considerable reduction in drug accumulation was observed in the tumor by decreasing the vessel wall pore size of the tumor. The results also revealed that the treatment procedure plays an essential role in the therapeutic potential of anti-cancer drugs. The results suggest that the administration of MHT can be beneficial in the TSL delivery system and that it can be employed as a guideline for upcoming preclinical studies.
Collapse
Affiliation(s)
- Masoud H. H. Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| | - Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (M.H.H.T.); (F.M.K.)
| | - Mohammadreza Mahmoudi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287, USA;
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
25
|
Shen Q, Tang T, Hu Q, Ying X, Shu G, Teng C, Du Y. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy. Biomater Sci 2021; 9:8386-8395. [PMID: 34787601 DOI: 10.1039/d1bm01438b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methotrexate (MTX) as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) through oral and injectable administration is still problematic in the clinic. Herein, a MTX-loaded thermal-responsible flexible liposome (MTFL) incorporated within a carbomer-based gel was prepared as a novel transdermal agent (MTFL/Gel) for effective treatment of RA. It was found that MTFL had an average size of approximately 90 nm, which could rapidly release the drug under thermal conditions. The prepared MTFL/Gel could remarkably increase the MTX skin permeation as compared with free MTX, which was possibly due to the deformable membrane of flexible liposomes. Moreover, the results suggested MTFL/Gel could lead to a remarkably enhanced RA treatment when in combination with microwave hyperthermia. The superior ability of MTFL/Gel to alleviate RA response was attributed to the excellent skin permeation, thermal-responsible drug release, and synergistic anti-arthritic effect of MTX chemotherapy and microwave-induced hyperthermia therapy. Overall, the MTFL/Gel with dual deformable and thermal-responsible performances could be used as a novel promising transdermal agent for enhanced treatment of RA.
Collapse
Affiliation(s)
- Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China. .,School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Ting Tang
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China.
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 32200, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| |
Collapse
|
26
|
van Alem CMA, Metselaar JM, van Kooten C, Rotmans JI. Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics 2021; 13:pharmaceutics13071004. [PMID: 34371695 PMCID: PMC8309101 DOI: 10.3390/pharmaceutics13071004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Liposomes can be seen as ideal carriers for anti-inflammatory drugs as their ability to (passively) target sites of inflammation and release their content to inflammatory target cells enables them to increase local efficacy with only limited systemic exposure and adverse effects. Nonetheless, few liposomal formulations seem to reach the clinic. The current review provides an overview of the more recent innovations in liposomal treatment of rheumatoid arthritis, psoriasis, vascular inflammation, and transplantation. Cutting edge developments include the liposomal delivery of gene and RNA therapeutics and the use of hybrid systems where several liposomal bilayer features, or several drugs, are combined in a single formulation. The majority of the articles reviewed here focus on preclinical animal studies where proof-of-principle of an improved efficacy-safety ratio is observed when using liposomal formulations. A few clinical studies are included as well, which brings us to a discussion about the challenges of clinical translation of liposomal nanomedicines in the field of inflammatory diseases.
Collapse
Affiliation(s)
- Carla M. A. van Alem
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Josbert M. Metselaar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cees van Kooten
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
| | - Joris I. Rotmans
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (C.M.A.v.A.); (C.v.K.)
- Correspondence: ; Tel.: +31-(0)-7152-62148
| |
Collapse
|
27
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
28
|
de Seabra Rodrigues Dias IR, Lo HH, Zhang K, Law BYK, Nasim AA, Chung SK, Wong VKW, Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol Res 2021; 170:105696. [PMID: 34052360 DOI: 10.1016/j.phrs.2021.105696] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which affects about 0.5-1% of people with symptoms that significantly impact a sufferer's lifestyle. The cells involved in propagating RA tend to display pro-inflammatory and cancer-like characteristics. Medical drug treatment is currently the main avenue of RA therapy. However, drug options are limited due to severe side effects, high costs, insufficient disease retardation in a majority of patients, and therapeutic effects possibly subsiding over time. Thus there is a need for new drug therapies. Endoplasmic reticulum (ER) stress, a condition due to accumulation of misfolded proteins in the ER, and subsequent cellular responses have been found to be involved in cancer and inflammatory pathologies, including RA. ER stress protein markers and their modulation have therefore been suggested as therapeutic targets, such as GRP78 and CHOP, among others. Some current RA therapeutic drugs have been found to have ER stress-modulating properties. Traditional Chinese Medicines (TCMs) frequently use natural products that affect multiple body and cellular targets, and several medicines and/or their isolated compounds have been found to also have ER stress-modulating capabilities, including TCMs used in RA treatment by Chinese Medicine practitioners. This review encourages, in light of the available information, the study of these RA-treating, ER stress-modulating TCMs as potential new pharmaceutical drugs for use in clinical RA therapy, along with providing a list of other ER stress-modulating TCMs utilized in treatment of cancers, inflammatory diseases and other diseases, that have potential use in RA treatment given similar ER stress-modulating capacity.
Collapse
Affiliation(s)
- Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kaixi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
29
|
Bi F, Zhang Y, Liu W, Xie K. Sinomenine activation of Nrf2 signaling prevents inflammation and cerebral injury in a mouse model of ischemic stroke. Exp Ther Med 2021; 21:647. [PMID: 33968178 PMCID: PMC8097210 DOI: 10.3892/etm.2021.10079] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sinomenine (SINO), which is used clinically to treat rheumatoid arthritis and neuralgia, is derived from the root and stems of Sinomenium acutum. SINO has been reported to exert analgesic, sedative and anti-inflammatory effects, and provides a protective role against shock and organ damage. Studies have suggested that SINO primarily exerts it anti-inflammatory function by inhibiting NF-κB signaling. There is also evidence to indicate that SINO may regulate inflammation Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling. The present study aimed to investigate whether the anti-inflammatory and cerebral protective effects of SINO were induced through Nrf2 both in vitro and in vivo. The results revealed that SINO significantly upregulated Nrf2 protein expression levels, increased Nrf2 nuclear translocation and the upregulated the protein expression levels of downstream factors. The treatment of a middle cerebral artery occlusion model mice with SINO effectively reduced cerebral damage and inflammation, and restored the balance in cerebral oxidative stress. In addition, SINO treatment also promoted Nrf2-dependent microglia M1/M2 polarization and inhibited the phosphorylation of IκBα as well as NF-κB nuclear translocation. This revealed an important upstream event that contributed to its anti-inflammatory and cerebral tissue protective effects. In conclusion, the findings of the present study identified a novel pathway through which SINO may exert its anti-inflammatory and cerebral protective functions, and provided a molecular basis for the potential applications of SINO in the treatment of cerebral inflammatory disorders.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Medicine, Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Yiyong Zhang
- Department of Neurosurgery, Jinan Jiyang District People's Hospital, Jinan, Shandong 251401, P.R. China
| | - Wenbo Liu
- Department of Intensive Care Medicine, College of Anesthesiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Keliang Xie
- Department of Neurosurgery, Jinan Jiyang District People's Hospital, Jinan, Shandong 251401, P.R. China.,Department of Anesthesiology, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, Shandong 261000, P.R. China
| |
Collapse
|
30
|
Ferreira-Silva M, Faria-Silva C, Viana Baptista P, Fernandes E, Ramos Fernandes A, Corvo ML. Liposomal Nanosystems in Rheumatoid Arthritis. Pharmaceutics 2021; 13:pharmaceutics13040454. [PMID: 33801603 PMCID: PMC8065723 DOI: 10.3390/pharmaceutics13040454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the joints and results in reduced patient quality of life due to its chronic nature and several comorbidities. RA is also associated with a high socioeconomic burden. Currently, several available therapies minimize symptoms and prevent disease progression. However, more effective treatments are needed due to current therapies' severe side-effects, especially under long-term use. Drug delivery systems have demonstrated their clinical importance-with several nanocarriers present in the market-due to their capacity to improve therapeutic drug index, for instance, by enabling passive or active targeting. The first to achieve market authorization were liposomes that still represent a considerable part of approved delivery systems. In this manuscript, we review the role of liposomes in RA treatment, address preclinical studies and clinical trials, and discuss factors that could hamper a successful clinical translation. We also suggest some alterations that could potentially improve their progression to the market.
Collapse
Affiliation(s)
- Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
| | - Catarina Faria-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
| | - Pedro Viana Baptista
- Unidade de Ciências Biomoleculares Aplicadas UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Eduarda Fernandes
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV, REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Alexandra Ramos Fernandes
- Unidade de Ciências Biomoleculares Aplicadas UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (A.R.F.); (M.L.C.)
| | - Maria Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (M.F.-S.); (C.F.-S.)
- Correspondence: (A.R.F.); (M.L.C.)
| |
Collapse
|
31
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
32
|
Sharma D, Chaubey P, Suvarna V. Role of natural products in alleviation of rheumatoid arthritis-A review. J Food Biochem 2021; 45:e13673. [PMID: 33624882 DOI: 10.1111/jfbc.13673] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RHA) is one of the most prevalent complex, chronic, inflammatory diseases, manifested by elevated oxidative stress and inflammatory biomarkers. Prolonged administration of NSAIDs, steroids, and DMARDs, used in the treatment of RHA, is associated with deleterious side effects. This necessitates the urge of new and safe approaches for RHA management, based on the complementary and alternative system of medicine. Documented evidences have suggested that supplementation with nutritional, dietary, and herbal components; can play a crucial role as an adjuvant, in the alleviation of the RHA symptoms, through their influence on the pathological inflammatory processes. Dietary phenolic compounds, flavonoids, carotenoids, and alkaloids with their ability to modulate prooxidant and pro-inflammatory pathways, have been effective in delaying the arthritic disease progression. Moreover, in scientific explorations, herbs containing phenolic compounds, alkaloids, carotenoids flavonoids, spices such as ginger, turmeric, Ayurvedic formulations, different diets such as Mediterranean diet, vegan diet, beverages, and oils such as sesame oil, rice bran oil, vitamins, and probiotics are proven to modulate the action of inflammatory molecules, involved in RHA pathology. Subsequently, the purpose of this review article is to summarize various in vitro, in vivo, and clinical studies in RHA, which have documented remarkable insights into the anti-inflammatory, antioxidant, analgesic, and immunomodulatory, bone erosion preventing properties of dietary, nutritional, and herbal components with the focus on their molecular level mechanisms involved in RHA. Even though major findings were derived from in vitro studies, several in vivo and clinical studies have established the use of diet, herbal, and nutritional management in RHA treatment. PRACTICAL APPLICATIONS: Thickening of the synovial membrane, bone erosion, and cartilage destruction is known to trigger rheumatoid arthritis causing inflammation and pain in bone joints. Continuous intake of NSAIDs, steroids, and DMARD therapy are associated with detrimental side effects. These side effects can be overcome by the use of dietary, nutritional, and herbal interventions based on the complementary and alternative therapy. This concept portrays the food components and other natural components having the potential to promote health, improve general well-being, and reduce the risk of RHA.
Collapse
Affiliation(s)
- Dhvani Sharma
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- College of Pharmacy, Shaqra University, Kingdom of Saudi Arabia, Saudi Arabia
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
33
|
Sinomenine-phenolic acid coamorphous drug systems: Solubilization, sustained release, and improved physical stability. Int J Pharm 2021; 598:120389. [PMID: 33609724 DOI: 10.1016/j.ijpharm.2021.120389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Sinomenine (SIN), isolated from Caulis sinomenii, is a benzyltetrahydroisoquinoline-type alkaloid with potent anti-inflammatory and analgesic effects. SIN-HCl has been used in the forms of tablets or enteric-coated tablets in the treatment of rheumatoid arthritis in China for years, while its short half-life leads to attenuated therapeutic effects and serious side effects. In the current study, three phenolic acids, including salicylic acid (SAA), 2,3-dihydroxybenzoic acid (23DHB), and 2,4-dihydroxybenzoic acid (24DHB), were firstly employed as coamorphous coformers to prepare three binary SIN-phenolic acid coamorphous systems. These new coamorphous systems were characterized by powder X-ray diffraction (PXRD), modulated temperature differential scanning calorimetry (mDSC), and Fourier transform infrared spectroscopy (FTIR). The formation of SIN-phenolic acid coamorphous systems are supported by the absence of diffraction peaks in their PXRD spectra, as well as the single Tgs of three samples (i.e., SIN-SAA, SIN-23DHB, and SIN-24DHB) at 109.5 °C, 124.9 °C, and 135.3 °C. Importantly, the salt formation between SIN and phenolic acids was observed in FTIR. In three coamorphous systems, coamorphous SIN-24DHB shows superior physicochemical stability under both low humidity and accelerated storage conditions. They were also more soluble than crystalline SIN, while were released slower than the commercial SIN-HCl in dissolution experiments. Therefore, our study suggests that phenolic acids may be used as a new type of coformers in the preparation of coamorphous systems for active pharmaceutical ingredients.
Collapse
|
34
|
Neupane YR, Mahtab A, Siddiqui L, Singh A, Gautam N, Rabbani SA, Goel H, Talegaonkar S. Biocompatible Nanovesicular Drug Delivery Systems with Targeting Potential for Autoimmune Diseases. Curr Pharm Des 2020; 26:5488-5502. [DOI: 10.2174/1381612826666200523174108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s
immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired
antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis,
systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like
Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and
brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable
pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted
targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes,
niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated
exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases.
These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less
immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs
to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with
physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and
can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of
various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage
regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and
prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.
Collapse
Affiliation(s)
- Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore
| | - Asiya Mahtab
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK college of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras All Khaimah, United Arab Emirates
| | - Honey Goel
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
35
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
36
|
Wang P, Li A, Yu L, Chen Y, Xu D. Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Front Bioeng Biotechnol 2020; 8:652. [PMID: 32754578 PMCID: PMC7366901 DOI: 10.3389/fbioe.2020.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction, which results in a high disability rate on human health and a huge burden on social economy. At present, traditional therapies based on drug therapy still cannot cure RA, in accompany with the potential serious side effects. Based on the development of nanobiotechnology and nanomedicine, energy conversion-based nanotherapy has demonstrated distinctive potential and performance in RA treatment. This strategy employs specific nanoparticles with intrinsic physiochemical properties to target lesions with the following activation by diverse external stimuli, such as light, ultrasound, microwave, and radiation. These nanoagents subsequently produce therapeutic effects or release therapeutic factors to promote necrotic apoptosis of RA inflammatory cells, reduce the concentration of related inflammatory factors, relieve the symptoms of RA, which are expected to ultimately improve the life quality of RA patients. This review highlights and discusses the versatile biomedical applications of energy conversion-based nanotherapy in efficient RA treatment, in together with the deep clarification of the facing challenges and further prospects on the final clinical translations of these energy conversion-based nanotherapies against RA.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Liang M, Yan L, Mei Z, Luo Y, Hou X, Feng Z. Methodological and reporting quality evaluation of meta-analyses on the Chinese herbal preparation Zheng Qing Feng Tong Ning for the treatment of rheumatoid arthritis. BMC Complement Med Ther 2020; 20:195. [PMID: 32586308 PMCID: PMC7318442 DOI: 10.1186/s12906-020-02978-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zheng Qing Feng Tong Ning (ZQFTN) is a sinomenine (SIN) preparation that has been used in clinical practice. Our study aimed to assess the methodological and reporting quality of meta-analyses on the Chinese herbal formula ZQFTN for the treatment of rheumatoid arthritis (RA). METHODS Systematic searches were carried out with the 5 following electronic databases from inception to July 2019: China National Knowledge Infrastructure (CNKI), Wanfang, VIP database for Chinese technical periodicals (VIP), Cochrane Library and PubMed. The quality of the methodology and reporting was measured with the assessment of multiple systematic reviews 2 (AMSTAR 2) scale, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). RESULTS Eight studies were identified. Among the 16 items of the AMSTAR 2 scale, four items were optimally reported ("Y" =100% of the items), and another four items were poorly reported ("Y" =0% of the items). Only 2 studies received a good overall score ("Y" ≥50% of the items). Regarding the PRISMA statement, the scores of 5 studies were lower than the average score (17.69), indicating that the quality of the reports was very low. In terms of the GRADE, none of the 61 results were of high quality (0.0%). Fifteen results were of medium quality (25%), 34 were of low quality (55%), and 12 were of very low quality (20%). Among the five downgrading factors, deviation risk (n = 61, 100%) was the most common downgrading factor, followed by inconsistency (n = 30, 50%), publication bias (n = 17, 28%), inaccuracy (n = 11, 18%) and indirectness (n = 0, 0%). CONCLUSIONS The methodological and reporting quality of the meta-analyses and systematic reviews in the included studies are less than optimal, and researchers should undergo additional training and follow the AMSTAR 2 scale, PRISMA statement and GRADE to design high-quality studies in the future.
Collapse
Affiliation(s)
- Mingge Liang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Lan Yan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Xiaoqiang Hou
- Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003, Hubei, China.
| |
Collapse
|
38
|
Jha A, Viswanadh MK, Burande AS, Mehata AK, Poddar S, Yadav K, Mahto SK, Parmar AS, Muthu MS. DNA biodots based targeted theranostic nanomedicine for the imaging and treatment of non-small cell lung cancer. Int J Biol Macromol 2020; 150:413-425. [PMID: 32057849 DOI: 10.1016/j.ijbiomac.2020.02.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/25/2022]
Abstract
The light absorption and emission characteristics of DNA biodots (DNA-BD), along with biocompatibility, give them a high potential for use in various medical applications, particularly in diagnostic purpose. DNA, under high pressure and temperature, condenses to form luminescent biodots. The objective of this research is to develop DNA-biodots (BD) loaded and cetuximab conjugated targeted theranostic liposomes of etoposide for lung cancer imaging and therapy. Theranostic liposomes were prepared by using the solvent injection method and characterized for their particle size, polydispersity, zeta potential, encapsulation efficiency, and pH-dependent in-vitro release, SEM, TEM AFM, EDX, and XRD. The t50% (time at which 50% of the drug releases from the preparation) of the formulations was pH-dependent, with a significant increase in the release at lower pH (5.5). To kill A549 adenocarcinoma cells, the etoposide (control) required significantly (p < 0.05) higher drug concentrations in comparison to non-targeted and; the non-targeted formulation required more concentrations in comparison to targeted liposomes. The in-vivo results demonstrated that CTX-TPGS decorated theranostic liposomes could be a promising carrier for lung theranostics due to their nano-size and selectivity towards EGFR overexpressed cells which provided an improved NSCLC targeted delivery of ETP in comparison to the non-targeted and control formulations.
Collapse
Affiliation(s)
- Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankita Sanjay Burande
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Suruchi Poddar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Kanchan Yadav
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India; Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India; Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|