1
|
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L, Weber B. The Ambivalent Role of miRNA-21 in Trauma and Acute Organ Injury. Int J Mol Sci 2024; 25:11282. [PMID: 39457065 PMCID: PMC11508407 DOI: 10.3390/ijms252011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Since their initial recognition, miRNAs have been the subject of rising scientific interest. Especially in recent years, miRNAs have been recognized to play an important role in the mediation of various diseases, and further, their potential as biomarkers was recognized. Rising attention has also been given to miRNA-21, which has proven to play an ambivalent role as a biomarker. Responding to the demand for biomarkers in the trauma field, the present review summarizes the contrary roles of miRNA-21 in acute organ damage after trauma with a specific focus on the role of miRNA-21 in traumatic brain injury, spinal cord injury, cardiac damage, lung injury, and bone injury. This review is based on a PubMed literature search including the terms "miRNA-21" and "trauma", "miRNA-21" and "severe injury", and "miRNA-21" and "acute lung respiratory distress syndrome". The present summary makes it clear that miRNA-21 has both beneficial and detrimental effects in various acute organ injuries, which precludes its utility as a biomarker but makes it intriguing for mechanistic investigations in the trauma field.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60486 Frankfurt am Main, Germany; (J.H.); (S.B.); (D.H.); (I.M.); (L.L.); (B.W.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
3
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Rafiyian M, Gouyandeh F, Saati M, Davoodvandi A, Rasooli Manesh SM, Asemi R, Sharifi M, Asemi Z. Melatonin affects the expression of microRNA-21: A mini-review of current evidence. Pathol Res Pract 2024; 254:155160. [PMID: 38277748 DOI: 10.1016/j.prp.2024.155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Melatonin (MLT) is an endogenous hormone produced by pineal gland which possess promising anti-tumor effects. Anti-inflammatory and anti-oxidant properties of MLT, along with its immunomodulatory, proapoptotic, and anti-angiogenic properties, are often referred to the main mechanisms of its anti-tumor effects. Recent evidence has suggested that epigenetic alterations are also involved in the anti-tumor properties of MLT. Among these MLT-induced epigenetic alterations is modulation of the expression of several oncogenic and tumor suppressor microRNAs(miRNAs). MiRNAs are among the most promising and potential therapeutic and diagnostic tools in different diseases and enhanced the development of better therapeutic drugs. Suppression of oncomicroRNAs such as microRNA-21, - 20a, and - 27a as well as, up-regulation of microRNA-34 a/c are among the most important effects of MLT on microRNAs homeostasis. Recently, miR-21 has attracted the attention of scientists due to the its wide range of effects on different cancers and diseases. Regulation of this RNA may be a key to the development of better therapeutic targets. The present review will summarize the findings of in vitro and experimental studies of MLT-induced impacts on the expression of microRNAs which are involved in different models and numerous stages of tumor initiation, growth, metastasis, and chemo-resistance.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Gouyandeh
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Saati
- Department of Nursing, Semnan Branch, Islamic Azad University, Semnan, Islamic Republic of Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Chen X, Tang Z. Novel application of nanomedicine for the treatment of acute lung injury: a literature review. Ther Adv Respir Dis 2024; 18:17534666241244974. [PMID: 38616385 PMCID: PMC11017818 DOI: 10.1177/17534666241244974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, China
| |
Collapse
|
6
|
Zheng L, Zhou W, Wu Y, Xu W, Hu S, Zhang Y, Xu H, Deng H, Chen Y, Wu L, Wei J, Feng D, Wang M, Zhou H, Li Q, Zhu L, Yang H, Lv X. Melatonin Alleviates Acute Respiratory Distress Syndrome by Inhibiting Alveolar Macrophage NLRP3 Inflammasomes Through the ROS/HIF-1α/GLUT1 Pathway. J Transl Med 2023; 103:100266. [PMID: 37871834 DOI: 10.1016/j.labinv.2023.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) is a devastating clinically severe respiratory disorder, and no effective therapy is available. Melatonin (MEL), an endogenous neurohormone, has shown great promise in alleviating sepsis-induced ARDS, but the underlying molecular mechanism remains unclear. Using a lipopolysaccharide (LPS)-treated mouse alveolar macrophage cell line (MH-S) model, we found that MEL significantly inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation in LPS-treated macrophages, whereas this inhibitory effect of MEL was weakened in MH-S cells transfected with glucose transporter 1 (GLUT1) overexpressing lentivirus. Further experiments showed that MEL downregulated GLUT1 via inhibition of hypoxia-inducible factor 1 (HIF-1α). Notably, hydrogen peroxide (H2O2), a donor of reactive oxygen species (ROS), significantly increased the level of intracellular ROS and inhibited the regulatory effect of MEL on the HIF-1α/GLUT1 pathway. Interestingly, the protective effect of MEL was attenuated after the knockdown of melatonin receptor 1A (MT1) in MH-S cells. We also confirmed in vivo that MEL effectively downregulated the HIF-1α/GLUT1/NLRP3 pathway in the lung tissue of LPS-treated mice, as well as significantly ameliorated LPS-induced lung injury and improved survival in mice. Collectively, these findings revealed that MEL regulates the activation of the ROS/HIF-1α/GLUT1/NLRP3 pathway in alveolar macrophages via the MT1 receptor, further alleviating sepsis-induced ARDS.
Collapse
Affiliation(s)
- Li Zheng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yutong Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiguo Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huan Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingmin Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Farid A, Michael V, Safwat G. Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat's liver from the hazardous effects of CCL4. Sci Rep 2023; 13:16424. [PMID: 37777583 PMCID: PMC10543381 DOI: 10.1038/s41598-023-43546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Liver is an important organ that carries out major important functions including the detoxification of harmful chemicals. Numerous studies have lately focused on the impact of various substances, such as chemical pollutants and pharmaceutical drugs, on the liver. Melatonin (Mel) has been reported for the protection against liver injury. In order to enhance Mel therapeutic benefits and prevent any potential negative effects, Mel has to be delivered to the injured liver. Therefore, the goal of the current investigation was to create Mel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Mel-PLGA NPs) to alleviate carbon tetrachloride (CCL4)-induced liver damage in male Sprague Dawley rats. The prepared Mel-PLGA NPs were physically characterized to determine its size and charge. Moreover, Mel-PLGA NPs were examined, in vitro, to determine its antioxidant, anticoagulant, anti-inflammatory and cytotoxicity effects before being used in vivo. The effect of NPs on liver injury was evaluated through biochemical, immunological, histopathological examination and flow cytometry technique. Mel-PLGA NPs were smooth and spherical with no signs of aggregation and have in vitro antioxidant, anti-inflammatory and anticoagulant effects. NPs varied in size from 87 to 96 nm in transmission electron microscope images, while their hydrodynamic diameter was 41 nm and their zeta potential was -6 mV. Mel-PLGA NPs had encapsulation efficiency (EE%) and drug loading (DL%) of 59.9 and 12.5%, respectively. Treatment with Mel-PLGA NPs ameliorated all histopathological changes, in liver sections, that resulted from CCL4 administration; where, liver sections of treated groups were similar to those of healthy control GI. NPs administration were superior to free Mel and reversed the elevated levels of liver function enzymes, inflammatory cytokines and matrix metalloproteinases to their normal levels. Moreover, liver sections of groups treated with NPs showed negative immunostaining for nuclear factor-κB (NF-κB) and C-reactive protein indicating their anti-inflammatory behavior. Mel-PLGA NPs significantly protected liver from the toxicity of CCL4. The effective dose of NPs was 5 mg/kg indicating a reduction in the required Mel dose and its associated adverse effects.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Valina Michael
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
8
|
Zhang T, Zhang L, Huang G, Hao X, Liu Z, Huo S. MEL regulates miR-21 and let-7b through the STAT3 cascade in the follicular granulosa cells of Tibetan sheep. Theriogenology 2023; 205:114-129. [PMID: 37120893 DOI: 10.1016/j.theriogenology.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023]
Abstract
Under physiological and pathological conditions, melatonin (MEL) can regulate microRNA (miRNA) expression. However, the mechanisms underlying the regulatory effects of MEL on miRNAs in ovaries are not understood. Firstly, by using fluorescence in situ hybridisation, we found that in ovaries and follicular granulosa cells (FGCs), MT1 co-located with miR-21 and let-7b. Additionally, immunofluorescence revealed that MT1, STAT3, c-MYC and LIN28 proteins co-located. The mRNA and protein levels of STAT3, c-MYC and LIN28 increased under treatment with 10-7 M MEL. MEL induced an increase in miR-21 and a decrease in let-7b. The LIN28/let-7b and STAT3/miR-21 axes are related to cell differentiation, apoptosis and proliferation. We explored whether the STAT3/c-MYC/LIN28 pathway was involved in miRNA regulation by MEL to explore the putative mechanism of the above relationship. AG490, an inhibitor of the STAT3 pathway, was added before MEL treatment. AG490 inhibited the MEL-induced increases in STAT3, c-MYC, LIN28 and MT1 and changes in miRNA. Through live-cell detection, we discovered that MEL enhanced the proliferation of FGCs. However, the ki67 protein levels decreased when AG490 was added in advance. Furthermore, the dual-luciferase reporter assay verified that STAT3, LIN28 and MT1 were target genes of let-7b. Furthermore, STAT3 and SMAD7 were target genes of miR-21. In addition, the protein levels of the STAT3, c-MYC, LIN28 and MEL receptors decreased when let-7b was overexpressed in FGCs. Overall, MEL might regulate miRNA expression through the STAT3 pathway. In addition, a negative feedback loop between the STAT3 and miR-21 formed; MEL and let-7b antagonized each other in FGCs. These findings may provide a theoretical basis for improving the reproductive performance of Tibetan sheep through MEL and miRNAs.
Collapse
Affiliation(s)
- Taojie Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| | - Lijuan Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Guoliang Huang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Xiaomeng Hao
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Zezheng Liu
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Shengdong Huo
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Depleted uranium causes renal mitochondrial dysfunction through the ETHE1/Nrf2 pathway. Chem Biol Interact 2023; 372:110356. [PMID: 36681261 DOI: 10.1016/j.cbi.2023.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The kidney is the main organ affected by acute depleted uranium (DU) toxicity. The mechanism of nephrotoxicity induced by DU is complex and needs to be further explored. This study aimed to elucidate the function of mitochondrial dysfunction in nephrotoxicity generated by DU and confirm the latent mechanism. We verified that DU (2.5-10 mg/kg) caused mitochondrial dysfunction in male rat kidneys and decreased ATP content and the mitochondrial membrane potential. In addition, melatonin (20 mg/kg), as an antioxidant, alleviated DU-induced oxidative stress and mitochondrial dysfunction in male rats, further reducing kidney damage caused by DU. These results indicate that mitochondrial dysfunction plays a vital role in DU nephrotoxicity. When ethylmalonic encephalopathy 1 (ETHE1) was knocked down, DU-induced oxidative stress and mitochondrial dysfunction were increased, and renal injury was aggravated. When exogenous ETHE1 protein was applied to renal cells, the opposite changes were observed. We also found that ETHE1 knockdown increased the expression of NF-E2-related factor 2 (Nrf2), a vital oxidative stress regulator, and its downstream molecules heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). Nrf2 knockout also aggravated DU-induced oxidative stress, mitochondrial dysfunction, and kidney damage. In conclusion, DU causes oxidative stress and antioxidant defense imbalance in renal cells through the ETHE1/Nrf2 pathway, further causing mitochondrial dysfunction and ultimately leading to nephrotoxicity.
Collapse
|
10
|
Lai X, Najafi M. Redox Interactions in Chemo/Radiation Therapy-induced Lung Toxicity; Mechanisms and Therapy Perspectives. Curr Drug Targets 2022; 23:1261-1276. [PMID: 35792117 DOI: 10.2174/1389450123666220705123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
Lung toxicity is a key limiting factor for cancer therapy, especially lung, breast, and esophageal malignancies. Radiotherapy for chest and breast malignancies can cause lung injury. However, systemic cancer therapy with chemotherapy may also induce lung pneumonitis and fibrosis. Radiotherapy produces reactive oxygen species (ROS) directly via interacting with water molecules within cells. However, radiation and other therapy modalities may induce the endogenous generation of ROS and nitric oxide (NO) by immune cells and some nonimmune cells such as fibroblasts and endothelial cells. There are several ROS generating enzymes within lung tissue. NADPH Oxidase enzymes, cyclooxygenase-2 (COX-2), dual oxidases (DUOX1 and DUOX2), and the cellular respiratory system in the mitochondria are the main sources of ROS production following exposure of the lung to anticancer agents. Furthermore, inducible nitric oxide synthase (iNOS) has a key role in the generation of NO following radiotherapy or chemotherapy. Continuous generation of ROS and NO by endothelial cells, fibroblasts, macrophages, and lymphocytes causes apoptosis, necrosis, and senescence, which lead to the release of inflammatory and pro-fibrosis cytokines. This review discusses the cellular and molecular mechanisms of redox-induced lung injury following cancer therapy and proposes some targets and perspectives to alleviate lung toxicity.
Collapse
Affiliation(s)
- Xixi Lai
- The Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|