1
|
Wang ZX, Chen X, Ni LH, Zhai JM, Zong WL, Wu YC, Li HJ. Assembly of foxtail millet prolamin/chitosan hydrochloride/carboxymethyl-beta-cyclodextrin in acetic acid aqueous solution for enhanced curcumin retention. Food Chem 2025; 464:141753. [PMID: 39504901 DOI: 10.1016/j.foodchem.2024.141753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The aim of this work is to investigate the assembly of foxtail millet prolamin (FP) with chitosan hydrochloride (CHC) and carboxymethyl-beta-cyclodextrin (CMCD) in acetic acid aqueous solutions. The proportion of acetic acid has a positive impact on the disintegration of FP. With the use of 91.0 % (v/v) acetic acid, FP forms smaller particles of approximately 45 nm (naked FP particles) and 220 nm (FP - CHC - CMCD hybrid particles). In the case of using 61.5 % (v/v) acetic acid, the microstructures of bare FP particles and 570 nm composite FP nanoparticles (NPs) are looser, about 485 nm. Acetic acid inhibits the noncovalent bonds, including the hydrophobic interactions, hydrogen bonding and electrostatic attractions between FP and polysaccharides. Therefore, 3.8 % (v/v) acetic acid can nucleate FP to form more compact FP hybrid particles for delivering curcumin (Cur) with higher encapsulation efficiency, storage stability and release performance, and improve the antibacterial and anticancer activity of Cur.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Jia-Ming Zhai
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Wan-Li Zong
- Weihai Institute for Food and Drug Control, Weihai 264200, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
2
|
Aswathy KV, Beulah KC, Nalina M, Sunil Ambedkar D, Leela Sairam A, Priyadarshini P, Panneerselvam A, Rao PJ. Hydroxypropyl methylcellulose stabilized clove oil nanoemulsified orodispersible films: Study of physicochemical properties, release profile, mucosal permeation, and anti-bacterial activity. Int J Biol Macromol 2024; 283:137577. [PMID: 39542288 DOI: 10.1016/j.ijbiomac.2024.137577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hydroxypropyl methylcellulose (HPMC)-based nanoemulsions for quick dissolving orodispersible (OD) films were prepared to encapsulate clove oil (CO) to harness its anti-bacterial properties. The influence of additives maltodextrin, pectin, and glycerol on the OD films was studied. The nanoemulsion particle size varied from 135 nm to 195 nm. A decrease in tensile strength and, an increase in elongation at break and opacity were observed in OD films compared to neat HPMC film. The AFM images showed an increase in HPMC films' average roughness from 6.95 to 90 nm after adding CO and additives. The additives controlled CO in-vitro release from HPMC following the Higuchi model. The ex-vivo permeation through porcine mucosal membrane was 9-33 % while the permeation coefficient and flux were 0.282-0.879 cm s-1 and 0.191-1.318 μg cm-2 s-1, respectively. The OD films exhibited significant inhibition of Staphylococcus aureus, Streptococcus mutans, and Porphyromonas gingivalis suggesting their therapeutic potential in oral healthcare.
Collapse
Affiliation(s)
- K V Aswathy
- Plantation Products, Spices & Flavour Technology Department, India
| | - K C Beulah
- Plantation Products, Spices & Flavour Technology Department, India
| | - M Nalina
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - D Sunil Ambedkar
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | | | - Poornima Priyadarshini
- Molecular Nutrition Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Arunkumar Panneerselvam
- Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Pooja J Rao
- Plantation Products, Spices & Flavour Technology Department, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
She R, Xu P. Mechanism of curcumin in the prevention and treatment of oral submucosal fibrosis and progress in clinical application research. BDJ Open 2024; 10:82. [PMID: 39455570 PMCID: PMC11512022 DOI: 10.1038/s41405-024-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Oral submucosal fibrosis is a potentially life-threatening oral disease that significantly impacts physiological functions such as speech and swallowing while also diminishing the quality of life for patients. Currently, the mainstream treatment for oral submucosal fibrosis in clinical practice involves invasive glucocorticoid drugs such as injection therapy. However, this method often leads to intraoperative pain, anxiety, fear, and poor medical experience due to associated side effects. METHODS There is an urgent need to actively explore new drugs and relatively noninvasive approaches for the treatment of oral submucosal fibrosis in order to enhance patients' medical experience and compliance. This has become a focal point of attention in clinical research. After conducting an extensive literature search, it was discovered that curcumin, a natural polyphenolic compound, exhibits potent anti-tumor, anti-inflammatory, antioxidant, anti-metastatic and anti-angiogenic properties. Moreover, curcumin holds significant clinical potential in the prevention and treatment of various diseases such as oral submucosal fibrosis. CONCLUSION This review presents a comprehensive elaboration encompassing the action mechanisms, biological activity, potential applications, and clinical characteristics of curcumin in the management of oral submucosal fibrosis, aiming to provide diagnostic insights and novel therapeutic perspectives for its prevention and treatment.
Collapse
Affiliation(s)
- Rong She
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Pu Xu
- Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| |
Collapse
|
4
|
Pal S, Sharma D, Yadav NP. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis 2024; 30:80-99. [PMID: 36565439 DOI: 10.1111/odi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The aim of this review is to enumerate medicinal plants and their bioactive compounds that may become potential leads in the mitigation of oral submucous fibrosis (OSMF) in the forthcoming future. It is focused on pathophysiology, risk factors, current treatment regimen, potential plant leads, and future therapies for OSMF. Data were extracted from a vast literature survey by using SciFinder, Web of Science, Google Scholar, and PubMed search engines with relevant keywords. Upon literature survey, we found that the phytochemical 'arecoline' present in the areca nut is the main causative agent of OSMF condition. Currently, OSMF is treated by immunomodulatory and anti-inflammatory agents such as corticosteroids, enzymes (hyaluronidase, chymotrypsin, and collagenase), anti-inflammatory mediators (isoxsuprine and pentoxifylline), dietary supplements (vitamins, antioxidants, and micronutrients), and anti-fibrotic cytokines like interferon-gamma that provides short-term symptomatic relief to OSMF patients. However, some plant leads have been proven effective in alleviating symptoms and mitigating OSMF, which ultimately improves the quality of OSMF patients' life. We concluded that plant drugs like lycopene, curcumin, Aloe vera, colchicine, and Glycyrrhiza glabra are effective against OSMF in various in vitro and/or clinical studies and are being used by modern and traditional practitioners.
Collapse
Affiliation(s)
- Sarita Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Disha Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
5
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
6
|
Zimath P, Pinto S, Dias S, Rafacho A, Sarmento B. Zein nanoparticles as oral carrier for mometasone furoate delivery. Drug Deliv Transl Res 2023; 13:2948-2959. [PMID: 37208563 PMCID: PMC10545574 DOI: 10.1007/s13346-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/21/2023]
Abstract
Mometasone furoate (MF) is a synthetic glucocorticoid used clinically to treat specific inflammatory disorders including superior and inferior respiratory tract. Due to its poor bioavailability we further investigated whether nanoparticles (NPs) made of zein protein may constitute a safe and effective choice to incorporate MF. Thus, in this work, we loaded MF into zein NPs aiming to evaluate possible advantages that could result from oral delivery and extend the range of MF application such as inflammatory gut diseases. MF-loaded zein NPs presented an average size in the range of 100 and 135 nm, narrow size distribution (polydispersity index < 0.300), zeta potential of around + 10 mV and association efficiency of MF over 70%. Transmission electron microscopy imaging revealed that NPs had a round shape and presented a smooth surface. The zein NPs showed low MF release in a buffer that mimics the gastric condition (pH = 1.2) and slower and controlled MF release in the intestinal condition (pH = 6.8). The short and intermediate safety of zein NPs was confirmed assessing the incubation against Caco-2 and HT29-MTX intestinal cells up to 24 h. Permeability studies of MF across Caco-2/HT29-MTX co-culture monolayer evidenced that zein NPs modulated MF transport across cell monolayer resulting in a stronger and prolonged interaction with mucus, potentially extending the time of absorption and overall local and systemic bioavailability. Overall, zein NPs showed to be suitable to carry MF to the intestine and future studies can be developed to investigate the use of MF-loaded zein NPs to treat intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Priscila Zimath
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Alex Rafacho
- Laboratory of Investigation in Chronic Diseases, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto Rua Alfredo Allen, 208 | 4200-135, Porto, Portugal.
- IUCS - CESPU, Gandra, Portugal.
| |
Collapse
|
7
|
Campión R, Gonzalez-Navarro CJ, Luisa Martínez López A, Cristina Martínez-Oharriz M, Matías C, Sáiz-Abajo MJ, Collantes M, Peñuelas I, Irache JM. Zein-based nanospheres and nanocapsules for the encapsulation and oral delivery of quercetin. Int J Pharm 2023; 643:123216. [PMID: 37423375 DOI: 10.1016/j.ijpharm.2023.123216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
In this study, the ability of zein nanospheres (NS) and zein nanocapsules containing wheat germ oil (NC) to enhance the bioavailability and efficacy of quercetin was evaluated. Both types of nanocarriers had similar physico-chemical properties, including size (between 230 and 250 nm), spherical shape, negative zeta potential, and surface hydrophobicity. However, NS displayed a higher ability than NC to interact with the intestinal epithelium, as evidenced by an oral biodistribution study in rats. Moreover, both types of nanocarriers offered similar loading efficiencies and release profiles in simulated fluids. In C. elegans, the encapsulation of quercetin in nanospheres (Q-NS) was found to be two twice more effective than the free form of quercetin in reducing lipid accumulation. For nanocapsules, the presence of wheat germ oil significantly increased the storage of lipids in C. elegans; although the incorporation of quercetin (Q-NC) significantly counteracted the presence of the oil. Finally, nanoparticles improved the oral absorption of quercetin in Wistar rats, offering a relative oral bioavailability of 26% and 57% for Q-NS and Q-NC, respectively, compared to a 5% for the control formulation. Overall, the study suggests that zein nanocarriers, particularly nanospheres, could be useful in improving the bioavailability and efficacy of quercetin.
Collapse
Affiliation(s)
- Raquel Campión
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Carlos J Gonzalez-Navarro
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Ana Luisa Martínez López
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | | | - Cristina Matías
- National Centre for Food Technology and Safety (CNTA), NA 134, Km. 53. 31570-San Adrián, Navarre, Spain
| | - María-José Sáiz-Abajo
- National Centre for Food Technology and Safety (CNTA), NA 134, Km. 53. 31570-San Adrián, Navarre, Spain
| | - Maria Collantes
- Radiopharmacy Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ivan Peñuelas
- Radiopharmacy Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; Institute for Health Research (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
8
|
Laneri F, Conte C, Parisi C, Catanzano O, Fraix A, Quaglia F, Sortino S. On the photobehaviour of curcumin in biocompatible hosts: The role of H-abstraction in the photodegradation and photosensitization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112756. [PMID: 37454510 DOI: 10.1016/j.jphotobiol.2023.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Curcumin (CUR) is a naturally occurring pigment extensively studied due to its therapeutic activity and delivered by suitable nanocarriers to overcome poor solubility in aqueous media. The significant absorption of CUR in the visible blue region has prompted its use as a potential phototherapeutic agent in treating infectious and cancer diseases, although the mechanism underlying the phototoxic effects is still not fully understood. This contribution investigates the photobehaviour of CUR within polymeric micelles, microemulsions, and zein nanoparticles, chosen as biocompatible nanocarriers, and human serum albumin as a representative biomolecule. Spectroscopic studies indicate that in all host systems, the enolic tautomeric form of CUR is converted in a significant amount of the diketo form because of the perturbation of the intramolecular hydrogen bond. This leads to intermolecular H-abstraction from the host components by the lowest excited triplet state of CUR with the formation of the corresponding ketyl radical, detected by nanosecond laser flash photolysis. This radical is oxidized by molecular oxygen, likely generating peroxyl and hydroperoxyl radical species, unless in Zein, reasonably due to the poor availability of oxygen in the closely packed structure of this nanocarrier. In contrast, no detectable formation of singlet oxygen was revealed in all the systems. Overall these results highlight the key role of the H-abstraction process over singlet oxygen sensitization as a primary photochemical pathway strictly dictated by the specific features of the microenvironment, providing new insights into the photoreactivity of CUR in biocompatible hosts that can also be useful for a better understanding of its phototoxicity mechanism.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Ovidio Catanzano
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy.
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
9
|
Qiu C, Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Xu X, Jin Z. Co-encapsulation of curcumin and quercetin with zein/HP-β-CD conjugates to enhance environmental resistance and antioxidant activity. NPJ Sci Food 2023; 7:29. [PMID: 37316567 DOI: 10.1038/s41538-023-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/27/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, composite nanoparticles consisting of zein and hydroxypropyl beta-cyclodextrin were prepared using a combined antisolvent co-precipitation/electrostatic interaction method. The effects of calcium ion concentration on the stability of the composite nanoparticles containing both curcumin and quercetin were investigated. Moreover, the stability and bioactivity of the quercetin and curcumin were characterized before and after encapsulation. Fluorescence spectroscopy, Fourier Transform infrared spectroscopy, and X-ray diffraction analyses indicated that electrostatic interactions, hydrogen bonding, and hydrophobic interactions were the main driving forces for the formation of the composite nanoparticles. The addition of calcium ions promoted crosslinking of the proteins and affected the stability of the protein-cyclodextrin composite particles through electrostatic screening and binding effects. The addition of calcium ions to the composite particles improved the encapsulation efficiency, antioxidant activity, and stability of the curcumin and quercetin. However, there was an optimum calcium ion concentration (2.0 mM) that provided the best encapsulation and protective effects on the nutraceuticals. The calcium crosslinked composite particles were shown to maintain good stability under different pH and simulated gastrointestinal digestion conditions. These results suggest that zein-cyclodextrin composite nanoparticles may be useful plant-based colloidal delivery systems for hydrophobic bio-active agents.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Collaborative Innovation Center of Food Safety And Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Wu J, Jones N, Fayez NAL, Chao PH, Wu A, de Araujo DR, Rouhollahi E, Jia A, Li SD. Protamine-mediated efficient transcellular and transmucosal delivery of proteins. J Control Release 2023; 356:373-385. [PMID: 36878318 DOI: 10.1016/j.jconrel.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Proteins and peptides often require frequent needle-based administrations. Here, we report a non-parenteral delivery method for proteins through physical mixing with protamine, an FDA-approved peptide. Protamine was shown to promote tubulation and rearrangement of cellular actin, leading to enhanced intracellular delivery of proteins compared to poly(arginine)8 (R8). While the R8-mediated delivery resulted in significant lysosomal accumulation of the cargo, protamine directed the proteins to the nuclei with little lysosomal uptake. Intranasal delivery of insulin mixed with protamine effectively reduced blood glucose levels in diabetic mice 0.5 h after administration and the effect lasted for ∼6 h, comparable to subcutaneously injected insulin at the same dose. In mice, protamine was shown to overcome mucosal and epithelial barriers and modulate adherens junctions, promoting insulin penetration to the lamina propria layer for systemic absorption.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nojoud A L Fayez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angeline Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Daniele Ribeiro de Araujo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elham Rouhollahi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Analisa Jia
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
11
|
Zhang Z, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Jin Z, Qiu C. Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation. Food Chem 2023; 403:134344. [DOI: 10.1016/j.foodchem.2022.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
|
12
|
Utilization of different carrier agents for chlorophyll encapsulation: Characterization and kinetic stability study. Food Res Int 2022; 160:111650. [DOI: 10.1016/j.foodres.2022.111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
|
13
|
Abstract
Protein nanomaterials are well-defined, hollow protein nanoparticles comprised of virus capsids, virus-like particles, ferritin, heat shock proteins, chaperonins and many more. Protein-based nanomaterials are formed by the self-assembly of protein subunits and have numerous desired properties as drug-delivery vehicles, including being optimally sized for endocytosis, nontoxic, biocompatible, biodegradable and functionalized at three separate interfaces (external, internal and intersubunit). As a result, protein nanomaterials have been intensively investigated as functional entities in bionanotechnology, including drug delivery, nanoreactors and templates for organic and inorganic nanomaterials. Several variables influence efficient administration, particularly active targeting, cellular uptake, the kinetics of the release and systemic elimination. This review examines the wide range of medicines, loading/release processes, targeted therapies and treatment effectiveness.
Collapse
|
14
|
De Marco I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers (Basel) 2022; 14:polym14112172. [PMID: 35683844 PMCID: PMC9182932 DOI: 10.3390/polym14112172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zein is a natural, biocompatible, and biodegradable polymer widely used in the pharmaceutical, biomedical, and packaging fields because of its low water vapor permeability, antibacterial activity, and hydrophobicity. It is a vegetal protein extracted from renewable resources (it is the major storage protein from corn). There has been growing attention to producing zein-based drug delivery systems in the recent years. Being a hydrophobic biopolymer, it is used in the controlled and targeted delivery of active principles. This review examines the present-day landscape of zein-based microparticles and nanoparticles, focusing on the different techniques used to obtain particles, the optimization of process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
- Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
15
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
16
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
17
|
Li T, Guo R, Zong Q, Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr Polym 2022; 276:118644. [PMID: 34823758 DOI: 10.1016/j.carbpol.2021.118644] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The cyclodextrin (CD)-based supramolecular nanomedicines have attracted growing interest because of their superior characteristics, including desirable biocompatibility, low toxicity, unique molecular structure and easy functionalization. The smart structures of CD impart host-guest interaction for meeting the multifunctional needs of disease therapy. However, it faces challenges in formulation design and inclusion mechanism clarification of the functional supramolecular assemblies owing to the complicated structures and mechanisms. Fortunately, molecular docking helps the researchers to comprehend the interaction between the drug and the target molecule for achieving high-through screening from the database. In this review, we summarized the category and characteristics of molecular docking along with the properties and applications of CD. Significantly, we highlighted the application of molecular docking in elaborating molecular mechanisms and simulating complex structures at molecular levels. The issues and development of CD and molecular docking were also presented to provide beneficial reference and new insights for supramolecular nano-systems.
Collapse
Affiliation(s)
- Tiancheng Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qida Zong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
18
|
Srivastava N, Aslam S. Recent Advancements and Patents on Buccal Drug Delivery Systems: A Comprehensive Review. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:308-325. [PMID: 34126916 DOI: 10.2174/1872210515666210609145144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The major requirement for a dosage form to be successful is its ability to penetrate the site of application and the bioavailability of the drug released from the dosage form. The buccal drug delivery is an influential route to deliver the drug into the body. Here, in this context, various novel approaches that include lipoidal carriers like ethosomes, transferosomes, niosomes etc. and electrospun nanofibers are discussed, with respect to buccal drug delivery. These carriers can be easily incorporated into buccal dosage forms like patches and gels that are responsible for increased permeation across the buccal epithelium. The in vivo methods of evaluation on animal models are conscribed here. The novel biocarriers of lipoidal and non-lipoidal nature can be utilized by loading the drug into them, which are helpful in preventing drug degradation and other drawbacks as compared to conventional formulations. The globally patented buccal formulations give us a wide context in literature about the patents filed and granted in the recent years. When it comes to patient compliance, age is an issue, which is also solved by the buccal route. The pediatric buccal formulations are researched for the customization to be delivered to children. Diseases like mouth ulcers, oral cancer, Parkinson's disease, aphthous stomatitis etc. have been successfully treated through the buccal route, which infers that the buccal drug delivery system is an effective and emerging area for formulation and development in the field of pharmaceutics.
Collapse
Affiliation(s)
- Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| | - Sahifa Aslam
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
19
|
Rodrigues DA, Miguel SP, Loureiro J, Ribeiro M, Roque F, Coutinho P. Oromucosal Alginate Films with Zein Nanoparticles as a Novel Delivery System for Digoxin. Pharmaceutics 2021; 13:pharmaceutics13122030. [PMID: 34959312 PMCID: PMC8706652 DOI: 10.3390/pharmaceutics13122030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Digoxin is a hydrophobic drug used for the treatment of heart failure that possesses a narrow therapeutic index, which raises safety concerns for toxicity. This is of utmost relevance in specific populations, such as the elderly. This study aimed to demonstrate the potential of the sodium alginate films as buccal drug delivery system containing zein nanoparticles incorporated with digoxin to reduce the number of doses, facilitating the administration with a quick onset of action. The film was prepared using the solvent casting method, whereas nanoparticles by the nanoprecipitation method. The nanoparticles incorporated with digoxin (0.25 mg/mL) exhibited a mean size of 87.20 ± 0.88 nm, a polydispersity index of 0.23 ± 0.00, and a zeta potential of 21.23 ± 0.07 mV. Digoxin was successfully encapsulated into zein nanoparticles with an encapsulation efficiency of 91% (±0.00). Films with/without glycerol and with different concentrations of ethanol were produced. The sodium alginate (SA) films with 10% ethanol demonstrated good performance for swelling (maximum of 1474%) and mechanical properties, with a mean tensile strength of 0.40 ± 0.04 MPa and an elongation at break of 27.85% (±0.58), compatible with drug delivery application into the buccal mucosa. The current study suggests that SA films with digoxin-loaded zein nanoparticles can be an effective alternative to the dosage forms available on the market for digoxin administration.
Collapse
Affiliation(s)
- Daniela A. Rodrigues
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Sónia P. Miguel
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jorge Loureiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
| | - Maximiano Ribeiro
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fátima Roque
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- Center of Potential and Innovation in Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda (CPIRN-UDI/IPG), Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (D.A.R.); (S.P.M.); (J.L.); (M.R.); (F.R.)
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|
20
|
Molaparast M, Ehsanimehr S, Kahyaei M, Mahboubi N, Shafiei-Irannejad V. Polymeric complex based on poly (styrene-alt-maleic anhydride)- targeted with folic acid for doxorubicin delivery to HT-29 colorectal cancer cells. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1999953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- ERNAM – Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Sedigheh Ehsanimehr
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Maryam Kahyaei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Negin Mahboubi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Fabrication and characterization of zein-alginate oligosaccharide complex nanoparticles as delivery vehicles of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116937] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021; 10:foods10061362. [PMID: 34208328 PMCID: PMC8231213 DOI: 10.3390/foods10061362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The conventional oral administration of many nutraceuticals exhibits poor oral bioavailability due to the harsh gastric conditions and first-pass metabolism. Oral mucosa has been recognized as a potential site for the delivery of therapeutic compounds. The mucoadhesive formulation can adhere to the mucosal membrane through various interaction mechanisms and enhance the retention and permeability of bioactive compounds. Absorption of bioactive compounds from the mucosa can improve bioavailability, as this route bypasses the hepatic first-pass metabolism and transit through the gastrointestinal tract. The mucosal administration is convenient, simple to access, and reported for increasing the bioactive concentration in plasma. Many mucoadhesive polymers, emulsifiers, thickeners used for the pharmaceutical formulation are accepted in the food sector. Introducing mucoadhesive formulations specific to the nutraceutical sector will be a game-changer as we are still looking for different ways to improve the bioavailability of many bioactive compounds. This article describes the overview of buccal mucosa, the concept of mucoadhesion and related theories, and different techniques of mucoadhesive formulations. Finally, the classification of mucoadhesive polymers and the mucoadhesive systems designed for the effective delivery of bioactive compounds are presented.
Collapse
|
24
|
Expert design and optimization of a novel buccoadhesive blend film impregnated with metformin nanoparticles. Ther Deliv 2020; 11:573-590. [PMID: 32873189 DOI: 10.4155/tde-2020-0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The purpose of this study was to design a metformin nanoparticles (NPs)-loaded buccoadhesive film for enhanced drug bioavailability. Materials & methods: The NPs were prepared and incorporated into a hydroxypropyl methylcellulose-chitosan blend film. Three levels of a three-factor, Box-Behnken design were used to evaluate the critical formulation variables. The drug permeation was also examined using sheep buccal mucosa. Results & conclusion: The results verified the formation of spherical NPs with an average size of 177.8 ± 6.42 nm and entrapment efficiency of 78.03 ± 0.23%. The optimum conditions for nanofilms were predicted to be: hydroxypropyl methylcellulose (700 mg), glycerol (50 mg) and chitosan (0.15 %w/v). The nanofilm showed a high drug permeation within 6 h. The metformin nanofilm offers an excellent opportunity for buccal drug delivery.
Collapse
|