1
|
Annereau M, Secretan PH, Vignes M, Ramos S, Grill J, Bizien T, Sizun C, Michelet A, Rieutord A, Legrand FX, Do B. Development of a pediatric oral solution of ONC201 using nicotinamide to enhance solubility and stability. Int J Pharm 2024; 667:124965. [PMID: 39603434 DOI: 10.1016/j.ijpharm.2024.124965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) poses a significant treatment challenge in pediatric patients due to its aggressive nature and difficulty in crossing the blood-brain barrier with effective therapies. ONC201 (dordaviprone) shows promises in inducing apoptosis in cancer cells but suffers from poor water solubility and stability issues. Moreover, conventional solubilizing agents acceptable in formulations intended for adult patients are not suitable for pediatric use. So, this study aims to develop a stable, concentrated oral solution of ONC201 suitable for pediatric dosing without harmful excipients and efficient taste masking. Based on Molecular Dynamics simulations, a first screening among a selection of hydrotropes was carried out and, from the results obtained, nicotinamide was selected for experimental study. Given ONC201's challenges of poor solubility and stability, the formulation's physical and chemical properties were meticulously optimized. Extensive analyses, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and nuclear magnetic resonance (NMR) spectroscopy, confirmed the solution's stability across various storage conditions, with no evidence of precipitation or significant degradation. This newly formulated solution is now used inside daily practice in the French compassionate Use Program to give access to ONC201 allowing treating patients who suffer from swallowing disorders.
Collapse
Affiliation(s)
- Maxime Annereau
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| | | | - Marina Vignes
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Stéphanie Ramos
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy Institute and University of Paris Saclay, Villejuif, France
| | - Thomas Bizien
- Université Paris-Saclay, Synchrotron Soleil, Saint-Aubin 91190, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Alexandre Michelet
- Applications Developement Lab, PekinElmer, Villebon-sur-Yvette 91140, France
| | - André Rieutord
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | | | - Bernard Do
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| |
Collapse
|
2
|
Martínez-Jiménez JE, Sathisaran I, Reyes-Figueroa F, Reyes S, López-Nieves M, Vlaar CP, Monbaliu JCM, Romañach R, Ruaño G, Stelzer T, Duconge J. A review of precision medicine in developing pharmaceutical products: Perspectives and opportunities. Int J Pharm 2024:125070. [PMID: 39689830 DOI: 10.1016/j.ijpharm.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Over the next decade, Precision Medicine (PM) is poised to become the standard of care in pharmaceutical therapy, necessitating a fundamental transformation in the design and development of innovative custom-made drug products. To date, a comprehensive review linking PM with practical personalized drug formulations is missing. This review attempts to provide an overview of state-of-the-art formulation approaches capable of translating PM evaluation and resulting recommendations (clinical research) into tailored drug products (non-clinical research) for real-world patients. Comprehensive literature searches in four scientific databases (Scopus, SciFinder, Web of Science, and PubMed) were performed. Current approaches to point-of-care PM formulations and needs-based locally distributed manufacturing presently under research & development (R&D) as alternatives to conventional large-scale manufacturing of one-size-fits-all drug products are discussed. The following methods were identified as the most promising PM formulation strategies: tablet splitting, liquid dispensing, compounding pharmacies, additive manufacturing, drug impregnation, drug extrusion, and orodispersible films (ODFs). The challenges and opportunities of current state-of-the-art formulation technologies that can enable making PM routinely accessible in practice settings will be discussed. Additionally, light will be shed on point-of-use manufacturing (Pharmacy on Demand) as an uncharted territory for PM and its pathway towards practical implementation.
Collapse
Affiliation(s)
- Jorge E Martínez-Jiménez
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States
| | - Indumathi Sathisaran
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States
| | - Francheska Reyes-Figueroa
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Stephanie Reyes
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Marisol López-Nieves
- Department of Pharmacy Practice, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium
| | - Rodolfo Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, United States
| | - Gualberto Ruaño
- Hartford Hospital Institute of Living, Hartford, CT 06102, United States
| | - Torsten Stelzer
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| | - Jorge Duconge
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| |
Collapse
|
3
|
Chen H, Ma J, Zhou F, Yang J, Jiang L, Chen Q, Zhou Y, Zhang J. A potential cocrystal strategy to tailor in-vitro dissolution and improve Caco-2 permeability and oral bioavailability of berberine. Int J Pharm 2024; 666:124789. [PMID: 39366529 DOI: 10.1016/j.ijpharm.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Berberine hydrochloride (BER), a promising candidate in treating tumors, diabetes and pain management, has relatively low oral absorption and bioavailability due to its low intestinal permeability. To address these challenges, we developed a BER and lornoxicam cocrystal (BLCC) by a solvent evaporation method and characterized it using X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Compared with BER, BLCC exhibited an instant release in pH 1.0 HCl and a sustained release up to 24 h in pH 6.8 buffer solutions and water. The Caco-2 permeability of BLCC has shown a remarkable increase compared to that of BER (i.e., Papp(a→b): 50.30 × 10-7vs 8.82 × 10-7 cm/s), which is attributed to the improved lipophilicity of BER (i.e., log P: 1.29 vs -1.83) and the reduced efflux amount of BER (i.e., ER: 1.71 vs 12.11). Furthermore, BLCC demonstrated a relative bioavailability of 410 % in comparison to the original BER, due to notably enhanced intestinal permeability of BLCC and its continuous dissolution in simulated intestinal fluid. BLCC has the potential to tailor the dissolution behavior, improve intestinal permeability, and boost the bioavailability of BER. This indicates that the cocrystal strategy holds promise as an effective approach to improving the oral absorption and bioavailability of active pharmaceutical molecules with low permeability during drug development.
Collapse
Affiliation(s)
- Hui Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Jiangpo Ma
- Ningbo No. 2 Hospital, Ningbo 315010, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, PR China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Junhui Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, PR China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Quanbing Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Yang Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| |
Collapse
|
4
|
Cysewski P, Jeliński T, Przybyłek M. Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation. Molecules 2024; 29:4894. [PMID: 39459262 PMCID: PMC11510433 DOI: 10.3390/molecules29204894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Deep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was explored using theoretical models based on machine learning. The available solubility data for the selected APIs, comprising a total of 8014 data points, were collected for the available neat solvents, binary solvent mixtures, and DESs. This set was augmented with new measurements for the popular sulfa drugs in dry DESs. The descriptors used in the machine learning protocol were obtained from the σ-profiles of the considered molecules computed within the COSMO-RS framework. A combination of six sets of descriptors and 36 regressors were tested. Taking into account both accuracy and generalization, it was concluded that the best regressor is nuSVR regressor-based predictive models trained using the relative intermolecular interactions and a twelve-step averaged simplification of the relative σ-profiles.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | |
Collapse
|
5
|
Albertini B, Bertoni S, Nucci G, Botti G, Abrami M, Sangiorgi S, Beggiato S, Prata C, Ferraro L, Grassi M, Passerini N, Perissutti B, Dalpiaz A. Supramolecular eutectogel as new oral paediatric delivery system to enhance benznidazole bioavailability. Int J Pharm 2024; 661:124417. [PMID: 38964489 DOI: 10.1016/j.ijpharm.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ's poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.
Collapse
Affiliation(s)
- Beatrice Albertini
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy.
| | - Serena Bertoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy
| | - Giorgia Nucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, I-34127 Trieste, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, I-34127 Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, I-40127 Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
6
|
Piccirillo G, Aroso R, Baptista JA, A E Castro R, da Silva GJ, Calvete MJF, Pereira MM, Canotilho J, Ermelinda S Eusébio M. Trimethoprim-Based multicomponent solid Systems: Mechanochemical Screening, characterization and antibacterial activity assessment. Int J Pharm 2024; 661:124416. [PMID: 38964490 DOI: 10.1016/j.ijpharm.2024.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified. The intrinsic dissolution rate of TMP in combination with nicotinic acid (a salt) and with paracetamol (eutectic mixture) were 25% and 5% higher than for pure TMP, respectively. For both Gram-positive and -negative strains, the antibacterial activity of TMP with some of the coformers was improved, since the dosage used was lower than the TMP control. A significant increase in antibacterial activity against E. coli was found for the eutectic mixture with curcumin, with the best results being obtained for the eutectic and equimolar mixtures with ciprofloxacin. Combining trimethoprim with coformers offers an interesting alternative to using trimethoprim alone: multicomponent forms with enhanced TMP dissolution rates were identified, as well as combinations showing enhanced antibacterial activity relatively to the pure drug.
Collapse
Affiliation(s)
- Giusi Piccirillo
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Rafael Aroso
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João A Baptista
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Ricardo A E Castro
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - Gabriela J da Silva
- University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology of the University of Coimbra, 3004-535, Coimbra, Portugal
| | - Mário J F Calvete
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João Canotilho
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - M Ermelinda S Eusébio
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
7
|
Jeliński T, Przybyłek M, Różalski R, Romanek K, Wielewski D, Cysewski P. Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling. Molecules 2024; 29:3841. [PMID: 39202918 PMCID: PMC11357058 DOI: 10.3390/molecules29163841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Deep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors. The results demonstrated that solvents based on choline chloride were more effective than those based on betaine. The optimal ratio of hydrogen bond acceptors to donors was found to be 1:2 molar. The addition of water to the DES resulted in a notable enhancement in the solubility of FA. Among the polyols tested, triethylene glycol was the most effective. Hence, DES composed of choline chloride and triethylene glycol (TEG) (1:2) with added water in a 0.3 molar ration is suggested as an efficient alternative to traditional organic solvents like DMSO. In the second part of this report, the affinities of FA in saturated solutions were computed for solute-solute and all solute-solvent pairs. It was found that self-association of FA leads to a cyclic structure of the C28 type, common among carboxylic acids, which is the strongest type of FA affinity. On the other hand, among all hetero-molecular bi-complexes, the most stable is the FA-TEG pair, which is an interesting congruency with the high solubility of FA in TEG containing liquids. Finally, this work combined COSMO-RS modeling with machine learning for the development of a model predicting ferulic acid solubility in a wide range of solvents, including not only DES but also classical neat and binary mixtures. A machine learning protocol developed a highly accurate model for predicting FA solubility, significantly outperforming the COSMO-RS approach. Based on the obtained results, it is recommended to use the support vector regressor (SVR) for screening new dissolution media as it is not only accurate but also has sound generalization to new systems.
Collapse
Affiliation(s)
- Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-950 Bydgoszcz, Poland;
| | - Karolina Romanek
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Daniel Wielewski
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | - Piotr Cysewski
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| |
Collapse
|
8
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
9
|
Khizar N, Abbas N, Ahmed M, Ahmad M, Mustafa Z, Jehangir M, Mohammed Al-Ahmary K, Hussain A, Bukhari NI, Ali I. Amelioration of tableting properties and dissolution rate of naproxen co-grinded with nicotinamide: preparation and characterization of co-grinded mixture. Drug Dev Ind Pharm 2024; 50:537-549. [PMID: 38771120 DOI: 10.1080/03639045.2024.2358356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE AND SIGNIFICANCE Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Collapse
Affiliation(s)
- Nosheen Khizar
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Jehangir
- Department of Chemistry, FC College (A Chartered University), Lahore, Pakistan
| | | | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
10
|
Balmanno A, Falconer JR, Ravuri HG, Mills PC. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:675. [PMID: 38794337 PMCID: PMC11124993 DOI: 10.3390/pharmaceutics16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
Collapse
Affiliation(s)
- Alexandra Balmanno
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Dutton Park Campus, Woolloongabba, QLD 4102, Australia;
| | - Halley G. Ravuri
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| |
Collapse
|
11
|
Cysewski P, Jeliński T, Przybyłek M, Mai A, Kułak J. Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen. Molecules 2024; 29:2296. [PMID: 38792157 PMCID: PMC11124057 DOI: 10.3390/molecules29102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental solubility data were collected for all DES systems. A machine learning model was developed using COSMO-RS molecular descriptors to predict solubility. All studied DESs exhibited a cosolvency effect, increasing drug solubility at modest concentrations of water. The model accurately predicted solubility for ibuprofen, ketoprofen, and related analogs (flurbiprofen, felbinac, phenylacetic acid, diphenylacetic acid). A machine learning approach utilizing COSMO-RS descriptors enables the rational design and solubility prediction of DES formulations for improved pharmaceutical applications.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | | | | | |
Collapse
|
12
|
Roda A, Paiva A, Rita C Duarte A. A Low Transition Temperature Mixture-based viscosupplementation complemented with celecoxib for osteoarthritis treatment. Int J Pharm 2024; 656:124088. [PMID: 38582102 DOI: 10.1016/j.ijpharm.2024.124088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Viscosupplementation consists of hyaluronic acid (HA) intra-articular injections, commonly applied for osteoarthritis treatment while non-steroidal anti-inflammatory drugs (NSAIDs) are widely administered for pain relief. Here, HA and a NSAID (celecoxib) were combined in a formulation based on a low transition temperature mixture (LTTM) of glycerol:sorbitol, reported to increase celecoxib's solubility, thus rendering a potential alternative viscosupplement envisioning enhanced therapeutic efficiency. The inclusion of glucosamine, a cartilage precursor, was also studied. The developed formulations were assessed in terms of rheological properties, crucial for viscosupplementation: the parameters of crossover frequency, storage (G') and loss (G'') moduli, zero-shear-rate viscosity, stable viscosity across temperatures, and shear thinning behaviour, support viscoelastic properties suitable for viscosupplementation. Additionally, the gels biocompatibility was confirmed in chondrogenic cells (ATDC5). Regarding drug release studies, high and low clearance scenarios demonstrated an increased celecoxib (CEX) release from the gel (6 to 73-fold), compared to dissolution in PBS. The low clearance setup presented the highest and most sustained CEX release, highlighting the importance of the gel structure in CEX delivery. NMR stability studies over time demonstrated the LTTM+HA+CEX (GHA+CEX) gel as viable candidate for further in vivo evaluation. In sum, the features of GHA+CEX support its potential use as alternative viscosupplement.
Collapse
Affiliation(s)
- Ana Roda
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| | - Alexandre Paiva
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| |
Collapse
|
13
|
Cysewski P, Jeliński T, Przybyłek M. Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents. Molecules 2024; 29:1743. [PMID: 38675562 PMCID: PMC11051893 DOI: 10.3390/molecules29081743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Solubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and antimicrobial agent. However, its low solubility hampers its efficient applications. In this project, deep eutectic solvents (DESs) were used as solubilizing agents for dapsone as an alternative to traditional solvents. DESs were composed of choline chloride and one of six polyols. Additionally, water-DES mixtures were studied as a type of ternary solvents. The solubility of dapsone in these systems was determined spectrophotometrically. This study also analyzed the intermolecular interactions, not only in the studied eutectic systems, but also in a wide range of systems found in the literature, determined using the COSMO-RS framework. The intermolecular interactions were quantified as affinity values, which correspond to the Gibbs free energy of pair formation of dapsone molecules with constituents of regular solvents and choline chloride-based deep eutectic solvents. The patterns of solute-solute, solute-solvent, and solvent-solvent interactions that affect solubility were recognized using Orange data mining software (version 3.36.2). Finally, the computed affinity values were used to provide useful descriptors for machine learning purposes. The impact of intermolecular interactions on dapsone solubility in neat solvents, binary organic solvent mixtures, and deep eutectic solvents was analyzed and highlighted, underscoring the crucial role of dapsone self-association and providing valuable insights into complex solubility phenomena. Also the importance of solvent-solvent diversity was highlighted as a factor determining dapsone solubility. The Non-Linear Support Vector Regression (NuSVR) model, in conjunction with unique molecular descriptors, revealed exceptional predictive accuracy. Overall, this study underscores the potency of computed molecular characteristics and machine learning models in unraveling complex molecular interactions, thereby advancing our understanding of solubility phenomena within the scientific community.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-096 Bydgoszcz, Poland; (T.J.); (M.P.)
| | | | | |
Collapse
|
14
|
Alkhafaji E, Dmour I, Al-Essa MK, Alshaer W, Aljaberi A, Khalil EA, Taha MO. Preparation of novel shell-ionotropically crosslinked micelles based on hexadecylamine and tripolyphosphate for cancer drug delivery. Pharm Dev Technol 2024; 29:322-338. [PMID: 38502578 DOI: 10.1080/10837450.2024.2332457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
AIMS Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS The described novel stabilized micelles are simple to prepare and viable for cancer delivery.
Collapse
Affiliation(s)
- Enas Alkhafaji
- Department of Pharmaceutical Sciences, Jerash University, Jerash, Jordan
| | - Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, The Hashemite University, Zarqa, Jordan
| | - Mohamed K Al-Essa
- Department of Physiology and Biochemistry, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ahmad Aljaberi
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman, Jordan
| | - Enam A Khalil
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Drug Design and Discovery Unit, Amman, Jordan
| |
Collapse
|
15
|
Dai XL, Pang BW, Lv WT, Zhen JF, Gao L, Li CW, Xiong J, Lu TB, Chen JM. Improving the physicochemical and pharmacokinetic properties of olaparib through cocrystallization strategy. Int J Pharm 2023; 647:123497. [PMID: 37827390 DOI: 10.1016/j.ijpharm.2023.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Olaparib (OLA) is the first PARP inhibitor worldwide used for the treatment of ovarian cancer. However, the oral absorption of OLA is extremely limited by its poor solubility. Herein, pharmaceutical cocrystallization strategy was employed to optimize the physicochemical and pharmacokinetic properties. Four cocrystals of OLA with oxalic acid (OLA-OA), malonic acid (OLA-MA), fumaric acid (OLA-FA) and maleic acid (OLA-MLA) were successfully discovered and characterized. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the formation of cocrystals rather than salts, and the possible hydrogen bonding patterns were analyzed through molecular surface electrostatic potential calculations. The in vitro and in vivo evaluations indicate that all of the cocrystals demonstrate significantly improved dissolution performance, oral absorption and tabletability compared to pure OLA. Among them, OLA-FA exhibit sufficient stability and the most increased Cmax and AUC0-24h values that were 11.6 and 6.1 times of free OLA, respectively, which has great potential to be developed into the improved solid preparations of OLA.
Collapse
Affiliation(s)
- Xia-Lin Dai
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bo-Wen Pang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Ting Lv
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jian-Feng Zhen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lu Gao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cai-Wen Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Xiong
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia-Mei Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
16
|
Fandaruff C, Quirós-Fallas MI, Vega-Baudrit JR, Navarro-Hoyos M, Lamas DG, Araya-Sibaja AM. Saquinavir-Piperine Eutectic Mixture: Preparation, Characterization, and Dissolution Profile. Pharmaceutics 2023; 15:2446. [PMID: 37896206 PMCID: PMC10609941 DOI: 10.3390/pharmaceutics15102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The dissolution rate of the anti-HIV drug saquinavir base (SQV), a poorly water-soluble and extremely low absolute bioavailability drug, was improved through a eutectic mixture formation approach. A screening based on a liquid-assisted grinding technique was performed using a 1:1 molar ratio of the drug and the coformers sodium saccharinate, theobromine, nicotinic acid, nicotinamide, vanillin, vanillic acid, and piperine (PIP), followed by differential scanning calorimetry (DSC). Given that SQV-PIP was the only resulting eutectic system from the screening, both the binary phase and the Tammann diagrams were adapted to this system using DSC data of mixtures prepared from 0.1 to 1.0 molar ratios in order to determine the exact eutectic composition. The SQV-PIP system formed a eutectic at a composition of 0.6 and 0.40, respectively. Then, a solid-state characterization through DSC, powder X-ray diffraction (PXRD), including small-angle X-ray scattering (SAXS) measurements to explore the small-angle region in detail, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a powder dissolution test were performed. The conventional PXRD analyses suggested that the eutectic mixture did not exhibit structural changes; however, the small-angle region explored through the SAXS instrument revealed a change in the crystal structure of one of their components. FT-IR spectra showed no molecular interaction in the solid state. Finally, the dissolution profile of SQV in the eutectic mixture was different from the dissolution of pure SQV. After 45 min, approximately 55% of the drug in the eutectic mixture was dissolved, while, for pure SQV, 42% dissolved within this time. Hence, this study concludes that the dissolution rate of SQV can be effectively improved through the approach of using PIP as a coformer.
Collapse
Affiliation(s)
- Cinira Fandaruff
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Laboratorio de Cristalografía Aplicada, Av. 25 de Mayo 1169, San Martín 1650, Provincia de Buenos Aires, Argentina;
| | - María Isabel Quirós-Fallas
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
- Laboratorio Biodess, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica;
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
| | - Mirtha Navarro-Hoyos
- Laboratorio Biodess, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica;
| | - Diego German Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología, Laboratorio de Cristalografía Aplicada, Av. 25 de Mayo 1169, San Martín 1650, Provincia de Buenos Aires, Argentina;
| | - Andrea Mariela Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José 1174-1200, Costa Rica; (M.I.Q.-F.); (J.R.V.-B.)
| |
Collapse
|
17
|
Markeev VB, Blynskaya EV, Tishkov SV, Alekseev KV, Marakhova AI, Vetcher AA, Shishonin AY. Composites of N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide with Polymers: Effect of Crystallinity on Solubility and Stability. Int J Mol Sci 2023; 24:12215. [PMID: 37569589 PMCID: PMC10418436 DOI: 10.3390/ijms241512215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
This work aimed to develop and characterize a water-soluble, high-release active pharmaceutical ingredient (API) composite based on the practically water-insoluble API N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3), a substance with antidepressant and anxiolytic action. This allows to ensure the bioavailability of the medicinal product of combined action. Composites obtained by the method of creating amorphous solid dispersions, where polyvinylpyrrolidone (PVP) or Soluplus® was used as a polymer, were studied for crystallinity, stability and the release of API from the composite into purified water. The resulting differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and dissolution test data indicate that the resulting composites are amorphous at 1:15 API: polymer ratios for PVP and 1:5 for Soluplus®, which ensures the solubility of GML-3 in purified water and maintaining the supercritical state in solution.
Collapse
Affiliation(s)
- Vladimir B. Markeev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Evgenia V. Blynskaya
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Sergey V. Tishkov
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Konstantin V. Alekseev
- V.V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia; (E.V.B.); (S.V.T.); (K.V.A.)
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya St., 117588 Moscow, Russia;
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya St., 117588 Moscow, Russia;
| |
Collapse
|
18
|
Mansuroglu Y, Dressman J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023; 15:1996. [PMID: 37514182 PMCID: PMC10386192 DOI: 10.3390/pharmaceutics15071996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hot-melt extrusion is a well-established tool in the pharmaceutical industry, mostly implemented to increase the solubility of poorly soluble drugs. A less frequent application of this technique is to obtain formulations with extended release. This study investigated the influence of polymer choice, drug loading, milling and hydrodynamics on the release of a model drug, flurbiprofen, from sustained-release hot-melt extrudates with Eudragit polymers. The choice of polymer and degree of particle size reduction of the extrudate by milling were the two key influences on the release profile: the percentage release after 12 h varied from 6% (2 mm threads) to 84% (particle size <125 µm) for Eudragit RL extrudates vs. 4.5 to 62% for the corresponding Eudragit RS extrudates. By contrast, the release profile was largely independent of drug loading and robust to hydrodynamics in the dissolution vessel. Thus, hot-melt extrusion offers the ability to tailor the release of the API to the therapeutic indication through a combination of particle size and polymer choice while providing robustness over a wide range of hydrodynamic conditions.
Collapse
Affiliation(s)
- Yaser Mansuroglu
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai.7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
20
|
Abdelquader MM, Li S, Andrews GP, Jones DS. Therapeutic Deep Eutectic Solvents: A Comprehensive Review of Their Thermodynamics, Microstructure and Drug Delivery Applications. Eur J Pharm Biopharm 2023; 186:85-104. [PMID: 36907368 DOI: 10.1016/j.ejpb.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Deep eutectic solvents (DES) are multicomponent liquids that are usually formed by coupling a hydrogen bond donor and acceptor leading to strong non-covalent (NC) intermolecular networking and profound depression in the melting point of the system. Pharmaceutically, this phenomenon has been exploited to improve drugs' physicochemical properties, with an established DES therapeutic subcategory, therapeutic deep eutectic solvents (THEDES). THEDES preparation is usually via straightforward synthetic processes with little involvement of sophisticated techniques, which, in addition to its thermodynamic stability, make these multi-component molecular adducts a very attractive alternative for drug enabling purposes. Other NC bonded binary systems (e.g., co-crystals and ionic liquids) are utilized in the pharmaceutical field for enhancing drug's behaviours. However, a clear distinction between these systems and THEDES is scarcely discussed in the current literature. Accordingly, this review provides a structure-based categorization for DES formers, a discussion of its thermodynamic properties and phase behaviour, and it clarifies the physicochemical and microstructure boundaries between DES and other NC systems. Additionally, a summary of its preparation techniques and their experimental conditions preparation is supplied. Instrumental analysis techniques can be used to characterize and differentiate DES from other NC mixtures, hence this review draws a road map to for this purpose. Since this work mainly focuses on pharmaceutical applications of DES, all types of THEDES including the highly discussed types (conventional, drugs dissolved in DES and polymer based) in addition to the less discussed categories are covered. Finally, the regulatory status of THEDES was investigated despite the current unclear situation.
Collapse
Affiliation(s)
- Magdy M Abdelquader
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanat, Egypt.
| | - Shu Li
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - David S Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Study on Absorption, Distribution and Excretion of a New Candidate Compound XYY-CP1106 against Alzheimer's Disease in Rats by LC-MS/MS. Molecules 2023; 28:molecules28052377. [PMID: 36903623 PMCID: PMC10005075 DOI: 10.3390/molecules28052377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
XYY-CP1106, a candidate compound synthesized from a hybrid of hydroxypyridinone and coumarin, has been shown to be remarkably effective in treating Alzheimer's disease. A simple, rapid and accurate high-performance liquid chromatography coupled with the triple quadrupole mass spectrometer (LC-MS/MS) method was established in this study to elucidate the pharmacokinetics of XYY-CP1106 after oral and intravenous administration in rats. XYY-CP1106 was shown to be rapidly absorbed into the blood (Tmax, 0.57-0.93 h) and then eliminated slowly (T1/2, 8.26-10.06 h). Oral bioavailability of XYY-CP1106 was (10.70 ± 1.72)%. XYY-CP1106 could pass through the blood-brain barrier with a high content of (500.52 ± 260.12) ng/g at 2 h in brain tissue. The excretion results showed that XYY-CP1106 was mainly excreted through feces, with an average total excretion rate of (31.14 ± 0.05)% in 72 h. In conclusion, the absorption, distribution and excretion of XYY-CP1106 in rats provided a theoretical basis for subsequent preclinical studies.
Collapse
|
22
|
Madanayake SN, Manipura A, Thakuria R, Adassooriya NM. Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Sithmi Nimashi Madanayake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Nadeesh M. Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Screening of Fenofibrate-Simvastatin Solid Dispersions in the Development of Fixed-Dose Formulations for the Treatment of Lipid Disorders. Pharmaceutics 2023; 15:pharmaceutics15020603. [PMID: 36839925 PMCID: PMC9962408 DOI: 10.3390/pharmaceutics15020603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The combination of statins and fibrates in the treatment of lipid abnormalities effectively regulates individual lipid fraction levels. In this study, the screening and assessment of the physicochemical properties of simvastatin-fenofibrate solid dispersions were performed. Fenofibrate and simvastatin were processed using the kneading method in different weight ratios, and the resulting solid dispersions were assessed using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle, as well as dissolution tests. The obtained results confirmed the formation of a simple eutectic phase diagram, with a eutectic point containing 79 wt% fenofibrate and 21 wt% simvastatin, lack of chemical interactions between the ingredients, and simvastatin impact on improving fenofibrate dissolution profile, due to the formation of crystalline solid dispersions by the kneading method.
Collapse
|
24
|
Burgos GL, Hernández-Espinell JR, Graciani-Massa T, Yao X, Borchardt-Setter KA, Yu L, López-Mejías V, Stelzer T. Role of Heteronucleants in Melt Crystallization of Crystalline Solid Dispersions. CRYSTAL GROWTH & DESIGN 2023; 23:49-58. [PMID: 38107196 PMCID: PMC10722868 DOI: 10.1021/acs.cgd.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Few publications exist concerning polymorphic control during melt crystallization, particularly when employing heteronucleants. Here, the influence of a polymeric thin film (polyethylene terephthalate, PET) on the crystallization from melt of the polymorphic compound acetaminophen (ACM) in polyethylene glycol (PEG) was investigated. Molten ACM-PEG at different compositions was monitored using in situ Raman spectroscopy for nucleation induction time measurements and phase identification. Furthermore, X-ray diffraction (XRD) served to analyze the preferred orientation (PO) of the pastilles (solidified melt droplets) on PET-coated and uncoated substrates. The results indicate that PET-coated substrates qualitatively accelerate the nucleation of ACM form II (ACM II) in PEG compared to uncoated glass substrates. Additionally, the occurrence of ACM II in PEG was increased by an average of 10% when crystallized on PET-coated substrates compared to uncoated substrates. Overall, these results suggest that ACM can interact through hydrogen bonding with the PET-coated substrate, leading to faster nucleation. This investigation illustrates the effect of PET-coated substrates in the selective crystallization of ACM II in PEG as crystalline solid dispersions (CSDs). Ultimately, the results suggest the implementation of polymeric heteronucleants in melt crystallization processes, specifically, in advanced polymer-based formulation processes for the enhanced polymorphic form control of pharmaceutical compounds in CSDs.
Collapse
Affiliation(s)
- Giovanni López Burgos
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - José R Hernández-Espinell
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Tatiana Graciani-Massa
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Xin Yao
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kennedy A Borchardt-Setter
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Vilmalí López-Mejías
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
25
|
Dorgham EM, El Maghraby GM, Essa EA, Arafa MF. Melting point depression for enhanced dissolution rate of eslicarbazepine acetate. Drug Dev Ind Pharm 2022; 48:717-726. [PMID: 36546677 DOI: 10.1080/03639045.2022.2162074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Eslicarbazepine acetate (ESL) is antiepileptic agent which is approved for use as single therapy or in combination with other drugs. However, it suffers from poor oral bioavailability. Modulation of drug crystallinity can be utilized as an approach for enhancing drug dissolution. OBJECTIVE Accordingly, the aim of this study was to investigate possible eutectic system formation between eslicarbazepine with either tartaric acid or citric acid. METHODOLOGY Eslicarbazepine acetate was subjected to wet co-grinding with tartaric acid or citric acid at different molar ratios. The prepared formulations were assessed using Fourier-transform infrared (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry in addition to dissolution studies. RESULTS The characterization techniques confirmed eutectic system formation with tartaric and citric acid with the optimum molar ratio for eutexia being 1:1 for both substances. Development of eutectic systems significantly enhanced the dissolution rate of ESL. Increasing the ratio of tartaric acid higher than the optimum ratio for eutexia resulted in additional increase in drug dissolution rate. This suggested the impact of pH modification on drug dissolution rate. The enhanced dissolution rate in case of the formulations containing ESL and citric acid was accredited to combined effect of eutaxia and pH modulation. These explanations were proven from investigating the dissolution rate of the physical mixtures which were inferior in their dissolution rate compared with the prepared formulations. CONCLUSION co-processing of ESL with either citric acid or tartaric acid resulted in hastened dissolution rate which was accredited to combined effect of eutexia with pH modification.
Collapse
Affiliation(s)
- Ebtehal M Dorgham
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mona F Arafa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
26
|
Roy P, Kumari N, Pandey N, Gour A, Raj A, Srividya B, Nandi U, Ghosh A. Development of ezetimibe eutectic with improved biopharmaceutical and mechanical properties to design an optimized oral solid dosage formulation. Pharm Dev Technol 2022; 27:989-998. [PMID: 36322702 DOI: 10.1080/10837450.2022.2143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eutectics are multicomponent systems which are an alternative to the conventional techniques for modulating the biopharmaceutical properties of a pharmaceutical. Ezetimibe (ETZ) is a hypocholesterolemic agent with limited dissolution, poor water solubility, and subsequently demonstrates low oral bioavailability. Additionally, ETZ exhibits poor mechanical properties, leading to difficulties in developing dosage forms through direct compression. The present work highlights the applicability of eutectics in the simultaneous improvement of physicochemical along with mechanical properties of ETZ. A pharmaceutical eutectic of ETZ with succinimide (SUC) was prepared by mechanochemical grinding and thoroughly characterized using thermoanalytical, X-ray diffraction, and spectroscopic methods. Intrinsic dissolution rate and pharmacokinetic analysis were also performed for ezetimibe-succinimide (ETZ-SUC) eutectic in contrast to pure ETZ. The eutectic demonstrated ∼2-fold increase in the solubility and dissolution rate. In pharmacokinetic studies, the area under the curve (AUC) for ETZ-SUC eutectic (28.03 ± 2.22 ng*h/mL) was found to be higher than ETZ (8.98 ± 0.36 ng*h/mL), indicating improved oral bioavailability for eutectics. Also, it was observed that enhanced material functionality aids in designing directly compressed tablets, where the eutectic formulation showed an improved dissolution profile over the ETZ formulation. The study demonstrates that eutectic conglomerates could be utilized to develop ideal oral solid dosage formulations.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India.,Department of Pharmacy, Muzaffarpur Institute of Technology, Muzaffarpur, Muzaffarpur, India
| | - Noopur Pandey
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Abhishek Gour
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amit Raj
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - B Srividya
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Utpal Nandi
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
27
|
Constructing an Intelligent Model Based on Support Vector Regression to Simulate the Solubility of Drugs in Polymeric Media. Pharmaceuticals (Basel) 2022; 15:ph15111405. [DOI: 10.3390/ph15111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study constructs a machine learning method to simultaneously analyze the thermodynamic behavior of many polymer–drug systems. The solubility temperature of Acetaminophen, Celecoxib, Chloramphenicol, D-Mannitol, Felodipine, Ibuprofen, Ibuprofen Sodium, Indomethacin, Itraconazole, Naproxen, Nifedipine, Paracetamol, Sulfadiazine, Sulfadimidine, Sulfamerazine, and Sulfathiazole in 1,3-bis[2-pyrrolidone-1-yl] butane, Polyvinyl Acetate, Polyvinylpyrrolidone (PVP), PVP K12, PVP K15, PVP K17, PVP K25, PVP/VA, PVP/VA 335, PVP/VA 535, PVP/VA 635, PVP/VA 735, Soluplus analyzes from a modeling perspective. The least-squares support vector regression (LS-SVR) designs to approximate the solubility temperature of drugs in polymers from polymer and drug types and drug loading in polymers. The structure of this machine learning model is well-tuned by conducting trial and error on the kernel type (i.e., Gaussian, polynomial, and linear) and methods used for adjusting the LS-SVR coefficients (i.e., leave-one-out and 10-fold cross-validation scenarios). Results of the sensitivity analysis showed that the Gaussian kernel and 10-fold cross-validation is the best candidate for developing an LS-SVR for the given task. The built model yielded results consistent with 278 experimental samples reported in the literature. Indeed, the mean absolute relative deviation percent of 8.35 and 7.25 is achieved in the training and testing stages, respectively. The performance on the largest available dataset confirms its applicability. Such a reliable tool is essential for monitoring polymer–drug systems’ stability and deliverability, especially for poorly soluble drugs in polymers, which can be further validated by adopting it to an actual implementation in the future.
Collapse
|
28
|
Choi SA, Park EJ, Lee JH, Min KA, Kim ST, Jang DJ, Maeng HJ, Jin SG, Cho KH. Preparation and Characterization of Pazopanib Hydrochloride-Loaded Four-Component Self-Nanoemulsifying Drug Delivery Systems Preconcentrate for Enhanced Solubility and Dissolution. Pharmaceutics 2022; 14:pharmaceutics14091875. [PMID: 36145623 PMCID: PMC9500606 DOI: 10.3390/pharmaceutics14091875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to develop a four-component self-nanoemulsifying drug delivery system (FCS) to enhance the solubility and dissolution of pazopanib hydrochloride (PZH). In the solubility test, PZH showed a highly pH-dependent solubility (pH 1.2 > water >> pH 4.0 and pH 6.8) and was solubilized at 70 °C in the order Kollisolv PG (5.38%, w/w) > Kolliphor RH40 (0.49%) > Capmul MCM C10 (0.21%) and Capmul MCM C8 (0.19%), selected as the solubilizer, the surfactant, and the oils, respectively. In the characterization of the three-component SNEDDS (TCS) containing Kolliphor RH40/Capmul MCM C10, the particle size of dispersion was very small (<50 nm) and the PZH loading was 0.5% at the weight ratio of 9/1. In the characterization of FCS containing additional Kollisolv PG to TCS, PZH loading was increased to 5.30% without any PZH precipitation, which was 10-fold higher compared to the TCS. The optimized FCS prepared with the selected formulation (Kolliphor RH40/Capmul MCM C10/Kollisolv PG) showed a consistently complete and high dissolution rate (>95% at 120 min) at four different pHs with 1% polysorbate 80, whereas the raw PZH and Kollisolv PG solution showed a pH-dependent poor dissolution rate (about 40% at 120 min), specifically at pH 6.8 with 1% polysorbate 80. In conclusion, PZH-loaded FCS in this work demonstrated enhanced solubility and a consistent dissolution rate regardless of medium pH.
Collapse
Affiliation(s)
- Seung Ah Choi
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
| | - Eun Ji Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
| | - Jun Hak Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
| | - Sung Tae Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Korea
| | - Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Korea
- Correspondence: (S.G.J.); (K.H.C.); Tel.: +82-41-550-3558 (S.G.J.); +82-55-320-3883 (K.H.C.)
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
- Correspondence: (S.G.J.); (K.H.C.); Tel.: +82-41-550-3558 (S.G.J.); +82-55-320-3883 (K.H.C.)
| |
Collapse
|
29
|
Fayed ND, Arafa MF, Essa EA, El Maghraby GM. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. J Drug Deliv Sci Technol 2022; 74:103587. [PMID: 35845293 PMCID: PMC9272570 DOI: 10.1016/j.jddst.2022.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.
Collapse
|
30
|
Ke Z, Shi J, Cheng Z, Cheng X, Wang H, Wang M, Wu J, Sun Y, Li C. Design and characterization of gambogic acid-loaded mixed micelles system for enhanced oral bioavailability. Pharm Dev Technol 2022; 27:695-701. [PMID: 35899462 DOI: 10.1080/10837450.2022.2107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this study was to develop a gambogic acid-loaded mixed micelles (GA-M) system, using Kolliphor HS15 and lecithin, for enhancement of oral bioavailability. GA-M was prepared using the thin film hydration method, and particle size and zeta potential indexes were used to determine the optimized formulation was optimized with taking particle size, zeta potential as indexes. The optimal GA-M system had a mean particle size in the nanometer range (87.22 ± 0.68 nm) and zeta potential greater than 20 mV in magnitude (-21.63 ± 1.69 mV) at a 1:1 proportion of HS15: lecithin. Additionally, the carriers had a high entrapment efficiency (98.32 ± 3.52%) and drug loading (4.68 ± 0.17%). Furthermore, the in vitro GA release characteristics followed first-order kinetics, suggesting that release of the molecule was achieved both by medium diffusion and structural erosion. Transport elucidation in Caco-2 cells demonstrated that the efflux ratio of encapsulated GA was dramatically decreased from 1.42 to 0.76, and pharmacokinetic studies showed that the oral bioavailability of GA-M was 2.3 times higher than that of free GA, indicating that HS15/lecithin mixed micelles could promote absorption in the gastrointestinal tract. Overall, these results present a micelle system suitable for oral delivery, with increased solubility and oral bioavailability of GA.
Collapse
Affiliation(s)
- Zhongcheng Ke
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041.,College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Ziyang Cheng
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Xiaoling Cheng
- Health Supervision Institute, Tunxi District Health Bureau, Huangshan, Anhui, 245000, China
| | - Huan Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Jingjing Wu
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Yinyu Sun
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| | - Changjiang Li
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, 245041, China.,Xin'an Chinese medicine technology innovation center, Huangshan, Anhui, 245041
| |
Collapse
|
31
|
Palanisamy V, Sanphui P, Palanisamy K, Prakash M, Bansal AK. Design of Ascorbic Acid Eutectic Mixtures With Sugars to Inhibit Oxidative Degradation. Front Chem 2022; 10:754269. [PMID: 35615307 PMCID: PMC9125031 DOI: 10.3389/fchem.2022.754269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
L-Ascorbic acid (ASC), commonly known as vitamin C, acts as an anti-oxidant in the biological system. It is extensively used as an excipient in pharmaceutical industry, food supplements in fruit juices, and food materials due to its free radicals scavenging activity. Main drawback of ASC is its poor aqueous stability owing to the presence of lactone moiety that is easily oxidized to dehydroascorbic acid and further degraded. To improve aqueous stability and inhibit oxidative degradation, ASC was co-crystallized to constitute binary eutectic compositions with mono and di-saccharides such as glucose, sucrose, lactose, and mannitol. The eutectics were confirmed by their (single) lower melting endotherm compared to ASC and sugars, although Powder X-ray diffraction (PXRD) and Fourier transform Infrared spectroscopy (FT-IR) data confirmed the characteristics of their physical mixture. Scanning electron microscope (SEM) images of the binary eutectics confirmed their irregular morphology. The ASC eutectics exhibited improved shelf-life by 2–5-fold in weakly acidic (pH 5) and neutral (pH 7) aqueous buffer medium, whereas the eutectic with glucose enhanced shelf-life only by 1.1–1.2-fold in acidic medium (pH 3.3 and 4). Notably, stabilizing effect of the sugar eutectics decreased with increasing acidity of the medium. In addition, higher binding energy of the disaccharide eutectics partially supports the aqueous stability order of ASC in the neutral pH medium due to more number of non-bonded interactions than that of monosaccharides.
Collapse
Affiliation(s)
- Vasanthi Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Palash Sanphui
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Palash Sanphui, ; Arvind Kumar Bansal,
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Arvind Kumar Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
- *Correspondence: Palash Sanphui, ; Arvind Kumar Bansal,
| |
Collapse
|
32
|
Liang H, Yuan X, Sun C, Sun Y, Yang M, Feng S, Yao J, Liu Z, Zhang G, Li F. Preparation of a new component group of Ginkgo biloba leaves and investigation of the antihypertensive effects in spontaneously hypertensive rats. Biomed Pharmacother 2022; 149:112805. [PMID: 35276465 DOI: 10.1016/j.biopha.2022.112805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ginkgo (Ginkgo biloba L.) is a traditional economic tree species in China. Ginkgo biloba extract (GBE) is widely used in combination to treat hypertension and complications in clinical practice. However, the antihypertensive effect of GBE alone is weak and it is also difficult to study the mechanism because of its complex composition. This study was to prepare a new component group of Ginkgo biloba leaves (GBLCG) with clear chemical structures, and to investigate its effect on reducing blood pressure and improving myocardial hypertrophy in spontaneously hypertensive rats with GBE and amlodipine as positive controls. The results showed that total flavonoid aglycones (TFAs) of GBLCG was mainly composed of quercetin (QCT), kaempferol (KMF) and isorhamnetin (ISR); Total terpenoid lactones (TTLs) of GBLCG might be a novel cocrystal composed of Ginkgolide A (GA), Ginkgolide B (GB) Ginkgolide C (GC), Ginkgolide J (GJ) and bilobalide (BB). The hypotensive activity of GBLCG (4.4 mg/kg) group was better than that of GBE group (p < 0.05), and the effect of improving myocardial hypertrophy was better than that of amlodipine besylate group (p < 0.01). GBLCG might reduce blood pressure and improve myocardial hypertrophy by promoting the synthesis and release of NO in endothelial cells, reducing oxidative stress, inhibiting platelet aggregation and promoting lesion circulation. Eventually, we hope to introduce GBLCG as a new drug for hypertension.
Collapse
Affiliation(s)
- Hongbao Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong New Time Pharmaceutical Co., Ltd., Linyi, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xiaomei Yuan
- Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Chenghong Sun
- Shandong New Time Pharmaceutical Co., Ltd., Linyi, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ying Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Min Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Feng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingchun Yao
- Shandong New Time Pharmaceutical Co., Ltd., Linyi, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Zhong Liu
- Shandong New Time Pharmaceutical Co., Ltd., Linyi, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Guimin Zhang
- Shandong New Time Pharmaceutical Co., Ltd., Linyi, China; Lunan Pharmaceutical Group Co., Ltd. State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China.
| | - Feng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
33
|
Zhang X, Su J, Wang X, Wang X, Liu R, Fu X, Li Y, Xue J, Li X, Zhang R, Chu X. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092761. [PMID: 35566111 PMCID: PMC9100073 DOI: 10.3390/molecules27092761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.
Collapse
Affiliation(s)
| | - Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | | | | | | | | | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
34
|
Górniak A, Złocińska A, Trojan M, Pęcak A, Karolewicz B. Preformulation Studies of Ezetimibe-Simvastatin Solid Dispersions in the Development of Fixed-Dose Combinations. Pharmaceutics 2022; 14:pharmaceutics14050912. [PMID: 35631498 PMCID: PMC9147300 DOI: 10.3390/pharmaceutics14050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Two active pharmaceutical ingredients (APIs) with limited solubility, simvastatin and ezetimibe, prepared as a drug-drug solid dispersion (SD) was evaluated for physicochemical, microstructural, and aqueous dissolution properties. The simvastatin-ezetimibe SD was prepared using the co-grinding method in a wide range of weight fractions and differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) were used to perform the phase composition analysis. DSC studies confirmed that simvastatin and ezetimibe form a simple eutectic phase equilibrium diagram. Analysis of Fourier transform infrared spectroscopy (FTIR) studies excluded strong interactions between the APIs. Our investigations have revealed that all studied dispersions are characterized by substantially improved ezetimibe dissolution regardless of simvastatin content, and are best when the composition oscillates near the eutectic point. Data obtained in our studies provide an opportunity for the development of well-formulated, ezetimibe-simvastatin fixed-dose combinations (for hypercholesterolemia treatment) with reduced ezetimibe dosages based on its dissolution improvement.
Collapse
Affiliation(s)
- Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
- Correspondence: ; Tel.: +48-717840670
| | - Adrianna Złocińska
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Mateusz Trojan
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Adrianna Pęcak
- Laboratory of Elemental Analysis and Structural Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.Z.); (M.T.); (A.P.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
35
|
Bergua F, Castro M, Muñoz-Embid J, Lafuente C, Artal M. L-menthol-based eutectic solvents: Characterization and application in the removal of drugs from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Chen W, Cai X, Sun Q, Guo X, Liang C, Tang H, Huang H, Luo H, Chen L, Chen J. Design and synthesis of aptamer-cyclometalated iridium(III) complex conjugate targeting cancer cells. Eur J Med Chem 2022; 236:114335. [PMID: 35398732 DOI: 10.1016/j.ejmech.2022.114335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Targeted therapy showed broad application prospects in the treatment of various types of cancer. Through carriers such as aptamers, antibodies, proteins and peptides, targeted therapy can selectively deliver drugs into tumor cells. Compared with traditional treatment methods such as chemo- and radiotherapy, targeted drug delivery systems can reduce the toxic effects of drugs on normal cells and avoid adverse reactions. Herein, an aptamer-cyclometalated iridium(III) complex conjugate (ApIrC) has been designed and developed as a targeted anticancer agent. Owing to the targeting ability of aptamers, ApIrC specifically bound to nucleolin over-expressed on the surface of cancer cells and showed strong fluorescence signal for tumor imaging and diagnosis. ApIrC had more substantial cellular uptake in cancer cells than the iridium complex alone and exhibited favorable low toxicity to normal cells. After uptake by cells through endocytosis, ApIrC can selectively accumulated in mitochondria and induced caspase-3/7-dependent cell death. Remarkably, ApIrC can also specifically target 3D multicellular spheroids (MCSs) and show excellent tumor permeability. So, it can effectively reach the interior of MCSs and cause cell damage. To our knowledge, this is the first report of the aptamer-cyclometalated iridium(III) complex conjugate which studied for cancer targeted therapy. The developed conjugate has great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.
Collapse
Affiliation(s)
- Weigang Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Xianhong Cai
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qiang Sun
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Chunmei Liang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hong Tang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
| | - Heming Huang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| | - Jincan Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
37
|
Jin G, Ngo HV, Wang J, Cui JH, Cao QR, Park C, Lee BJ. Electrostatic molecular effect of differently charged surfactants on the solubilization capacity and physicochemical properties of salt-caged nanosuspensions containing pH-dependent and poorly water-soluble rebamipide. Int J Pharm 2022; 619:121686. [PMID: 35314274 DOI: 10.1016/j.ijpharm.2022.121686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
Abstract
In this study, the electrostatic molecular effect of differently charged surfactants on the solubilization capacity and physicochemical properties of salt-caged nanosuspensions (NSPs) containing poorly water-soluble drug was investigated. Anionic rebamipide (RBM) was chosen as a model drug because of its poor water solubility in low pH condition and ionizable acidic forms. Negatively charged sodium lauryl sulfate (SLS) and positively charged cetyltrimethylammonium bromide (CTAB) were selected as surfactants for the preparation of NSPs or in the dissolution medium. Salt-caged NSPs surrounded by NaCl were prepared by the HCl-NaOH neutralization method in the presence of poloxamer 407. Interestingly, the addition of positively charged CTAB in the preparation process or the dissolution media could interfere with the solubilization capacity of salt-caged NSPs containing a negatively charged drug via intermolecular electrostatic attraction. In the presence of positively charged CTAB, the salt-caged NSP was disordered in structure via electrostatic attractive interaction with partially ionizable anionic RBM resulting in changes in the physicochemical properties of the salt-caged NSP such as low drug content, increased particle size, decreased dissolution rate, and the formation of water-insoluble precipitates with rough and irregular crystals. This inhibitory effect of CTAB on the dissolution rate of pure RBM and the salt-caged NSP in pH 6.8 intestinal fluid was pronounced in a concentration-dependent manner mainly owing to the formation of precipitates, so-called poorly soluble complexes. When the salt-caged NSP (F1) was dissolved in DW containing CTAB, the dissolution rate decreased more significantly, dissolving less than 20% within 2 h. Depending on the surfactant charges, the charge density and the initial potential were varied during the dissolution of NSPs in deionized water (DW). In contrast, the negatively charged SLS did not significantly change the physicochemical properties of the salt-caged NSP. For example, the dissolution rate of the salt-caged NSP containing SLS in DW or pH 1.2 gastric fluid remained over 90% for 2 h. Surfactants for the formulation or dissolution media should be chosen carefully because of their effect on the physicochemical properties and solubilization capacity of salt-caged NSPs containing poorly water-soluble and ionizable drugs via electrostatic molecular interactions.
Collapse
Affiliation(s)
- Gang Jin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Hai V Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| | - Jie Wang
- Student Affairs Department, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| | - Qing-Ri Cao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| | - Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
38
|
Application of deep eutectic solvents (DESs) as trace level drug extractants and drug solubility enhancers: State-of-the-art, prospects and challenges. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
França MT, Martins Marcos T, Costa PF, Bazzo GC, Nicolay Pereira R, Gerola AP, Stulzer HK. Eutectic mixture and amorphous solid dispersion: Two different supersaturating drug delivery system strategies to improve griseofulvin release using saccharin. Int J Pharm 2022; 615:121498. [DOI: 10.1016/j.ijpharm.2022.121498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
|
40
|
Drug-drug eutectic mixtures of celecoxib with tapentadol and milnacipran which could improve analgesic and antidepressant efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Multicomponent Materials to Improve Solubility: Eutectics of Drug Aminoglutethimide. CRYSTALS 2021. [DOI: 10.3390/cryst12010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the synthesis and experimental characterization of three drug-drug eutectic mixtures of drug aminoglutethimide (AMG) with caffeine (CAF), nicotinamide (NIC) and ethenzamide (ZMD). The eutectic mixtures i.e., AMG-CAF (1:0.4, molar ratio), AMG-NIC (1:1.9, molar ratio) and AMG-ZMD (1:1.4, molar ratio) demonstrate significant melting point depressions ranging from 99.2 to 127.2 °C compared to the melting point of the drug AMG (151 °C) and also show moderately higher aqueous solubilities than that of the AMG. The results presented include the determination of the binary melt phase diagrams and accompanying analytical characterization via X-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy.
Collapse
|
42
|
Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Improving the Physicochemical and Biopharmaceutical Properties of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicine through Cocrystal Engineering. Pharmaceutics 2021; 13:2160. [PMID: 34959440 PMCID: PMC8704577 DOI: 10.3390/pharmaceutics13122160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
Collapse
Affiliation(s)
- Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chengguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ruitao Long
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Ziwen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| |
Collapse
|
43
|
Georgescu M, Meltzer V, Stănculescu I, Pincu E. Thermal Behavior of the Nimesulide-Salicylic Acid Eutectic Mixtures Prepared by Mechanosynthesis and Recrystallization. MATERIALS 2021; 14:ma14247715. [PMID: 34947308 PMCID: PMC8706752 DOI: 10.3390/ma14247715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
Nimesulide, salicylic acid and their binary mixtures were studied by differential scanning calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR). The study of such systems is a promising and viable approach for solving the problem of poor solubility of materials in general and drug systems in particular. All areas of human activity are inextricably linked to materials, and thus, the study presented in the paper and not reported in the literature is very important and provides useful data for those working in various fields. The eutectic mixtures were obtained by mechanosynthesis and by recrystallization from ethanol over the entire 0-1 range of molar fractions. For both situations at the molar fraction of nimesulide 0.5, the mixture has a eutectic that suggests an increase in solubility at this composition. The interactions that take place between the components were determined with the help of the excess thermodynamic functions (GE, SE, µE), which highlight the deviation from the ideality of the considered binary systems.
Collapse
|
44
|
Shi Q, Li F, Yeh S, Moinuddin SM, Xin J, Xu J, Chen H, Ling B. Recent Advances in Enhancement of Dissolution and Supersaturation of Poorly Water-Soluble Drug in Amorphous Pharmaceutical Solids: A Review. AAPS PharmSciTech 2021; 23:16. [PMID: 34893936 DOI: 10.1208/s12249-021-02137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Amorphization is one of the most effective pharmaceutical approaches to enhance the dissolution and oral bioavailability of poorly water-soluble drugs. In recent years, amorphous formulations have been experiencing rapid development both in theoretical and practical application. Based on using different types of stabilizing agents, amorphous formulations can be mainly classified as polymer-based amorphous solid dispersion, coamorphous formulation, mesoporous silica-based amorphous formulation, etc. This paper summarizes recent advances in the dissolution and supersaturation of these amorphous formulations. Moreover, we also highlight the roles of stabilizing agents such as polymers, low molecular weight co-formers, and mesoporous silica. Maintaining supersaturation in solution is a key factor for the enhancement of dissolution profile and oral bioavailability, and thus, the strategies and challenges for maintaining supersaturation are also discussed. With an in-depth understanding of the inherent mechanisms of dissolution behaviors, the design of amorphous pharmaceutical formulations will become more scientific and reasonable, leading to vigorous development of commercial amorphous drug products.
Collapse
|
45
|
Kim D, Jang S, Kim IW. Eutectic Formation of Naproxen with Some Dicarboxylic Acids. Pharmaceutics 2021; 13:2081. [PMID: 34959361 PMCID: PMC8706014 DOI: 10.3390/pharmaceutics13122081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Eutectic formation with additives is one of the established methods to improve the dissolution behaviors of active pharmaceutic ingredients (APIs). The improvement is mainly due to the increase in the surface area for dissolution, which originates from the finely divided micro-domains generated through the phase separation of the miscible liquid components upon solidification. The present study is to identify eutectic-forming additives for naproxen (NPX), a class II API of the biopharmaceutical classification system. A particular aim was to develop a eutectic mixture with NPX at least over 20 wt%, a minimum to be practical for oral delivery. Screening based on the proximity of the solubility parameter values identified dicarboxylic acids (succinic acid, glutaric acid, and suberic acid) as desirable additives for NPX. Binary melting diagrams were constructed to confirm the eutectic compositions, and the eutectic mixture with suberic acid (NPX 55 wt%) was further investigated. The dissolution (at pH 5.0) of the melt crystallized eutectics was enhanced compared to the simple physical mixture of the same compositions and neat NPX, which was attributed to the microscopically observed lamellar structures. The current study should support the systematic investigations of API eutectic mixtures by selecting appropriate eutectic-forming additives.
Collapse
Affiliation(s)
| | | | - Il Won Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea; (D.K.); (S.J.)
| |
Collapse
|
46
|
Synthesis, Characterization, and Intrinsic Dissolution Studies of Drug-Drug Eutectic Solid Forms of Metformin Hydrochloride and Thiazide Diuretics. Pharmaceutics 2021; 13:pharmaceutics13111926. [PMID: 34834341 PMCID: PMC8620433 DOI: 10.3390/pharmaceutics13111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochloride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported. Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e., drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases. These new DDESs were further characterized by different techniques, including thermal analysis (DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ (χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and 0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement in solubility. From these dissolution profiles and saturation solubility studies and by comparing the thermodynamic parameters (ΔHfus and ΔSfus) of the pure drugs with these new solid forms, it can be observed that there was a limited modification in these properties, not modifying the free energy of the solution (ΔG) and thus not allowing an improvement in the dissolution and solubility properties of these solid forms.
Collapse
|
47
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
48
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
49
|
Liu Y, Cao C, Song Y, Zhou S, Yang Y, Xu N, Yang Q, Dong J, Ai X. Pharmacokinetics, bioavailability, and tissue disposal profiles of Tiamulin fumarate in Nile tilapia (Oreochromis niloticus) following oral and intravenous administrations. J Vet Pharmacol Ther 2021; 44:590-602. [PMID: 33675107 DOI: 10.1111/jvp.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Tiamulin fumarate (TIF) is a pleuromutilin antibiotic and has high activity against animal bacterial pathogens including aquatic bacterial pathogens. However, its pharmacokinetic profiles, tissue distribution characteristics and bioavailability in aquatic animals remain unknown. The objective of this study was to investigate the pharmacokinetics and tissue distribution regularities of TIF in tilapia (Oreochromis niloticus) following a single oral (PO) dose of 20 mg/kg body weight (bw) and a single intravenous (IV) dose of 5 mg/kg bw at 22 ± 1°C, respectively. TIF concentrations in tilapia plasma and tissues were determined using the isotope dilution HPLC-HESI-MS/MS procedure, which was validated according to the guidelines defined by US Food and Drug Administration. TIF was well distributed throughout the body compartments of tilapia judged by the apparent volume of distribution (Vd ) >1 L/kg (6.69 L/kg PO and 1.78 L/kg IV). TIF had a short mean residence time (MRT; 22.82 h PO and 14.61 h IV) and quick total body clearance (CLb ) (0.62 L kg-1 h-1 PO and 0.60 L kg-1 h-1 IV). The total area under the curve (AUCtot ) of plasma were 32.25 μg h-1 ml-1 (PO) and 8.30 μg h-1 ml (IV), respectively, and the oral absolute bioavailability (F%) of TIF was calculated to be approximately 97.1%. For tissue distribution, high concentrations of TIF were found in kidney, and the longest MRT was recorded in bile. The withdrawal time (WT) of TIF in muscle, skin, liver, kidney, gill, and bile was 3.75 (4) and 1.79 (2), 1.77 (2) and 2.06 (3), 6.41 (7) and 1.97 (2), 6.95 (7) and 3.98 (4), 4.92 (5) and 2.36 (3), and 7.06 (8) and 6.16 (7) days after PO and IV administration, respectively. The present investigations indicated that TIF was quickly absorbed, well distributed, rapidly eliminated in tilapia, and it could serve as reference data for establishing use regimen and provide useful information for the further development of TIF in aquaculture.
Collapse
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Cuiyu Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yi Song
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
50
|
Haneef J, Ali S, Chadha R. Emerging Multi-Drug Eutectics: Opportunities and Challenges. AAPS PharmSciTech 2021; 22:66. [PMID: 33554308 DOI: 10.1208/s12249-021-01939-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Complexity and heterogeneous nature of most diseases have posed greater challenges in the modern healthcare system. Fixed-dose combination can offer an ideal way to improve patient compliance and higher therapeutic efficacy. However, biopharmaceutical issues associated with the drug combinations remain unaddressed. Multidrug eutectics (MDE) have demonstrated significant promise in improving the biopharmaceutical attributes with synergistic therapeutic action. Eutectic mixtures are the multicomponent solid forms that possess lesser melting point than the individual components at a fixed composition. Non-covalent linking of drug combinations as MDE is an innovative strategy with enhanced solubility, dissolution, and mechanical and potential therapeutic efficacy. This review provides a comprehensive overview of the design of MDE, rational selection of drugs, characterization tools, and their therapeutic potential. Besides, the futuristic perspective where MDE could make a significant impact on combination therapy is briefly outlined. Graphical Abstract.
Collapse
|