1
|
Kiricenko K, Meier R, Kleinebudde P. Systematic investigation of the impact of screw elements in continuous wet granulation. Int J Pharm X 2024; 8:100273. [PMID: 39206252 PMCID: PMC11357779 DOI: 10.1016/j.ijpx.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Twin-screw wet granulation (TSG) is a continuous manufacturing technique either for granules as final dosage form or as an intermediate before tableting or capsule filling. A comprehensive process understanding is required to implement TSG, considering various parameters influencing granule and tablet quality. This study investigates the impact of screw configuration on granule properties followed by tableting, using a systematic approach for lactose-microcrystalline cellulose (lactose-MCC) and ibuprofen-mannitol (IBU) formulations. The most affecting factor, as observed by other researchers, was the L/S ratio impacting the granule size, strength and tabletability. Introducing tooth-mixing-elements at the end of the screw, as for the IBU formulation, resulted in a high proportion of oversized granules, with values between 36% and 78%. Increasing the thickness of kneading elements (KEs) produced denser, less friable granules with reduced tablet tensile strength. Granulation with more KEs, larger thickness or stagger angle increased torque values and residence time from 30 to 65 s. Generally, IBU granules exhibited high tabletability, requiring low compression pressure for sufficient tensile strength. At a compression pressure of 50 MPa, IBU tablets where at least one kneading zone was included resulted in approximately 2.5 MPa compared to lactose-MCC with 0.5 MPa. In conclusion, the TSG process demonstrated robustness by varying the screw design with minimal impact on subsequent tableting processes.
Collapse
Affiliation(s)
- Katharina Kiricenko
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Robin Meier
- L.B. Bohle Maschinen und Verfahren GmbH, 59320 Ennigerloh, Germany
| | - Peter Kleinebudde
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Kolipaka SS, Junqueira LA, Ross S, Garg V, Mithu MSH, Bhatt S, Douroumis D. An Advanced Twin-Screw Granulation Technology: The use of Non-Volatile Solvents with High Solubilizing Capacity. AAPS PharmSciTech 2024; 25:174. [PMID: 39085532 DOI: 10.1208/s12249-024-02890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Twin-screw wet granulation (TSWG) is a manufacturing process that offers several advantages for the processing of water-insoluble active pharmaceutical ingredients (APIs) and has been used for increasing the solubility and dissolution rates. Here we introduce a novel TSWG approach with reduced downstream processing steps by using non-volatile solvents as granulating binders. METHODS Herein, TSWG was carried out using Transcutol a non-volatile protic solvent as a granulating binder and dissolution enhancer of ibuprofen (IBU) blends with cellulose polymer grades (Pharmacoat® 603, Affinisol™, and AQOAT®). RESULTS The physicochemical characterisation of the produced granules showed excellent powder flow and the complete transformation of IBU into the amorphous state. Dissolution studies presented immediate release rates for all IBU formulations due to the high drug-polymer miscibility and the Transcutol solubilising capacity. CONCLUSIONS Overall, the study demonstrated an innovative approach for the development of extruded granules by processing water-insoluble APIs with non-volatile solvents for enhanced dissolution rates at high drug loadings.
Collapse
Affiliation(s)
| | | | - Steven Ross
- Custom Pharma Services, Conway St, Brighton and Hove, Hove, BN3 3LW, UK
| | - Vivek Garg
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Central Avenue, Chatham, ME4 4TB, UK
| | | | - Saumil Bhatt
- Cubi-Tech Extrusion Ltd., Unit 3, Neptune Close, Medway City Estate, Rochester, Kent, ME2 4LU, UK
| | - Dennis Douroumis
- Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime Kent, Chatham, ME4 4TB, UK.
- Delta Pharmaceutics Ltd., 1-3 Manor Road, Chatham, Kent, ME4 6AG, UK.
| |
Collapse
|
3
|
Matsunami K, Meyer J, Rowland M, Dawson N, De Beer T, Van Hauwermeiren D. T-shaped partial least squares for high-dosed new active pharmaceutical ingredients in continuous twin-screw wet granulation: Granule size prediction with limited material information. Int J Pharm 2023; 646:123481. [PMID: 37805145 DOI: 10.1016/j.ijpharm.2023.123481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
This work presents a granule size prediction approach applicable to diverse formulations containing new active pharmaceutical ingredients (APIs) in continuous twin-screw wet granulation. The approach consists of a surrogate selection method to identify similar materials with new APIs and a T-shaped partial least squares (T-PLS) model for granule size prediction across varying formulations and process conditions. We devised a surrogate material selection method, employing a combination of linear pre-processing and nonlinear classification algorithms, which effectively identified suitable surrogates for new materials. Using only material properties obtained through four characterization methods, our approach demonstrated its predictive prowess. The selected surrogate methods were seamlessly integrated with our developed T-PLS model, which was meticulously validated for high-dose formulations involving three new APIs. When surrogating new APIs based on Gaussian process classification, we achieved the lowest prediction errors, signifying the method's robustness. The predicted d-values were within the range of uncertainty bounds for all cases, except for d90 of API C. Notably, the approach offers a direct and efficient solution for early-phase formulation and process development, considerably reducing the need for extensive experimental work. By relying on just four material characterization methods, it streamlines the research process while maintaining a high degree of accuracy.
Collapse
Affiliation(s)
- Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium.
| | - Jonathan Meyer
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Martin Rowland
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Neil Dawson
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
4
|
Peeters M, Barrera Jiménez AA, Matsunami K, Van Hauwermeiren D, Stauffer F, Arnfast L, Vigh T, Nopens I, De Beer T. Exploring the effect of raw material properties on continuous twin-screw wet granulation manufacturability. Int J Pharm 2023; 645:123391. [PMID: 37696346 DOI: 10.1016/j.ijpharm.2023.123391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Twin-screw wet granulation (TSWG) stands out as a promising continuous alternative to conventional batch fluid bed- and high shear wet granulation techniques. Despite its potential, the impact of raw material properties on TSWG processability remains inadequately explored. Furthermore, the absence of supportive models for TSWG process development with new active pharmaceutical ingredients (APIs) adds to the challenge. This study tackles these gaps by introducing four partial least squares (PLS) models that approximate both the applicable liquid-to-solid (L/S) ratio range and resulting granule attributes (i.e., granule size and friability) based on initial material properties. The first two PLS models link the lowest and highest applicable L/S ratio for TSWG, respectively, with the formulation blend properties. The third and fourth PLS models predict the granule size and friability, respectively, from the starting API properties and applied L/S ratio for twin-screw wet granulation. By analysing the developed PLS models, water-related material properties (e.g., solubility, wettability, dissolution rate), as well as density and flow-related properties (e.g., flow function coefficient), were found to be impacting the TSWG processability. In addition, the applicability of the developed PLS models was evaluated by using them to propose suitable L/S ratio ranges (i.e., resulting in granules with the desired properties) for three new APIs and related formulations followed by an experimental validation thereof. Overall, this study helped to better understand the effect of raw material properties upon TSWG processability. Moreover, the developed PLS models can be used to propose suitable TSWG process settings for new APIs and hence reduce the experimental effort during process development.
Collapse
Affiliation(s)
- Michiel Peeters
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Ana Alejandra Barrera Jiménez
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium.
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Fanny Stauffer
- Product Design & Performance, UCB, Braine l'Alleud 1420, Belgium
| | - Lærke Arnfast
- Discovery, Product Development & Supply, Janssen R&D, Beerse B-2340, Belgium
| | - Tamas Vigh
- Discovery, Product Development & Supply, Janssen R&D, Beerse B-2340, Belgium
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
5
|
Wikström H, Martin de Juan L, Remmelgas J, Meier R, Altmeyer A, Emanuele D, Jormanainen M, Juppo A, Tajarobi P. Drying capacity of a continuous vibrated fluid bed dryer - Statistical and mechanistic model development. Int J Pharm 2023; 645:123368. [PMID: 37669728 DOI: 10.1016/j.ijpharm.2023.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
The drying capacity of a continuous vibrated fluid bed dryer was studied using a DoE by varying microcrystalline cellulose content in the formulation, water amount in the twin-screw granulation, inlet air temperature, air flow rate and the acceleration of the horizontal fluid-bed. Temperature and humidity profiles were measured along the dryer using wireless sensors. For the parameter space explored in this study, acceleration was the most influential process parameter of the dryer regarding the resulting granule moisture content. An empirical model was developed that allowed for fast and accurate moisture content prediction that could be incorporated into an enhanced control strategy. In addition, a mechanistic model was formulated that allow for prediction of temperature and moisture profiles, and most importantly the moisture content of the granules inside the dryer. The mechanistic model can be integrated to other unit operation models to provide overall understanding of an integrated continuous process line. The mechanistic model also makes it possible to define the equipment design requirements (e.g., length of the dryer) to meet the specific needs in terms of drying capacity, temperature and moisture profile.
Collapse
Affiliation(s)
- Håkan Wikström
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luis Martin de Juan
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | | | - Robin Meier
- L.B. Bohle Maschinen und Verfahren GmbH, Ennigerloh, Germany
| | | | - Daniel Emanuele
- L.B. Bohle Maschinen und Verfahren GmbH, Ennigerloh, Germany
| | - Miika Jormanainen
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Anne Juppo
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Pirjo Tajarobi
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
6
|
Zhao J, Tian G, Qu H. Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines 2023; 11:1923. [PMID: 37509561 PMCID: PMC10377609 DOI: 10.3390/biomedicines11071923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Twin-screw wet granulation (TSWG) is a method of continuous pharmaceutical manufacturing and a potential alternative method to batch granulation processes. It has attracted more and more interest nowadays due to its high efficiency, robustness, and applications. To improve both the product quality and process efficiency, the process understanding is critical. This article reviews the recent work in process understanding and optimization for TSWG. Various aspects of the progress in TSWG like process model construction, process monitoring method development, and the strategy of process control for TSWG have been thoroughly analyzed and discussed. The process modeling technique including the empirical model, the mechanistic model, and the hybrid model in the TSWG process are presented to increase the knowledge of the granulation process, and the influence of process parameters involved in granulation process on granule properties by experimental study are highlighted. The study analyzed several process monitoring tools and the associated technologies used to monitor granule attributes. In addition, control strategies based on process analytical technology (PAT) are presented as a reference to enhance product quality and ensure the applicability and capability of continuous manufacturing (CM) processes. Furthermore, this article aims to review the current research progress in an effort to make recommendations for further research in process understanding and development of TSWG.
Collapse
Affiliation(s)
- Jie Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geng Tian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Peeters M, Alejandra Barrera Jimenez A, Matsunami K, Stauffer F, Nopens I, De Beer T. Evaluation of the influence of material properties and process parameters on granule porosity in twin-screw wet granulation. Int J Pharm 2023; 641:123010. [PMID: 37169104 DOI: 10.1016/j.ijpharm.2023.123010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
In recent years, continuous twin-screw wet granulation (TSWG) is gaining increasing interest from the pharmaceutical industry. Despite the many publications on TSWG, only a limited number of studies focused on granule porosity, which was found to be an important granule property affecting the final tablet quality attributes, e.g. dissolution. In current study, the granule porosity along the length of the twin-screw granulator (TSG) barrel was evaluated. An experimental set-up was used allowing the collection of granules at the different TSG compartments. The effect of active pharmaceutical ingredient (API) properties on granule porosity was evaluated by using six formulations with a fixed composition but containing APIs with different physical-chemical properties. Furthermore, the importance of TSWG process parameters liquid-to-solid (L/S) ratio, mass feed rate and screw speed for the granule porosity was evaluated. Several water-related properties as well as particle size, density and flow properties of the API were found to have an important effect on granule porosity. While the L/S ratio was confirmed to be the dictating TSWG process parameter, granulator screw speed was also found to be an important process variable affecting granule porosity. This study obtained crucial information on the effect of material properties and process parameters on granule porosity (and granule formation) which can be used to accelerate TSWG process and formulation development.
Collapse
Affiliation(s)
- Michiel Peeters
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Ana Alejandra Barrera Jimenez
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Fanny Stauffer
- Product Design & Performance, UCB, Ottergemsesteenweg 460, Braine l'Alleud 1420, Belgium
| | - Ingmar Nopens
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Oost-Vlaanderen, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Oost-Vlaanderen, Belgium.
| |
Collapse
|
8
|
Ahmed J, Thomas L, Mulla MZ, Al-Attar H, Maniruzzaman M. Dry granulation of vitamin D3 and iron in corn starch matrix: Powder flow and structural properties. Food Res Int 2023; 165:112497. [PMID: 36869503 DOI: 10.1016/j.foodres.2023.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
In this work, a twin-screw dry granulation (TSDG) was adopted to produce vitamin D3 (VD3) and iron blended dry granules using corn starch as an excipient. Response surface methodology was applied to determine the effect of the formulation compositions (VD3 and iron) on granule properties [tapped bulk density, oil holding capacity, and volumetric mean particle size (Dv50)]. Results indicated that the model fitted well, and responses, in particular flow properties, were significantly affected by the composition. The Dv50 was only influenced by the addition of VD3. The flow properties were characterized by the Carr index and Hausner ratio, which indicated very poor flow of the granules. Scanning electron microscopy with energy dispersive spectroscopy confirm the presence and distribution of Fe++ and VD3 in the granules. Overall, TSDG was proven to be a simple alternative method for the preparation of dry granules of VD3 and iron in a blend.
Collapse
Affiliation(s)
- Jasim Ahmed
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - Linu Thomas
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Mehrajfatema Z Mulla
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Hasan Al-Attar
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - M Maniruzzaman
- Pharmaceutical Engineering and 3D Printing Lab (PharmE3D) The Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Model development and calibration of two-dimensional population balance model for twin-screw wet granulation based on particle size distribution and porosity. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Záhonyi P, Szabó E, Domokos A, Haraszti A, Gyürkés M, Moharos E, Nagy ZK. Continuous integrated production of glucose granules with enhanced flowability and tabletability. Int J Pharm 2022; 626:122197. [PMID: 36115464 DOI: 10.1016/j.ijpharm.2022.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
Abstract
Glucose is widely used in both the food and pharmaceutical industry. However, the application of industrially crystallized glucose in solid dosage forms is challenged by its poor flowability and tabletability. To improve these characteristics continuous twin-screw granulation was tested, which has the potential to be integrated into the continuous production of solid glucose from corn starch. A completely continuous manufacturing line (including drying and milling) was developed and the different production steps were examined and synchronized. Our line was supplemented with an in-line applicable near-infrared spectroscopic probe to monitor the moisture content of the milled granules in real-time. The flowability and tabletability of the powder improved significantly, and tablets with acceptable breaking force (greater than 100 N) could be prepared from the granules. The developed continuous line can be easily installed into the industrial solid glucose production process resulting in pure glucose granules with adequate flow properties and tabletability in a simple, continuous and efficient way.
Collapse
Affiliation(s)
- Petra Záhonyi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Anna Haraszti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Erzsébet Moharos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| |
Collapse
|
11
|
Asgarpour Khansary M, Shirazian S, Walker G. A molecularly enhanced proof of concept for targeting cocrystals at molecular scale in continuous pharmaceuticals cocrystallization. Proc Natl Acad Sci U S A 2022; 119:e2114277119. [PMID: 35594395 PMCID: PMC9173768 DOI: 10.1073/pnas.2114277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
It is impossible to optimize a process for a target drug product with the desired profile without a proper understanding of the interplay among the material attributes, the process parameters, and the attributes of the drug product. There is a particular need to bridge the micro- and mesoscale events that occur during this process. Here, we propose а molecular engineering methodology for the continuous cocrystallization process, based on Raman spectra measured experimentally with a probe and from quantum mechanical calculations. Using molecular dynamics simulations, the theoretical Raman spectra were calculated from first principles for local mixture structures under an external shear force at various temperatures. A proof of concept is developed to build the process design space from the computed data. We show that the determined process design space provides valuable insight for optimizing the cocrystallization process at the nanoscale, where experimental measurements are difficult and/or inapplicable. The results suggest that our method may be used to target cocrystallization processes at the molecular scale for improved pharmaceutical synthesis.
Collapse
Affiliation(s)
| | - Saeed Shirazian
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| | - Gavin Walker
- Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, V94 T9PX Ireland
| |
Collapse
|
12
|
Junnila A, Wikström H, Megarry A, Gholami A, Papathanasiou F, Blomberg A, Ketolainen J, Tajarobi P. Faster to First-time-in-Human: Prediction of the liquid solid ratio for continuous wet granulation. Eur J Pharm Sci 2022; 172:106151. [PMID: 35217210 DOI: 10.1016/j.ejps.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
In early development, when active pharmaceutical ingredient (API) is in short supply, it would be beneficial to reduce the number of experiments by predicting a suitable L/S ratio before starting the product development. The aim of the study was to decrease development time and the amount of API needed for the process development of high drug load formulations for continuous twin-screw wet granulation (TSWG). Mixer torque rheometry was used as a pre-formulation tool to predict the suitable L/S ratios for granulation experiments. Three different values that were based on the MTR curves, were determined and assessed for their ability to predict the suitable L/S ratio for TSWG. Three APIs (allopurinol, paracetamol and metformin HCl) were used as model substances in high drug load formulations containing 60% drug substance. The MCC-mannitol ratio was varied to assess the optimal composition for the high-dose formulations. The API solubility affected the mixer torque rheometer (MTR) curves and the optimum L/S ratio for TSWG. The highly soluble metformin needed a much lower L/S ratio compared with allopurinol and paracetamol. A design space was determined for each API based on granule flowability and tablet tensile strength. The flowability of the granules and tensile strength of the tablets improved with an increasing L/S ratio. The MCC-mannitol filler ratio had a significant effect on tabletability for paracetamol and metformin, and these APIs having poor compaction properties needed higher MCC ratios to achieve the 2 MPa limit. The MCC-mannitol ratio had no effect on the granule flow properties. Instead, API properties had the largest influence on both granule flow properties and tensile strength. Based on this study, both the L/S ratio and MCC-mannitol ratio are crucial in controlling the critical quality attributes in high drug load formulations processed by TSWG. The optimum flow and tablet mechanical properties were achieved when using 75:25 MCC-mannitol ratio. Both start of the slope and 2/3 of the L/S ratio at the maximum torque in MTR provided a solid guideline to aim for in a TSWG experiment.
Collapse
Affiliation(s)
- Atte Junnila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Håkan Wikström
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Andrew Megarry
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Aida Gholami
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Foteini Papathanasiou
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Andreas Blomberg
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Jarkko Ketolainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Tajarobi
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden.
| |
Collapse
|
13
|
Pradhan SU, Bullard JW, Dale S, Ojakovo P, Bonnassieux A. A scaled down method for identifying the optimum range of L/S ratio in twin screw wet granulation using a regime map approach. Int J Pharm 2022; 616:121542. [PMID: 35131356 DOI: 10.1016/j.ijpharm.2022.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
Twin screw wet granulation (TSWG) has gained momentum in the pharmaceutical industry for effective continuous granulation of solid dosage products. Liquid-to-solid (L/S) ratio is a key process parameter affecting granule properties. Identifying an optimum range of L/S ratio while reducing the number of full scale experiments can minimize material requirements and streamline formulation and process development. In this work, microcrystalline cellulose-based (MCC) formulations of varying drug loads were granulated using a kneading element screw configuration at a wide range of L/S ratios until pasting was visually determined. Quantitative criteria based on process relevant granule size and mass % of fines were established to identify undesirable granulation conditions. Key mechanical properties of wet compacts measured using a small scale approach are discussed. The stress-strain behavior is used to predict pasting, and natural strain at peak yield stress and total work of deformation are used to identify undergranulation and overgranulation respectively. The small scale method is used to establish viable ranges of L/S ratios in advance of at-scale experiments. A quantitative predictive growth regime map is proposed based fully on small scale experiments and input process parameters. Strategies for establishing a generalized growth regime map for various systems of interest are discussed.
Collapse
Affiliation(s)
- Shankali U Pradhan
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, MA 02210, USA.
| | - Joseph W Bullard
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, MA 02210, USA.
| | - Steven Dale
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, MA 02210, USA.
| | - Peter Ojakovo
- Vertex Pharmaceuticals Incorporated, 50 Northern Ave, Boston, MA 02210, USA.
| | | |
Collapse
|
14
|
Vandevivere L, Van Wijmeersch E, Häusler O, De Beer T, Vervaet C, Vanhoorne V. The effect of screw configuration and formulation variables on liquid requirements and granule quality in a continuous twin screw wet granulation process. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Madarász L, Köte Á, Hambalkó B, Csorba K, Kovács V, Lengyel L, Marosi G, Farkas A, Nagy ZK, Domokos A. In-line particle size measurement based on image analysis in a fully continuous granule manufacturing line for rapid process understanding and development. Int J Pharm 2022; 612:121280. [PMID: 34774695 DOI: 10.1016/j.ijpharm.2021.121280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 12/01/2022]
Abstract
The present paper serves as a demonstration how an in-line PAT tool can be used for rapid and efficient process development in a fully continuous powder to granule line consisting of an interconnected twin-screw wet granulator, vibrational fluid bed dryer, and a regranulating mill. A new method was investigated for the periodic in-line particle size measurement of high mass flow materials to obtain real-time particle size data of the regranulated product. The system utilises a vibratory feeder with periodically altered feeding intensity in order to temporarily reduce the mass flow of the material passing in front of the camera. This results in the drastic reduction of particle overlapping in the images, making image analysis a viable tool for the in-line particle size measurement of high mass-flow materials. To evaluate the performance of the imaging system, the effect of several milling settings and the liquid-to-solid ratio was investigated on the product's particle size in the span of a few hours. The particle sizes measured with the in-line system were in accordance with the expected trends as well as with the results of the off-line reference particle size measurements. Based on the results, the in-line imaging system can serve as a PAT tool to obtain valuable real-time information for rapid process development or quality assurance.
Collapse
Affiliation(s)
- Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Ákos Köte
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, H-1117, Budapest Magyar Tudósok körútja 2 QB-207, Hungary
| | - Bence Hambalkó
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, H-1117, Budapest Magyar Tudósok körútja 2 QB-207, Hungary
| | - Kristóf Csorba
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, H-1117, Budapest Magyar Tudósok körútja 2 QB-207, Hungary
| | - Viktor Kovács
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, H-1117, Budapest Magyar Tudósok körútja 2 QB-207, Hungary
| | - László Lengyel
- Department of Automation and Applied Informatics, Budapest University of Technology and Economics, H-1117, Budapest Magyar Tudósok körútja 2 QB-207, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rakpart 3, Hungary
| |
Collapse
|
16
|
Vandevivere L, Denduyver P, Portier C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. The Effect of Binder Types on the Breakage and Drying Behavior of Granules in a Semi-Continuous Fluid Bed Dryer after Twin Screw Wet Granulation. Int J Pharm 2022; 614:121449. [PMID: 34999149 DOI: 10.1016/j.ijpharm.2022.121449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Current study investigated the effect of different binder types on the granule drying process and the granule breakage behavior in a semi-continuous fluid bed dryer integrated in the C25 ConsiGma-system. The studied binders (i.e. hydroxypropyl pea starch, hydroxypropyl methylcellulose E15, polyvinylpyrrolidone K12, and starch octenyl succinate CO 01) required different liquid amounts to produce similar granule quality. These different liquid requirements were translated into different drying conditions for each binder to result in sufficiently dry granules at the end of a drying cycle. By comparing the size distribution of the granules before entering and after exiting the fluid bed dryer, granule breakage could be evaluated. No effect of the binder type on the granule breakage during drying was observed. However, differences in granule breakage were observed for the binders when processed with the horizontal set-up of the C25 system, as granule breakage during pneumatic transport depended on the binder type. Only one binder (hydroxypropyl pea starch) allowed to avoid granule breakage during the entire process. Furthermore, this research showed that the drying process was mainly steered by the liquid requirements for granulation, and that these liquid requirements depended on the binder used.
Collapse
Affiliation(s)
- L Vandevivere
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - P Denduyver
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Portier
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - O Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - T De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - V Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Rao RR, Pandey A, Hegde AR, Kulkarni VI, Chincholi C, Rao V, Bhushan I, Mutalik S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2021; 23:24. [PMID: 34907508 PMCID: PMC8816530 DOI: 10.1208/s12249-021-02173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
In order to be at pace with the market requirements of solid dosage forms and regulatory standards, a transformation towards systematic processing using continuous manufacturing (CM) and automated model-based control is being thought through for its fundamental advantages over conventional batch manufacturing. CM eliminates the key gaps through the integration of various processes while preserving quality attributes via the use of process analytical technology (PAT). The twin screw extruder (TSE) is one such equipment adopted by the pharmaceutical industry as a substitute for the traditional batch granulation process. Various types of granulation techniques using twin screw extrusion technology have been explored in the article. Furthermore, individual components of a TSE and their conjugation with PAT tools and the advancements and applications in the field of nutraceuticals and nanotechnology have also been discussed. Thus, the future of granulation lies on the shoulders of continuous TSE, where it can be coupled with computational mathematical studies to mitigate its complications.
Collapse
|
18
|
Liu B, Wang J, Zhou Q, Zhao L, Wang Y, Shen L, Feng Y, Du R. High shear wet granulation: Improved understanding of the effects of process variables on granule and tablet properties of a high-dose, high-hydrophobicity API based on quality by design and multivariate analysis approaches. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
19
|
Ficzere M, Mészáros LA, Madarász L, Novák M, Nagy ZK, Galata DL. Indirect monitoring of ultralow dose API content in continuous wet granulation and tableting by machine vision. Int J Pharm 2021; 607:121008. [PMID: 34391851 DOI: 10.1016/j.ijpharm.2021.121008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This paper presents new machine vision-based methods for indirect real-time quantification of ultralow drug content during continuous twin-screw wet granulation and tableting. Granulation was performed with a solution containing carvedilol (CAR) as API in the ultralow dose range (0.05w/w% in the granule) and the addition of riboflavin (RI) as a coloured tracer. An in-line calibration in the range of 0.047-0.058 w/w% was prepared for the measurement of CAR concentration using colour analysis (CA) and particle size analysis (PSA), and the validation with HPLC resulted in respective relative errors of 2.62% and 2.30% showing great accuracy. To improve the technique, a second in-line calibration was conducted in a broader CAR concentration range of 0.039-0.063 w/w% utilizing only half the amount of RI (0.045 w/w%), while doubling the output of the granulation line to 2 kg/h, producing a relative error of 4.51% and 4.29%, respectively. Finally, it was shown that the CA technique can also be carried on to monitor the CAR content of tablets in the 42-62 μg dose range with a relative error of 5.20%. Machine vision was proven to be a potent indirect method for the in-line, determination and monitoring of ultralow API content during continuous manufacturing.
Collapse
Affiliation(s)
- Máté Ficzere
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Lilla Alexandra Mészáros
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Márk Novák
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary.
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| |
Collapse
|
20
|
Domokos A, Pusztai É, Madarász L, Nagy B, Gyürkés M, Farkas A, Fülöp G, Casian T, Szilágyi B, Nagy ZK. Combination of PAT and mechanistic modeling tools in a fully continuous powder to granule line: Rapid and deep process understanding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
22
|
Ryckaert A, Van Hauwermeiren D, Dhondt J, De Man A, Funke A, Djuric D, Vervaet C, Nopens I, De Beer T. TPLS as predictive platform for twin-screw wet granulation process and formulation development. Int J Pharm 2021; 605:120785. [PMID: 34111548 DOI: 10.1016/j.ijpharm.2021.120785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
In recent years, the interest in continuous manufacturing techniques, such as twin-screw wet granulation, has increased. However, the understanding of the influence of the combination of raw material properties and process settings upon the granule quality attributes is still limited. In this study, a T-shaped partial least squares (TPLS) model was developed to link raw material properties, the ratios in which these raw materials were combined and the applied process parameters for the twin-screw wet granulation process with the granule quality attributes. In addition, the predictive ability of the TPLS model was used to find a suitable combination of formulation composition and twin-screw granulation process settings for a new API leading to desired granule quality attributes. Overall, this study helped to better understand the link between raw material properties, formulation composition and process settings on granule quality attributes. Moreover, as TPLS can provide a reasonable starting point for formulation and process development for new APIs, it can reduce the experimental development efforts and consequently the consumption of expensive (and often limited available) new API.
Collapse
Affiliation(s)
- A Ryckaert
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - D Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - J Dhondt
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - A De Man
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - A Funke
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42369 Wuppertal, Germany.
| | - D Djuric
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42369 Wuppertal, Germany.
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics Ghent University, Ottergemsesteenweg 460, Ghent, Belgium.
| | - I Nopens
- BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
23
|
|
24
|
Improvement of a 1D Population Balance Model for Twin-Screw Wet Granulation by Using Identifiability Analysis. Pharmaceutics 2021; 13:pharmaceutics13050692. [PMID: 34064771 PMCID: PMC8151179 DOI: 10.3390/pharmaceutics13050692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the pharmaceutical industry has undergone changes in the production of solid oral dosages from traditional inefficient and expensive batch production to continuous manufacturing. The latest advancements include increased use of continuous twin-screw wet granulation and application of advanced modeling tools such as Population Balance Models (PBMs). However, improved understanding of the physical process within the granulator and improvement of current population balance models are necessary for the continuous production process to be successful in practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation process was improved by altering the original aggregation kernel in the wetting zone as a result of an identifiability analysis. In addition, a strategy was successfully applied to reduce the number of model parameters to be calibrated in both the wetting zone and kneading zones. It was found that the new aggregation kernel in the wetting zone is capable of reproducing the particle size distribution that is experimentally observed at different process conditions as well as different types of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model parameters could be linked not only to the material properties but also to the liquid to solid ratio, paving the way to create a generic PBM to predict the particle size distribution of a new formulation.
Collapse
|
25
|
Portier C, Vervaet C, Vanhoorne V. Continuous Twin Screw Granulation: A Review of Recent Progress and Opportunities in Formulation and Equipment Design. Pharmaceutics 2021; 13:668. [PMID: 34066921 PMCID: PMC8148523 DOI: 10.3390/pharmaceutics13050668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Continuous twin screw wet granulation is one of the key continuous manufacturing technologies that have gained significant interest in the pharmaceutical industry as well as in academia over the last ten years. Given its considerable advantages compared to wet granulation techniques operated in batch mode such as high shear granulation and fluid bed granulation, several equipment manufacturers have designed their own manufacturing setup. This has led to a steep increase in the research output in this field. However, most studies still focused on a single (often placebo) formulation, hence making it difficult to assess the general validity of the obtained results. Therefore, current review provides an overview of recent progress in the field of continuous twin screw wet granulation, with special focus on the importance of the formulation aspect and raw material properties. It gives practical guidance for novel and more experienced users of this technique and highlights some of the unmet needs that require further research.
Collapse
Affiliation(s)
| | | | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (C.P.); (C.V.)
| |
Collapse
|
26
|
Plath T, Korte C, Sivanesapillai R, Weinhart T. Parametric Study of Residence Time Distributions and Granulation Kinetics as a Basis for Process Modeling of Twin-Screw Wet Granulation. Pharmaceutics 2021; 13:pharmaceutics13050645. [PMID: 34062801 PMCID: PMC8147328 DOI: 10.3390/pharmaceutics13050645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Twin-screw wet granulation is a crucial unit operation in shifting from pharmaceutical batch to continuous processes, but granulation kinetics as well as residence times are yet poorly understood. Experimental findings are highly dependent on screw configuration as well as formulation, and thus have limited universal validity. In this study, an experimental design with a repetitive screw setup was conducted to measure the effect of specific feed load (SFL), liquid-to-solid ratio (L/S), and inclusion of a distributive feed screw on particle size distribution (PSD) and shape as well as residence time distribution of a hydrophilic lactose/microcrystalline cellulose based formulation. An intermediate sampling point was obtained by changing inlet ports along the screw axis. Camera-based particle size analysis (QICPIC) indicated no significant change of PSD between the first and second kneading section, except for low L/S and low SFL where fines increase. Mean residence time was approximated as a bilinear fit of L/S and SFL. Moreover, large mass flow pulsations were observed by continuous camera measurements of residence time distribution and correlated to hold-up of the twin-screw granulator. These findings indicate fast granulation kinetics and process instabilities for high mean residence times, questioning current standards of two kneading compartments for wet granulation. The present study further underlines the necessity of developing a multiscale simulation approach including particle dynamics in the future.
Collapse
Affiliation(s)
- Timo Plath
- Multi-Scale Mechanics, TFE, ET, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
- Correspondence: ; Tel.: +31-53-489-3997
| | - Carolin Korte
- Process Technology Development, Engineering & Technology, Bayer AG, 51368 Leverkusen, Germany; (C.K.); (R.S.)
| | - Rakulan Sivanesapillai
- Process Technology Development, Engineering & Technology, Bayer AG, 51368 Leverkusen, Germany; (C.K.); (R.S.)
| | - Thomas Weinhart
- Multi-Scale Mechanics, TFE, ET, MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
27
|
Portier C, Vigh T, Di Pretoro G, Leys J, Klingeleers D, De Beer T, Vervaet C, Vanhoorne V. Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying - A QbD approach. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100077. [PMID: 33870182 PMCID: PMC8044642 DOI: 10.1016/j.ijpx.2021.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
Despite significant advances in the research domain of continuous twin screw granulation, limited information is currently available on the impact of raw material properties, especially considering batch-to-batch variability. The importance of raw material variability and subsequent mitigation of the impact of this variability on the manufacturing process and drug product was recently stressed in the Draft Guidance for Industry on Quality Considerations for Continuous Manufacturing by the U.S. Food and Drug Administration (FDA). Therefore, this study assessed the impact of microcrystalline cellulose (MCC) batch-to-batch variability and process settings in a continuous twin screw wet granulation and semi-continuous drying line. Based on extensive raw material characterization and subsequent principal component analysis, raw material variability was quantitatively introduced in the design of experiments approach by means of t1 and t2 scores. L/S ratio had a larger effect on critical granule attributes and processability than screw speed and drying time. A large impact of the t1 and t2 scores was found, indicating the importance of raw material attributes. For the studied formulation, it was concluded that MCC batches with a low water binding capacity, low moisture content and high bulk density generated granules with the most desirable quality attributes. Additionally, an innovative and quantitative approach towards mitigating batch-to-batch variability of raw materials was proposed, which is also applicable for additional excipients and APIs.
Collapse
Key Words
- API, Active Pharmaceutical Ingredient
- BET, Brunauer Emmett and Teller
- Batch-to-batch variability
- Com, Commercial batch
- Continuous manufacturing
- Design of experiments
- DoE, Design of Experiments
- Dx (d10, d50, d90), Size in microns at which x volume% of the particles is smaller than dx
- Formulation development
- HR, Hausner Ratio
- L/D, Length-to-diameter
- L/S, Liquid to solid
- LOD, Loss on drying
- MCC, Microcrystalline Cellulose
- PCA, Principle Component Analysis
- PSD, Particle size distribution
- QbD, Quality-by-Design
- Quality-by-Design
- RTD, Residence Time Distribution
- SCE, Size Control Element
- SSA, Specific Surface Area
- Twin screw granulation
- WBC, Water Binding Capacity
- Wet granulation
- rpm, Revolutions Per Minute
Collapse
Affiliation(s)
- Christoph Portier
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Tamas Vigh
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Giustino Di Pretoro
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jan Leys
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Didier Klingeleers
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
28
|
Ryckaert A, Ghijs M, Portier C, Djuric D, Funke A, Vervaet C, De Beer T. The Influence of Equipment Design and Process Parameters on Granule Breakage in a Semi-Continuous Fluid Bed Dryer after Continuous Twin-Screw Wet Granulation. Pharmaceutics 2021; 13:pharmaceutics13020293. [PMID: 33672389 PMCID: PMC7926462 DOI: 10.3390/pharmaceutics13020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
The drying unit of a continuous from-powder-to-tablet manufacturing line based on twin-screw granulation (TSG) is a crucial intermediate process step to achieve the desired tablet quality. Understanding the size reduction of pharmaceutical granules before, during, and after the fluid bed drying process is, however, still lacking. A first major goal was to investigate the breakage and attrition phenomena during transport of wet and dry granules, the filling phase, and drying phase on a ConsiGma-25 system (C25). Pneumatic transport of the wet granules after TSG towards the dryer induced extensive breakage, whereas the turbulent filling and drying phase of the drying cells caused rather moderate breakage and attrition. Subsequently, the dry transfer line was responsible for additional extensive breakage and attrition. The second major goal was to compare the influence of drying air temperature and drying time on granule size and moisture content for granules processed with a commercial-scale ConsiGma-25 system and with the R&D-scale ConsiGma-1 (C1) system. Generally, the granule quality obtained after drying with C1 was not predictive for the C25, making it challenging during process development with the C1 to obtain representative granules for the C25.
Collapse
Affiliation(s)
- Alexander Ryckaert
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Michael Ghijs
- BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Christoph Portier
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (C.P.); (C.V.)
| | - Dejan Djuric
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany; (D.D.); (A.F.)
| | - Adrian Funke
- Chemical & Pharmaceutical Development, Pharma R&D, Bayer AG, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany; (D.D.); (A.F.)
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (C.P.); (C.V.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-264-80-97
| |
Collapse
|
29
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
30
|
Köster C, Pohl S, Kleinebudde P. Evaluation of Binders in Twin-Screw Wet Granulation. Pharmaceutics 2021; 13:pharmaceutics13020241. [PMID: 33572394 PMCID: PMC7916237 DOI: 10.3390/pharmaceutics13020241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
The binders povidone (Kollidon 30), copovidone (Kollidon VA64), hypromellose (Pharmacoat 606), and three types of hyprolose (HPC SSL‑SFP, HPC SSL, and HPC SL‑FP) were evaluated regarding their suitability in twin-screw wet granulation. Six mixtures of lactose and binder as well as lactose without binder were twin-screw granulated with demineralized water at different barrel fill levels and subsequently tableted. A screening run with HPC SSL determined the amount of water as an influential parameter for oversized agglomerates. Subsequent examination of different binders, especially Kollidon 30 and Kollidon VA64 resulted in large granules. All binders, except Pharmacoat 606, led to a reduction of fines compared to granulation without a binder. The molecular weight of applied hyproloses did not appear as influential. Tableting required an upstream sieving step to remove overlarge granules. Tableting was possible for all formulations at sufficient compression pressure. Most binders resulted in comparable tensile strengths, while Pharmacoat 606 led to lower and lactose without a binder to the lowest tensile strength. Tablets without a binder disintegrated easily, whereas binder containing tablets of sufficient tensile strength often nearly failed or failed the disintegration test. Especially tablets containing Pharmacoat 606 and HPC SL‑FP disintegrated too slowly.
Collapse
|
31
|
Zhang Y, Liu T, Kashani-Rahimi S, Zhang F. A review of twin screw wet granulation mechanisms in relation to granule attributes. Drug Dev Ind Pharm 2021; 47:349-360. [PMID: 33507106 DOI: 10.1080/03639045.2021.1879844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the trend of continuous pharmaceutical manufacturing, twin screw wet granulation (TSWG), a continuous process, has gained increased research interest as a potential substitution of traditional batch granulation processes. Despite the complex nature of TSWG, its mechanisms have been gradually unveiled with the aid of innovative research strategies. This review synthesizes these recent findings to provide a comprehensive and mechanistic understanding of TSWG. We explain the impact of screw profiles (i.e. conveying, kneading, turbine mixing, and screw mixing elements) and process conditions (i.e. screw speed, feed rate, and liquid-to-solid ratio) on TSWG mixing performance and granule growth along the barrel, both of which ultimately affect critical granule attributes such as content uniformity, size distribution, strength, and compaction properties.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Tongzhou Liu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Shahab Kashani-Rahimi
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
32
|
Vandevivere L, Vangampelaere M, Portier C, de Backere C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. Identifying Critical Binder Attributes to Facilitate Binder Selection for Efficient Formulation Development in a Continuous Twin Screw Wet Granulation Process. Pharmaceutics 2021; 13:210. [PMID: 33546383 PMCID: PMC7913514 DOI: 10.3390/pharmaceutics13020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation.
Collapse
Affiliation(s)
- Lise Vandevivere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Maxine Vangampelaere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Christoph Portier
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Cedrine de Backere
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Olaf Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France;
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.V.); (M.V.); (C.P.); (C.d.B.); (C.V.)
| |
Collapse
|
33
|
Fülöp G, Domokos A, Galata D, Szabó E, Gyürkés M, Szabó B, Farkas A, Madarász L, Démuth B, Lendér T, Nagy T, Kovács-Kiss D, Van der Gucht F, Marosi G, Nagy ZK. Integrated twin-screw wet granulation, continuous vibrational fluid drying and milling: A fully continuous powder to granule line. Int J Pharm 2020; 594:120126. [PMID: 33321167 DOI: 10.1016/j.ijpharm.2020.120126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Highly homogeneous low-dose (50 μg) tablets were produced incorporating perfectly free-flowing granules prepared by a fully integrated Continuous Manufacturing (CM) line. The adopted CM equipment consisted of a Twin-Screw Wet Granulator (TSWG), a Continuous Fluid Bed Dryer (CFBD) and a Continuous Sieving (CS) unit. Throughout the experiments a pre-blend of lactose-monohydrate and corn starch was gravimetrically dosed with 1 kg/h into the TSWG, where they were successfully granulated with the drug containing water-based PVPK30 solution. The wet mass was subsequently dried in the CFBD on a vibratory conveyor belt and finally sieved in the milling unit. Granule production efficiency was maximized by determining the minimal Liquid-to-Solid (L/S) ratio (0.11). Design of Experiments (DoE) were carried out in order to evaluate the influence of the drying process parameters of the CFBD on the Loss-on-Drying (LOD) results. The manufactured granules were compressed into tablets by an industrial tablet rotary press with excellent API homogeneity (RSD < 3%). Significant scale-up was realized with the CM line by increasing the throughput rate to 10 kg/h. The manufactured granules yielded very similar results to the previous small-scale granulation runs. API homogeneity was demonstrated (RSD < 2%) with Blend Uniformity Analysis (BUA). The efficiency of TSWG granulation was compared to High-Shear Granulation (HSG) with the same L/S ratio. The final results have demonstrated that both the liquid distribution and more importantly API homogeneity was better in case of the TSWG granulation (RSD 1.3% vs. 4.5%).
Collapse
Affiliation(s)
- G Fülöp
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary; Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - A Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - D Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - E Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - M Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - B Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - A Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - L Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - B Démuth
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - T Lendér
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - T Nagy
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - D Kovács-Kiss
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - F Van der Gucht
- ProCepT N.V., Industriepark Rosteyne 4, 9060 Zelzate, Belgium
| | - G Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Z K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary.
| |
Collapse
|
34
|
Ismail HY, Singh M, Albadarin AB, Walker GM. Complete two dimensional population balance modelling of wet granulation in twin screw. Int J Pharm 2020; 591:120018. [PMID: 33122111 DOI: 10.1016/j.ijpharm.2020.120018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
In this study, a complete two dimensional (internal coordinates) population balance model (2D-PBM) is developed, calibrated and validated as a predictive tool for predicting the particle size and the liquid content distribution of the granules produced from twin screw granulation (TSG). The model is calibrated and validated using experimental distributions for the two internal coordinates that are captured using image processing. Granulation runs are conducted at multiple liquid to solid (L/S) ratios and liquid binder viscosities, and then used to calibrate and validate the 2D-PBM. The mathematical model accounts for aggregation and breakage of the particles occurring in three zones of the TSG with inhomogeneous screw configurations (2 conveying zones and 1 kneading zone). A Madec aggregation kernel, and a linear breakage selection function are used in the 2D-PBM and finite volume numerical approximation is used for solving the model. The calibrated model shows that the aggregation rate in the conveying elements is higher than in the kneading elements while the breakage rate in the kneading elements is much higher than in the conveying elements. Also, the increase in L/S ratio and liquid viscosity leads to higher aggregation rates and lower breakage rates.
Collapse
Affiliation(s)
- Hamza Y Ismail
- Pharmaceutical Manufacturing Technology Centre, Bernal Institute, University of Limerick, Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Mehakpreet Singh
- Pharmaceutical Manufacturing Technology Centre, Bernal Institute, University of Limerick, Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ahmad B Albadarin
- Pharmaceutical Manufacturing Technology Centre, Bernal Institute, University of Limerick, Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Gavin M Walker
- Pharmaceutical Manufacturing Technology Centre, Bernal Institute, University of Limerick, Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Mundozah AL, Yang J, Omar C, Mahmah O, Salman AD. Twin screw granulation: A simpler re-derivation of quantifying fill level. Int J Pharm 2020; 591:119959. [PMID: 33039494 DOI: 10.1016/j.ijpharm.2020.119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The fill level is defined as the volume occupied by the powder and granules inside the twin-screw granulator in proportion to the maximum barrel channel void 'free' volume. In literature, the fill level is one of the key factors that determine the final granule properties as it relies on several factors such as the screw speed, screw element geometry, mass flow rate and barrel length. However, quantitative prediction of the fill level in twin-screw granulation (TSG) is still a developing area, which is required to enable effective development of process design space, to yield a product with desired quality attributes for all process scale levels (small to large equipment). In this study, a simple geometrical model is presented that predicts the barrel channel fill level in TSG. This model relates the volumetric flow rate to the forward volumetric conveying rate of the screws when they advance in the axial direction. Experimentation was conducted to validate the model by analytically measuring mass hold-up, the amount of material remaining in the barrel after steady state was reached, as the fill level is proportional to mass hold-up. Furthermore, the trends in the extent of granulation with the proposed model were investigated. Good agreement was found between the proposed fill level model and the mass hold-up for various screw elements, therefore the model provides a more practical measure of the fill level in TSG.
Collapse
Affiliation(s)
- Aquino L Mundozah
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Jiankai Yang
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Chalak Omar
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Osama Mahmah
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Agba D Salman
- Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK.
| |
Collapse
|
36
|
Portier C, De Vriendt C, Vigh T, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. Continuous twin screw granulation: Robustness of lactose/MCC-based formulations. Int J Pharm 2020; 588:119756. [PMID: 32783981 DOI: 10.1016/j.ijpharm.2020.119756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
In recent years, significant progress has been made in the field of continuous twin screw granulation. However, only limited knowledge is currently available on the impact of active pharmaceutical ingredient (API) properties on granule quality and processability. In this study, the response behavior of four formulations containing APIs (5-10% drug load) with diverse characteristics was compared to the behavior of the corresponding placebo formulation consisting of lactose, microcrystalline cellulose (MCC) and hydroxypropylmethylcellulose (HPMC). API selection was based on extensive material characterization, combining conventional testing with in silico descriptors. For each formulation, a design of experiments was set up, evaluating the impact of liquid to solid (L/S) ratio and screw speed. Response ranges, response behavior and processability of each of the four formulations proved very similar to the placebo formulation when an appropriate center point L/S ratio was chosen. Hence, this robust placebo formulation could prove useful by decreasing drug product development time and consequently providing patients with a faster access to innovative medicine. Additionally, APIs with similar properties exhibited highly comparable response behavior at similar L/S ratios, indicating the potential use of surrogate APIs in novel drug product development.
Collapse
Affiliation(s)
- Christoph Portier
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Charlotte De Vriendt
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Tamas Vigh
- Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Giustino Di Pretoro
- Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
37
|
Vandevivere L, Denduyver P, Portier C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. Influence of binder attributes on binder effectiveness in a continuous twin screw wet granulation process via wet and dry binder addition. Int J Pharm 2020; 585:119466. [DOI: 10.1016/j.ijpharm.2020.119466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022]
|
38
|
Vanhoorne V, Almey R, De Beer T, Vervaet C. Delta-mannitol to enable continuous twin-screw granulation of a highly dosed, poorly compactable formulation. Int J Pharm 2020; 583:119374. [PMID: 32339631 DOI: 10.1016/j.ijpharm.2020.119374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
In current study, it was investigated if the moisture-mediated polymorphic transition from δ- to β-mannitol during twin screw granulation (TSG) also took place in high drug loaded formulations and if the specific granule morphology associated with the polymorphic transition could enable tableting of granules comprising 75% paracetamol, a poorly compactable drug. Experiments were performed on an integrated continuous manufacturing line, including a twin screw granulator, fluid bed dryer, mill and tablet press. The polymorphic transition of δ- to β-mannitol was observed during twin screw granulation and granules exhibited the needle-shaped morphology, typical of this transition. TSG at low liquid-to-solid (L/S) ratios and use of polyvinylpyrrolidone or hydroxypropylmethylcellulose as binders inhibited the polymorphic transition, whereas screw speed, drying time, drying temperature and airflow did not affect the solid state of mannitol in the granules. Without binder and despite the high paracetamol drug load in the formulation, limited breakage and attrition was observed during drying and milling. In contrast to granules manufactured from a formulation containing paracetamol/β-mannitol which could not be tableted due to extensive capping, granules prepared from a paracetamol/δ-mannitol formulation showed good tabletability. In conclusion, δ-mannitol is a promising TSG excipient, especially for high drug-loaded formulations with poor tabletability.
Collapse
Affiliation(s)
- V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - R Almey
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Belgium
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Belgium.
| |
Collapse
|
39
|
Portier C, Vigh T, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. Continuous twin screw granulation: Impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API. Int J Pharm 2020; 577:119068. [DOI: 10.1016/j.ijpharm.2020.119068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
|