1
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024:10.1007/s40199-024-00520-3. [PMID: 38861247 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
2
|
Islam N, Reid D. Inhaled antibiotics: A promising drug delivery strategies for efficient treatment of lower respiratory tract infections (LRTIs) associated with antibiotic resistant biofilm-dwelling and intracellular bacterial pathogens. Respir Med 2024; 227:107661. [PMID: 38729529 DOI: 10.1016/j.rmed.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic-resistant bacteria associated with LRTIs are frequently associated with inefficient treatment outcomes. Antibiotic-resistant Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas aeruginosa, and Staphylococcus aureus, infections are strongly associated with pulmonary exacerbations and require frequent hospital admissions, usually following failed management in the community. These bacteria are difficult to treat as they demonstrate multiple adaptational mechanisms including biofilm formation to resist antibiotic threats. Currently, many patients with the genetic disease cystic fibrosis (CF), non-CF bronchiectasis (NCFB) and chronic obstructive pulmonary disease (COPD) experience exacerbations of their lung disease and require high doses of systemically administered antibiotics to achieve meaningful clinical effects, but even with high systemic doses penetration of antibiotic into the site of infection within the lung is suboptimal. Pulmonary drug delivery technology that reliably deliver antibacterials directly into the infected cells of the lungs and penetrate bacterial biofilms to provide therapeutic doses with a greatly reduced risk of systemic adverse effects. Inhaled liposomal-packaged antibiotic with biofilm-dissolving drugs offer the opportunity for targeted, and highly effective antibacterial therapeutics in the lungs. Although the challenges with development of some inhaled antibiotics and their clinicals trials have been studied; however, only few inhaled products are available on market. This review addresses the current treatment challenges of antibiotic-resistant bacteria in the lung with some clinical outcomes and provides future directions with innovative ideas on new inhaled formulations and delivery technology that promise enhanced killing of antibiotic-resistant biofilm-dwelling bacteria.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, Queensland, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - David Reid
- Lung Inflammation and Infection, QIMR Berghofer Medical Research Institute, Australia
| |
Collapse
|
3
|
Kumar Dewangan V, Sampath Kumar TS, Doble M, Daniel Varghese V. Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. J Biomed Mater Res A 2023; 111:1750-1767. [PMID: 37353879 DOI: 10.1002/jbm.a.37584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.
Collapse
Affiliation(s)
- Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
4
|
Choi JC, Kang JH, Kim DW, Park CW. Preparation and Evaluation of Inhalable Amifostine Microparticles Using Wet Ball Milling. Pharmaceutics 2023; 15:1696. [PMID: 37376145 DOI: 10.3390/pharmaceutics15061696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The conventional dosage form of Ethyol® (amifostine), a sterile lyophilized powder, involves reconstituting it with 9.7 mL of sterile 0.9% sodium chloride in accordance with the United States Pharmacopeia specifications for intravenous infusion. The purpose of this study was to develop inhalable microparticles of amifostine (AMF) and compare the physicochemical properties and inhalation efficiency of AMF microparticles prepared by different methods (jet milling and wet ball milling) and different solvents (methanol, ethanol, chloroform, and toluene). Inhalable microparticles of AMF dry powder were prepared using a wet ball-milling process with polar and non-polar solvents to improve their efficacy when delivered through the pulmonary route. The wet ball-milling process was performed as follows: AMF (10 g), zirconia balls (50 g), and solvent (20 mL) were mixed and placed in a cylindrical stainless-steel jar. Wet ball milling was performed at 400 rpm for 15 min. The physicochemical properties and aerodynamic characteristics of the prepared samples were evaluated. The physicochemical properties of wet-ball-milled microparticles (WBM-M and WBM-E) using polar solvents were confirmed. Aerodynamic characterization was not used to measure the % fine particle fraction (% FPF) value in the raw AMF. The % FPF value of JM was 26.9 ± 5.8%. The % FPF values of the wet-ball-milled microparticles WBM-M and WBM-E prepared using polar solvents were 34.5 ± 0.2% and 27.9 ± 0.7%, respectively; while the % FPF values of the wet-ball-milled microparticles WBM-C and WBM-T prepared using non-polar solvents were 45.5 ± 0.6% and 44.7 ± 0.3%, respectively. Using a non-polar solvent in the wet ball-milling process resulted in a more homogeneous and stable crystal form of the fine AMF powder than using a polar solvent.
Collapse
Affiliation(s)
- Jae-Cheol Choi
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
5
|
de la Rosa-Carrillo D, Suárez-Cuartín G, Sibila O, Golpe R, Girón RM, Martínez-García MÁ. Efficacy and Safety of Dry Powder Antibiotics: A Narrative Review. J Clin Med 2023; 12:jcm12103577. [PMID: 37240682 DOI: 10.3390/jcm12103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The use of inhaled antibiotics was initially almost exclusively confined to patients with cystic fibrosis (CF). However, it has been extended in recent decades to patients with non-CF bronchiectasis or chronic obstructive pulmonary disease who present with chronic bronchial infection by potentially pathogenic microorganisms. Inhaled antibiotics reach high concentrations in the area of infection, which enhances their effect and enables their long-term administration to defeat the most resistant infections, while minimizing possible adverse effects. New formulations of inhaled dry powder antibiotics have been developed, providing, among other advantages, faster preparation and administration of the drug, as well as avoiding the requirement to clean nebulization equipment. In this review, we analyze the advantages and disadvantages of the different types of devices that allow the inhalation of antibiotics, especially dry powder inhalers. We describe their general characteristics, the different inhalers on the market and the proper way to use them. We analyze the factors that influence the way in which the dry powder drug reaches the lower airways, as well as aspects of microbiological effectiveness and risks of resistance development. We review the scientific evidence on the use of colistin and tobramycin with this type of device, both in patients with CF and with non-CF bronchiectasis. Finally, we discuss the literature on the development of new dry powder antibiotics.
Collapse
Affiliation(s)
| | | | - Oriol Sibila
- Respiratory Department, Hospital Clínic i Provincial, 08036 Barcelona, Spain
| | - Rafael Golpe
- Respiratory Department, Hospital Lucus Augusti, 27003 Lugo, Spain
| | - Rosa-María Girón
- Respiratory Department, Hospital de la Princesa, 28006 Madrid, Spain
| | | |
Collapse
|
6
|
Impact of Leucine and Magnesium Stearate on the Physicochemical Properties and Aerosolization Behavior of Wet Milled Inhalable Ibuprofen Microparticles for Developing Dry Powder Inhaler Formulation. Pharmaceutics 2023; 15:pharmaceutics15020674. [PMID: 36839997 PMCID: PMC9966768 DOI: 10.3390/pharmaceutics15020674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
This study investigated the development and characterization of leucine and magnesium stearate (MgSt) embedded wet milled inhalable ibuprofen (IBF) dry powder inhaler (DPI) formulations. IBF microparticles were prepared by a wet milling homogenization process and were characterized by SEM, FTIR, DSC, XRD and TGA. Using a Twin-Stage Impinger (TSI), the in vitro aerosolization of the formulations with and without carrier lactose was studied at a flow rate of 60± 5 L/min and the IBF was determined using a validated HPLC method. The flow properties were determined by the Carr's Index (CI), Hausner Ratio (HR) and Angle of Repose (AR) of the milled IBF with 4-6.25% leucine and leucine containing formulations showed higher flow property than those of formulations without leucine. The fine particle fraction (FPF) of IBF from the prepared formulations was significantly (p = 0.000278) higher (37.1 ± 3.8%) compared to the original drug (FPF 3.7 ± 0.9%) owing to the presence of leucine, which enhanced the aerosolization of the milled IBF particles. Using quantitative phase analysis, the XPRD data revealed the crystallinity and accurate weight percentages of the milled IBF in the formulations. FTIR revealed no changes of the structural integrity of the milled IBF in presence of leucine or MgSt. The presence of 2.5% MgSt in the selected formulations produced the highest solubility (252.8 ± 0.6 µg/mL) of IBF compared to that of unmilled IBF (147.4 ± 1.6 µg/mL). The drug dissolution from all formulations containing 4-6.25% leucine showed 12.2-18.6% drug release in 2.5 min; however, 100% IBF dissolution occurred in 2 h whereas around 50% original and dry milled IBF dissolved in 2 h. The results indicated the successful preparation of inhalable IBF microparticles by the wet milling method and the developed DPI formulations with enhanced aerosolization and solubility due to the presence of leucine may be considered as future IBF formulations for inhalation.
Collapse
|
7
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
8
|
Islam N, Cichero E, Rahman S, Ranasinghe I. Novel Pulmonary Delivery of Drugs for the Management of Atrial Fibrillation. Am J Cardiovasc Drugs 2023; 23:1-7. [PMID: 36255655 PMCID: PMC9845156 DOI: 10.1007/s40256-022-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 01/21/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting approximately 335 million patients worldwide. Comprehensive pharmacological treatment of AF includes medications for rate or rhythm control and anticoagulants to reduce the risk of thromboembolism; yet, these agents have significant limitations. Oral anti-arrhythmic agents have a slow onset of action, and rapid onset formulations require hospitalization for intravenous therapy. Orally administered drugs also require high doses to attain therapeutic levels, and thus dose-related severe adverse effects are often unavoidable. Given the therapeutic benefits of inhaled drug delivery, including rapid onset of action and very low doses to achieve therapeutic efficacy, this review will discuss the benefits of novel pulmonary delivery of drugs for the management of AF.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Emma Cichero
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, Avera Health and Science Center, South Dakota State University, 1055 Campanile Avenue, SAV 265, Brookings, SD 57007 USA
| | - Isuru Ranasinghe
- Department of Cardiology, The Prince Charles Hospital, Brisbane, Australia ,Northside Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Sharif S, Muneer S, Wang T, Izake EL, Islam N. Robust Wet Milling Technique for Producing Micronized Ibuprofen Particles with Improved Solubility and Dissolution. AAPS PharmSciTech 2022; 24:16. [DOI: 10.1208/s12249-022-02480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
|
10
|
Arauzo B, González-Garcinuño Á, Tabernero A, Calzada-Funes J, Lobera MP, del Valle EMM, Santamaria J. Engineering Alginate-Based Dry Powder Microparticles to a Size Suitable for the Direct Pulmonary Delivery of Antibiotics. Pharmaceutics 2022; 14:pharmaceutics14122763. [PMID: 36559257 PMCID: PMC9781482 DOI: 10.3390/pharmaceutics14122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The inhaled route is regarded as one of the most promising strategies as a treatment against pulmonary infections. However, the delivery of drugs in a dry powder form remains challenging. In this work, we have used alginate to form microparticles containing an antibiotic model (colistin sulfate). The alginate microparticles were generated by atomization technique, and they were characterized by antimicrobial in vitro studies against Pseudomonas aeruginosa. Optimization of different parameters allowed us to obtain microparticles as a dry powder with a mean size (Feret diameter) of 4.45 ± 1.40 µm and drug loading of 8.5 ± 1.50%. The process developed was able to concentrate most of the colistin deposits on the surface of the microparticles, which could be observed by SEM and a Dual-Beam microscope. This produces a fast in vitro release of the drug, with a 100% release achieved in 4 h. Physicochemical characterization using the FTIR, EDX and PXRD techniques revealed information about the change that occurs from the amorphous to a crystalline form of colistin. Finally, the cytotoxicity of microparticles was tested using lung cell lines (A549 and Calu-3). Results of the study showed that alginate microparticles were able to inhibit bacterial growth while displaying non-toxicity toward lung cells.
Collapse
Affiliation(s)
- Beatriz Arauzo
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | | | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, 37008 Salamanca, Spain
| | - Javier Calzada-Funes
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Pilar Lobera
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Eva M. Martín del Valle
- Department of Chemical Engineering, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (E.M.M.d.V.); (J.S.)
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC—University of Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro-Edificio I + D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
- Correspondence: (E.M.M.d.V.); (J.S.)
| |
Collapse
|
11
|
Mahar R, Chakraborty A, Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
13
|
A CFD-DEM investigation of powder transport and aerosolization in ELLIPTA® dry powder inhaler. POWDER TECHNOL 2022; 409. [DOI: 10.1016/j.powtec.2022.117817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Ben Jaballah M, Ambily Rajendran A, Prieto-Simón B, Dridi C. Development of a sustainable nanosensor using green Cu nanoparticles for simultaneous determination of antibiotics in drinking water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2014-2025. [PMID: 35545944 DOI: 10.1039/d2ay00419d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a novel, cost-effective, and eco-friendly electrochemical (EC) nanosensor was fabricated for the simultaneous detection of daptomycin (DAP) and meropenem (MEROP). EC methods have been developed for the determination of antibiotics. In this context, green synthesized copper nanoparticles (CuNPs) using Moringa oleifera plant extract were used as electrode modifiers. The incorporation of CuNPs was proposed to enhance the sensitivity and allow the simultaneous quantification of both antibiotics in water. Transmission electron microscopy (TEM), dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, UV-visible spectroscopy, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) were employed to characterize CuNPs. Physical adsorption of 20.0 nm (±2.2 nm) spherical CuNPs on the surface of screen-printed carbon electrodes (SPCEs) induced a remarkable electrocatalytic effect. Indeed, the detection of both antibiotics exhibited a limit of detection (LOD) of 0.01 g L-1. The response to various interfering species was assessed. Finally, the quantification of DAP and MEROP in drinking water was demonstrated, confirming the potential of the developed sensor for environmental monitoring applications.
Collapse
Affiliation(s)
- Menyar Ben Jaballah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
- High School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia
| | - Anand Ambily Rajendran
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
| |
Collapse
|
15
|
Zhong C, Zhou Y, Fu J, Qi X, Wang Z, Li J, Zhang P, Zong G, Cao G. Cadmium stress efficiently enhanced meropenem degradation by the meropenem- and cadmium-resistant strain Pseudomonas putida R51. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128354. [PMID: 35123130 DOI: 10.1016/j.jhazmat.2022.128354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The β-lactam antibiotic meropenem (MEM) is widely used in infectious disease treatment and consequently can be released into the environment, causing environmental pollution. In this study, Pseudomonas putida strain R51 was isolated from the wastewater of a poultry farm and found to efficiently degrade MEM. The genome of strain R51 contains a variety of heavy metal and antibiotic resistance genes, including the metallo-β-lactamase gene (JQN61_03315) and cadmium resistance gene cadA (JQN61_19995). Under cadmium stress, the degradation rate of MEM increased significantly in strain R51. Transcriptional analysis revealed that the expression of JQN61_03315 and cadA significantly increased under cadmium stress and that the expression of many genes associated with heavy metal and antibiotic resistance also changed significantly. Molecular docking analysis suggested that metallo-β-lactamase JQN61_03315 binds to MEM. In addition, no plasmid was found in strain R51, and no mobile genetic elements were found nearby JQN61_03315. In conclusion. we proposed that JQN61_03315 was responsible for the degradation of MEM, that the expression of this gene was induced under cadmium stress, and that strain R51 can be used for bioremediation of MEM without the risk for the transmission of the MEM resistance gene. These findings will have importance for studying the microbial degradation of MEM in the presence of heavy metal pollutants.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiafang Fu
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyu Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhen Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jiaqi Li
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Peipei Zhang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Gongli Zong
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
16
|
Sulaiman M, Liu X, Sundaresan S. Effects of dose loading conditions and device geometry on the transport and aerosolization in dry powder inhalers: A simulation study. Int J Pharm 2021; 610:121219. [PMID: 34699949 DOI: 10.1016/j.ijpharm.2021.121219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
The transport and aerosolization of particles are studied in several different dry powder inhaler geometries via Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) simulations. These simulations combine Large Eddy Simulation of gas with Discrete Element Model simulation of all the carrier particles and a representative subset of the active pharmaceutical ingredient (API) particles. The purpose of the study is to probe the dominant mechanism leading to the release of the API particles and to demonstrate the value of the CFD-DEM simulations where one tracks the motion of all the carrier and API particles. Simulations are performed at different inhalation rates and initial dose loading conditions for the screen-haler geometry, a simple cylindrical tube inhaler, and five different geometry modifications that took the form of bumpy walls and baffles. These geometry modifications alter the residence time of the powder sample in the inhaler, pressure drop across the inhaler, the severity of gas-carrier interactions, and the number of collisions experienced by the carrier particles, all of which are quantified. The quality of aerosolization is found to correlate with the average air-carrier slip velocity, while collisions played only a secondary role. Some geometry modifications improved aerosolization quality with very little increase in the pressure drop across the device.
Collapse
Affiliation(s)
- Mostafa Sulaiman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | - Xiaoyu Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sankaran Sundaresan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
17
|
Excipient-Free Inhalable Microparticles of Azithromycin Produced by Electrospray: A Novel Approach to Direct Pulmonary Delivery of Antibiotics. Pharmaceutics 2021; 13:pharmaceutics13121988. [PMID: 34959270 PMCID: PMC8704604 DOI: 10.3390/pharmaceutics13121988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Inhalation therapy offers several advantages in respiratory disease treatment. Azithromycin is a macrolide antibiotic with poor solubility and bioavailability but with a high potential to be used to fight lung infections. The main objective of this study was to generate a new inhalable dry powder azithromycin formulation. To this end, an electrospray was used, yielding a particle size around 2.5 µm, which is considered suitable to achieve total deposition in the respiratory system. The physicochemical properties and morphology of the obtained microparticles were analysed with a battery of characterization techniques. In vitro deposition assays were evaluated after aerosolization of the powder at constant flow rate (100 L/min) and the consideration of the simulation of two different realistic breathing profiles (healthy and chronic obstructive pulmonary disease (COPD) patients) into a next generation impactor (NGI). The formulation was effective in vitro against two types of bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. Finally, the particles were biocompatible, as evidenced by tests on the alveolar cell line (A549) and bronchial cell line (Calu-3).
Collapse
|
18
|
Inhaled Edoxaban dry powder inhaler formulations: Development, characterization and their effects on the coagulopathy associated with COVID-19 infection. Int J Pharm 2021; 608:121122. [PMID: 34560207 PMCID: PMC8463814 DOI: 10.1016/j.ijpharm.2021.121122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.
Collapse
|
19
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
20
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
21
|
Monou PK, Andriotis EG, Bouropoulos N, Panteris E, Akrivou M, Vizirianakis IS, Ahmad Z, Fatouros DG. Engineered mucoadhesive microparticles of formoterol/budesonide for pulmonary administration. Eur J Pharm Sci 2021; 165:105955. [PMID: 34298141 DOI: 10.1016/j.ejps.2021.105955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
In the present study, a multi-component system comprised of dipalmitylphospatidylcholine (DPPC), Chitosan, Lactose, and L-Leucine was developed for pulmonary delivery. Microparticles were engineered by the spray drying process and the selection of the critical parameters was performed by applying experimental design. The microcarriers with the appropriate size and yield were co-formulated with two active pharmaceutical ingredients (APIs), namely, Formoterol fumarate and Budesonide, and they were further investigated. All formulations exhibited spherical shape, appropriate aerodynamic performance, satisfying entrapment efficiency, and drug load. Their physicochemical properties were evaluated using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). The aerodynamic particle size characterization was determined using an eight-stage Andersen cascade impactor, whereas the release of the actives was monitored in vitro in simulated lung fluid. Additional evaluation of the microparticles' mucoadhesive properties was performed by ζ-potential measurements and ex vivo mucoadhesion study applying a falling liquid film method using porcine lung tissue. Cytotoxicity and cellular uptake studies in Calu-3 lung epithelial cell line were conducted to further investigate the safety and efficacy of the developed formulations.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Melpomeni Akrivou
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacy, Division of Pharmacology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Rashid MA, Muneer S, Wang T, Alhamhoom Y, Rintoul L, Izake EL, Islam N. Puerarin dry powder inhaler formulations for pulmonary delivery: Development and characterization. PLoS One 2021; 16:e0249683. [PMID: 33848310 PMCID: PMC8043385 DOI: 10.1371/journal.pone.0249683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
This study aims at developing and characterizing the puerarin dry powder inhaler (DPI) formulations for pulmonary delivery. The inhalable particles size (<2 μm) was accomplished by micronization and its morphology was examined by scanning electron microscopy (SEM). The puerarin-excipient interaction in powder mixtures was analyzed by using Fourier transform infrared spectroscopy (FTIR), Raman confocal microscopy, X-Ray powder Diffraction (XRD), and differential scanning calorimetry (DSC) methods. Using a Twin stage impinger (TSI), the in-vitro aerosolization of the powder formulations was carried out at a flow rate of 60 L/min and the drug was quantified by employing a validated HPLC method. No significant interactions between the drug and the excipients were observed in the powder formulations. The fine particle fraction (FPF) of the drug alone was 4.2% which has increased five to six-fold for the formulations with aerosolization enhancers. Formulation containing lactose as large carriers produced 32.7% FPF, which further increased with the addition of dispersibility enhancers, leucine and magnesium stearate (40.8% and 41.2%, respectively). The Raman and FTIR techniques are very useful tool for understanding structural integrity and stability of the puerarin in the powder formulations. The puerarin was found to be compatible with the excipients used and the developed DPI formulation may be considered as an efficient formulation for pulmonary delivery for the management of various diseases at a very low dose.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
- * E-mail: (NI); (MAR)
| | - Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Australia
| | - Tony Wang
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yahya Alhamhoom
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
| | - Llew Rintoul
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nazrul Islam
- Queensland University of Technology, Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Tier 2 Research Centre, Centre for Immunology and Infection, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail: (NI); (MAR)
| |
Collapse
|