1
|
Liu F, Li Y, Li Y, Wang Z, Li X, Liu Y, Zhao Y. Triggering multiple modalities of cell death via dual-responsive nanomedicines to address the narrow therapeutic window of β-lapachone. J Colloid Interface Sci 2025; 678:915-924. [PMID: 39270391 DOI: 10.1016/j.jcis.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The clinical translation of the anticancer drug β-lapachone (LAP) has been limited by the narrow therapeutic window. Stimuli-responsive anticancer drug delivery systems have gained tremendous attention in recent years to alleviate adverse effects and enhance therapeutic efficacy. Here, we report a dual pH- and enzyme-responsive nanocarrier to address the above issue of LAP. In detail, the epigallocatechin gallate (EGCG) and ferric ions were employed to engineer nanoscale ferric ion-polyphenol complexes where LAP was physically encapsulated therein. The coordination bond between Fe3+ and the catechol moiety of EGCG was sensitive to the low pH, enabling the triggered cargo release in the acidic endosomes/lysosomes. Afterward, the released LAP was activated by the overexpressed NAD(P)H: quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1) in the tumor cells, followed by the generation of reactive oxygen species (ROS), and the induction of oxidative stress and apoptotic cell death. Meanwhile, EGCG could upregulate gasdermin E (GSDME), and ferric ions were involved in the Fenton reaction. Hence, EGCG and ferric ions could sensitize the toxicity of LAP through the induction of multiple cell death pathways (e.g., pyroptosis, ferroptosis, apoptosis, and necroptosis). The current work enlarged the LAP's therapeutic window via controlled cargo release and vehicle sensitization.
Collapse
Affiliation(s)
- Fang Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yaru Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zheng Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Yancheng Liu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, Tiajin University, 406 Jiefangnan Road, Hexi District, Tianjin 300211, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
2
|
Wu W, Jiang X, Zeng Q, Zou H, Deng C. Facile and green synthesis of Au nanoparticles decorated Epigallocatechin-3-Gallate nanospheres with enhanced performance in stability, photothermal conversion and nanozymatic activity. BIOMATERIALS ADVANCES 2025; 166:214050. [PMID: 39317045 DOI: 10.1016/j.bioadv.2024.214050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
In this study, epigallocatechin-3-gallate nanospheres (EGCG NSs) are employed as an innovative alternative to traditional reducing agents for the in-situ growth of AuNPs on the EGCG NS surface to produce the Au nanoparticles decorated EGCG nanospheres (EGCG NS@AuNPs). This eco-friendly approach avoids toxic chemicals and simplifies the synthesis process, enhancing biocompatibility and functional properties of the resulting EGCG NS@AuNPs nanocomposite. The nanocomposite exhibits remarkable stability, photothermal properties, and peroxidase-like enzymatic activity. Taking advantage of the enhanced photothermal properties, the application of EGCG NS@AuNPs in the antibacterial field was investigated, and the antibacterial activity was greatly improved against both Gram-negative and Gram-positive bacteria comparing to bare AuNPs or EGCG NS. Additionally, based on the excellent enzymatic activity, the sensing application of EGCG NS@AuNPs was explored by developing a colorimetric method for detecting ascorbic acid (AA). A remarkably low detection limit of 0.076 μM was achieved. This method has been successfully applied to measure the AA content in vitamin C tablets, demonstrating the practicality and accuracy of this approach. Therefore, the synthesis for EGCG NS@AuNPs is not only rapid, and cost-effective, but also eco-friendly and not harmful to biological systems, which is potential in biosensing, clinical diagnosis, and therapeutics. Future research could explore further applications of EGCG NS@AuNPs in biomedicine field, revealing even more of its remarkable potential.
Collapse
Affiliation(s)
- Wuming Wu
- School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xiaolian Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huiyu Zou
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China..
| |
Collapse
|
3
|
Ran Y, Li F, Xu Z, Zeng K, Ming J. Recent advances in dietary polyphenols (DPs): antioxidant activities, nutrient interactions, delivery systems, and potential applications. Food Funct 2024; 15:10213-10232. [PMID: 39283683 DOI: 10.1039/d4fo02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Dietary polyphenols (DPs) have garnered growing interest because of their potent functional properties and health benefits. Nevertheless, the antioxidant capabilities of these substances are compromised by their multifarious structural compositions. Furthermore, most DPs are hydrophobic and unstable when subjected to light, heat, and varying pH conditions, restricting their practical application. Delivery systems based on the interactions of DPs with food constituents such as proteins, polypeptides, polysaccharides, and metal ions are being created as a viable option to improve the functional activities and bioavailability of DPs. In this review, the latest discoveries on the dietary sources, structure-antioxidant activity relationships, and interactions with nutrients of DPs are discussed. It also innovatively highlights the application progress of polyphenols and their green nutraceutical delivery systems. The conclusion drawn is that the various action sites and structures of DPs are beneficial for predicting and designing polyphenols with enhanced antioxidant attributes. The metal complexation of polyphenols and green encapsulation systems display promising outcomes for stabilizing DPs during food processing and in vivo digestion. In the future, more novel targeted delivery systems of DPs for nutrient fortification and intervention should be developed. To expand their usage in customized food products, they should meet the requirements of specific populations for personalized food and nutrition.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Kaihong Zeng
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Kou F, Wang W, You S, Wei X, Wu X. Preparation and characterization of metal-polyphenol networks encapsulated in sodium alginate microbead hydrogels for catechin and vitamin C delivery. Int J Biol Macromol 2024; 276:133870. [PMID: 39009264 DOI: 10.1016/j.ijbiomac.2024.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
A novel encapsulation system was designed, utilizing sodium alginate (SA) polysaccharide as the matrix and easily absorbed Fe2+ as the metal-organic framework, to construct microbead scaffolds with both high catechins (CA) and vitamin C (Vc) loading and antioxidant properties. The structure of microbead hydrocolloids was investigated using SEM, XPS, FTIR, XRD and thermogravimetry, and the antioxidant activity, in vitro digestion and the release of CA and Vc were evaluated. These results revealed that the microbead hydrocolloids SA-CA-Fe and SA-CA-Vc-Fe exhibited denser and stronger cross-linking structures, and the formation of inter- and intramolecular hydrogen and coordination bonds improved thermal stability. Moreover, SA-CA-Fe (44.9 % DPPH and 47.8 % ABTS) and SA-CA-Vc-Fe (89.9 % DPPH and 89.3 % ABTS) displayed strong antioxidant activity. Importantly, they were non-toxic in Caco2 cells. The SA-CA-Fe and SA-CA-Vc-Fe achieved significantly higher CA (56.9 and 62.7 %, respectively) and Vc (42.2 %) encapsulation efficiency while maintaining higher CA and Vc release in small intestinal environment. These results suggested that SA polysaccharide-based encapsulation system using Fe2+ framework as scaffold had greater potential for delivery and controlled release of CA and Vc than conventional hydrocolloids, which could provide new insights into the construction of high loading, safe, targeted polyphenol delivery system.
Collapse
Affiliation(s)
- Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea; College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, Daqing 163319, China; School of Forestry, Northeast Forestry University, No.26 Hexing Road, Harbin 150030, China; National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing 163319, China.
| | - Sangguan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, South Korea.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
5
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
6
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
7
|
Shen Y, Gwak H, Han B. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. Analyst 2024; 149:614-637. [PMID: 38083968 PMCID: PMC10842755 DOI: 10.1039/d3an01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hogyeong Gwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Wang Q, Rao Z, Chen Y, Jiang L, Lei X, Zhao J, Li F, Lei L, Ming J. Fabrication and characterization of oleogels stabilized by metal-phenolic network coatings-decorated zein nanoparticles. Food Chem 2024; 430:137025. [PMID: 37549630 DOI: 10.1016/j.foodchem.2023.137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Self-assembly coatings are used to functionalize the surface structures of protein. Herein, emulsion-templated approach was adopted to obtain oleogels using metal-phenolic network coatings-decorated zein nanoparticles. Two self-assembly strategies were used to decorate zein nanoparticles: 1) adding (-)-epigallocatechin-3-gallate (EGCG) first and then calcium ions (Ca2+) (zein/EGCG/Ca2+ nanoparticles). 2) adding Ca2+ first and then EGCG (zein/Ca2+/EGCG nanoparticles). The formation of nanoparticles, the stability of emulsions and the rheological behaviors of oleogels were modulated by using different adding sequences of EGCG and Ca2+. Nanoparticles prepared by two self-assembly strategies exhibited increasing diameter (340-360 nm). More Ca2+ participated in the formation of zein/EGCG/Ca2+ nanoparticles, as described by X-ray photoelectron spectroscopy analysis. Metal-phenolic network coatings facilitated the formation of well-structured emulsions and oleogels, which were candidates for fat substitutes and stable carriers. Findings confirmed metal-phenolic network coatings-decorated zein nanoparticles were effective stabilizers for emulsions and oleogels, further expanding the selectivity of oleogelators.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
9
|
Chen X, Zhang L, Zeng H, Meng W, Liu G, Zhang W, Zhao P, Zhang Q, Chen M, Chen J. Manganese-Based Immunomodulatory Nanocomposite with Catalase-Like Activity and Microwave-Enhanced ROS Elimination Ability for Efficient Rheumatoid Arthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304610. [PMID: 37632302 DOI: 10.1002/smll.202304610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O2 content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn3 O4 ) nanoparticles anchored on UiO-66-NH2 are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH2 @Mn3 O4 /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H2 O2 ) disintegrates the exposed Mn3 O4 NPs to promote ROS scavenging and O2 generation. Assisted by MW irradiation, the elevated O2 content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.
Collapse
Affiliation(s)
- Xiaotong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haifeng Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guijiang Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
10
|
Mao S, Ren Y, Chen S, Liu D, Ye X, Tian J. Development and characterization of pH responsive sodium alginate hydrogel containing metal-phenolic network for anthocyanin delivery. Carbohydr Polym 2023; 320:121234. [PMID: 37659819 DOI: 10.1016/j.carbpol.2023.121234] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 09/04/2023]
Abstract
Favorable hydrogels can be used as a material to deliver bioactive molecules and improve the stability of bioactive substances, while their safety needs to be improved. In this study, protocatechuic acid (PCA) and Fe3+ were rapidly self-assembled to form a metal-phenolic network under different pH conditions, and then sodium alginate (SA) was added to prepare the SA/PCA/Fe hydrogel without adding other chemical reagents. The structural characteristic of SA/PCA/Fe hydrogel was characterized by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The results showed that the structures of SA/PCA/Fe hydrogels prepared at different pH values were significantly different. The texture analysis, water-holding measurement and rheological analysis indicated that the SA/PCA/Fe hydrogel showed higher gel strength, water holding capacity and storage modulus. Thermogravimetric analysis illuminated that the SA/PCA/Fe hydrogel enhanced the thermal stability of free anthocyanins through encapsulating anthocyanins. Moreover, in vitro simulated digestion experiment revealed that SA/PCA/Fe hydrogel could control the release of anthocyanins in the simulated gastrointestinal tract. To sum up, this present study might provide a safer and feasible way for the delivery of bioactive substances.
Collapse
Affiliation(s)
- Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| |
Collapse
|
11
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Zhao F, Yu H, Liang L, Wang C, Shi D, Zhang X, Ying Y, Cai W, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Redox Homeostasis Disruptors Based on Metal-Phenolic Network Nanoparticles for Chemo/Chemodynamic Synergistic Tumor Therapy through Activating Apoptosis and Cuproptosis. Adv Healthc Mater 2023; 12:e2301346. [PMID: 37369362 DOI: 10.1002/adhm.202301346] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023]
Abstract
The combination of chemo/chemodynamic therapy is a promising strategy for improving antitumor efficacy. Herein, metal-phenolic network nanoparticles (NPs) self-assembled from copper ions and gallic acid (Cu-GA) are developed to evoke apoptosis and cuproptosis for synergistic chemo/chemodynamic therapy. The Cu-GA NPs are biodegraded in response to the highly expressed glutathione (GSH) in tumor cells, resulting in the simultaneous release of Cu+ and GA. The intracellular GSH content is dramatically reduced by the released GA, rendering the tumor cells incapable of scavenging reactive oxygen species (ROS) and more susceptible to cuproptosis. Meanwhile, ROS levels within the tumor cells are significantly increased by the Fenton-like reaction of released Cu+ , which disrupts redox homeostasis and achieves apoptosis-related chemodynamic therapy. Moreover, massive accumulation of Cu+ in the tumor cells further induces aggregation of lipoylated dihydrolipoamide S-acetyltransferase and downregulation of iron-sulfur cluster protein, activating cuproptosis to enhance the antitumor efficacy of Cu-GA NPs. The experiments in vivo further demonstrate that Cu-GA NPs exhibited the excellent biosafety and superior antitumor capacity, which can efficiently inhibit the growth of tumors due to the activation by the tumor specific GSH and hydrogen peroxide. These Cu-based metal-phenolic network NPs provide a potential strategy to build up efficient and safe cancer therapy.
Collapse
Affiliation(s)
- Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongyan Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liying Liang
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chen Wang
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 331423, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Cai
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
13
|
Qin J, Guo N, Yang J, Chen Y. Recent Advances of Metal-Polyphenol Coordination Polymers for Biomedical Applications. BIOSENSORS 2023; 13:776. [PMID: 37622862 PMCID: PMC10452320 DOI: 10.3390/bios13080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Nanomedicine has provided cutting-edge technologies and innovative methods for modern biomedical research, offering unprecedented opportunities to tackle crucial biomedical issues. Nanomaterials with unique structures and properties can integrate multiple functions to achieve more precise diagnosis and treatment, making up for the shortcomings of traditional treatment methods. Among them, metal-polyphenol coordination polymers (MPCPs), composed of metal ions and phenolic ligands, are considered as ideal nanoplatforms for disease diagnosis and treatment. Recently, MPCPs have been extensively investigated in the field of biomedicine due to their facile synthesis, adjustable structures, and excellent biocompatibility, as well as pH-responsiveness. In this review, the classification of various MPCPs and their fabrication strategies are firstly summarized. Then, their significant achievements in the biomedical field such as biosensing, drug delivery, bioimaging, tumor therapy, and antibacterial applications are highlighted. Finally, the main limitations and outlooks regarding MPCPs are discussed.
Collapse
Affiliation(s)
- Jing Qin
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China; (N.G.); (J.Y.); (Y.C.)
| | | | | | | |
Collapse
|
14
|
Kim KH, Ki MR, Min KH, Pack SP. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy. Antioxidants (Basel) 2023; 12:antiox12051048. [PMID: 37237914 DOI: 10.3390/antiox12051048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.
Collapse
Affiliation(s)
- Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
15
|
Shen Y, Yuk SA, Kwon S, Tamam H, Yeo Y, Han B. A timescale-guided microfluidic synthesis of tannic acid-Fe III network nanocapsules of hydrophobic drugs. J Control Release 2023; 357:484-497. [PMID: 37068522 PMCID: PMC10225907 DOI: 10.1016/j.jconrel.2023.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Many drugs are poorly water-soluble and suffer from low bioavailability. Metal-phenolic network (MPN), a hydrophilic thin layer such as tannic acid (TA)-FeIII network, has been recently used to encapsulate hydrophobic drugs to improve their bioavailability. However, it remains challenging to synthesize nanocapsules of a wide variety of hydrophobic drugs and to scale up the production in a continuous manner. Here, we present a microfluidic synthesis method to continuously produce TA-FeIII network nanocapsules of hydrophobic drugs. We hypothesize that nanocapsules can continuously be formed only when the microfluidic mixing timescale is shorter than the drug's nucleation timescale. The hypothesis was tested on three hydrophobic drugs - paclitaxel, curcumin, and vitamin D with varying solubility and nucleation timescale. The proposed mechanism was validated by successfully predicting the synthesis outcomes. The microfluidically-synthesized nanocapsules had well-controlled sizes of 100-200 nm, high drug loadings of 40-70%, and a throughput of up to 70 mg hr-1 per channel. The release kinetics, cellular uptake, and cytotoxicity were further evaluated. The effect of coating constituents on nanocapsule properties were characterized. Fe content of nanocapsules was reported. The stability of nanocapsules at different temperatures and pHs were also tested. The results suggest that the present method can provide a quantitative guideline to predictively design a continuous synthesis scheme for hydrophobic drug encapsulation via MPN nanocapsules with scaled-up capability.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Simseok A Yuk
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Hassan Tamam
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Department of industrial pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Santhamoorthy M, Vy Phan TT, Ramkumar V, Raorane CJ, Thirupathi K, Kim SC. Thermo-Sensitive Poly (N-isopropylacrylamide-co-polyacrylamide) Hydrogel for pH-Responsive Therapeutic Delivery. Polymers (Basel) 2022; 14:polym14194128. [PMID: 36236077 PMCID: PMC9572693 DOI: 10.3390/polym14194128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Stimuli-response polymeric nanoparticles have emerged as a carrier system for various types of therapeutic delivery. In this study, we prepared a dual pH- and thermo-sensitive copolymer hydrogel (HG) system (PNIPAm-co-PAAm HG), using N-isopropyl acrylamide (NIPAm) and acrylamide (AAm) as comonomers. The synthesized PNIPAm-co-PAAm HG was characterized using various instrumental characterizations. Moreover, the PNIPAm-co-PAAm HG's thermoresponsive phase transition behavior was investigated, and the results showed that the prepared HG responds to temperature changes. In vitro drug loading and release behavior of PNIPAm-co-PAAm HG was investigated using Curcumin (Cur) as the model cargo under different pH and temperature conditions. The PNIPAm-co-PAAm HG showed pH and temperature-responsive drug release behavior and demonstrated about 65% Cur loading efficiency. A nearly complete release of the loaded Cur occurred from the PNIPAm-co-PAAm HG over 4 h at pH 5.5 and 40 °C. The cytotoxicity study was performed on a liver cancer cell line (HepG2 cells), which revealed that the prepared PNIPAm-co-PAAm HG showed good biocompatibility, suggesting that it could be applied as a drug delivery carrier. Moreover, the in vitro cytocompatibility test (MTT assay) results revealed that the PNIPAm-co-PAAm HG is biocompatible. Therefore, the PNIPAm-co-PAAm HG has the potential to be useful in the delivery of drugs in solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Kokila Thirupathi
- Department of Physics, Sri Moogambigai College of Arts and Science for Women, Palacode 636808, India
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (M.S.); (K.T.); (S.-C.K.)
| |
Collapse
|
17
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Chen Y, Wang J, Rao Z, Hu J, Wang Q, Sun Y, Lei X, Zhao J, Zeng K, Xu Z, Ming J. Study on the stability and oral bioavailability of curcumin loaded (-)-epigallocatechin-3-gallate/poly(N-vinylpyrrolidone) nanoparticles based on hydrogen bonding-driven self-assembly. Food Chem 2022; 378:132091. [PMID: 35032808 DOI: 10.1016/j.foodchem.2022.132091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The biological activity and absorption of curcumin (Cur) is limited in application due to its low water solubility, poorstabilityand rapid metabolism. In this work, Cur loaded (-)-epigallocatechin-3-gallate (EGCG)/poly(N-vinylpyrrolidone) (PVP) nanoparticles (CEP-NPs) was successfully fabricated via self-assembly driven by hydrogen bonding, providing with desirable Cur-loading efficiency, high stability, strong antioxidant capacity, and pH-triggered intestinal targeted release properties. Molecular dynamics simulations further indicated the Cur was coated with EGCG and PVP in CEP-NPs and high acid prolonged release property was attribute to low ionization degree of EGCG. Besides, the enhanced intestinal absorption of Cur was related to inhibition of Cur metabolism by EGCG, enhancement of cellular uptake and higher Caco-2 monolayer permeation. Pharmacokinetic study showed that the oral bioavailability presented nearly 12-fold increment. Therefore, this study provides a new horizon for improving the Cur utilization in food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jingting Wang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yueru Sun
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|