1
|
Deshmukh V, Pathan NS, Haldar N, Nalawade S, Narwade M, Gajbhiye KR, Gajbhiye V. Exploring intranasal drug delivery via nanocarriers: A promising glioblastoma therapy. Colloids Surf B Biointerfaces 2025; 245:114285. [PMID: 39366109 DOI: 10.1016/j.colsurfb.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Glioblastoma is one of the most recurring types of glioma, having the highest mortality rate among all other gliomas. Traditionally, the standard course of treatment for glioblastoma involved maximum surgical resection, followed by chemotherapy and radiation therapy. Nanocarriers have recently focused on enhancing the chemotherapeutic administration to the brain to satisfy unmet therapeutic requirements for treating brain-related disorders. Due to the significant drawbacks and high recurrence rates of gliomas, intranasal administration of nanocarrier systems presents several advantages. These include low toxicity, non-invasiveness, and the ability to cross the blood-brain barrier. By customizing their size, encasing them with mucoadhesive agents, or undergoing surface modification that encourages movement over the nose's mucosa, we can exceptionally engineer nanocarriers for intranasal administration. Olfactory and trigeminal nerves absorb drugs administered nasally and transport them to the brain, serving as the primary delivery mechanism for nose-to-brain administration. This review sums up the latest developments in chemotherapeutic nanocarriers, such as metallic nanoparticles, polymeric nanoparticles, nanogels, nano vesicular carriers, genetic material-based nanocarriers, and polymeric micelles. These nanocarriers have demonstrated efficient drug delivery from the nose to the brain, effectively overcoming mucociliary clearance. However, challenges persist, such as limitations in targeted chemotherapy and restricted drug loading capacity for intranasal administration. Additionally, the review addresses regulatory considerations and prospects for these innovative drug delivery systems.
Collapse
Affiliation(s)
- Vishawambhar Deshmukh
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Niladri Haldar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India
| | - Shubhangi Nalawade
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Mahavir Narwade
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India
| | - Kavita R Gajbhiye
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Erandwane, Pune 411038, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| |
Collapse
|
2
|
Ferreira NN, Leite CM, Moreno NS, Miranda RR, Pincela Lins PM, Rodero CF, de Oliveira Junior E, Lima EM, Reis RM, Zucolotto V. Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39692595 DOI: 10.1021/acsami.4c16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(d,l-lactic-co-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the ex vivo nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. In vivo biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.
Collapse
Affiliation(s)
- Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Celisnolia Morais Leite
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Natália Sanchez Moreno
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Paula Maria Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Camila Fernanda Rodero
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| | - Edilson de Oliveira Junior
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Eliana Martins Lima
- Laboratório de Nanotecnologia Farmacêutica e Sistemas de Liberação de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás - UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, Barretos, SP 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense, 400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
3
|
Kumar A, Shukla R. Current strategic arsenal and advances in nose to brain nanotheranostics for therapeutic intervention of glioblastoma multiforme. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250527 DOI: 10.1080/09205063.2024.2396721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The fight against Glioblastoma multiforme (GBM) is ongoing and the long-term outlook for GBM remains challenging due to low prognosis but every breakthrough brings us closer to improving patient outcomes. Significant hurdles in GBM are heterogeneity, fortified tumor location, and blood-brain barrier (BBB), hindering adequate drug concentrations within functioning brain regions, thus leading to low survival rates. The nasal passageway has become an appealing location to commence the course of cancer therapy. Utilization of the nose-to-brain (N2B) route for drug delivery takes a sidestep from the BBB to allow therapeutics to directly access the central nervous system (CNS) and enhance drug localization in the vicinity of the tumor. This comprehensive review provides insights into pertinent anatomy and cellular organization of the nasal cavity, present-day diagnostic tools, intracranial invasive therapies, and advancements in intranasal (IN) therapies in GBM models for better clinical outcomes. Also, this review highlights groundbreaking carriers and delivery techniques that could revolutionize GBM management such as biomimetics, image guiding-drug delivery, and photodynamic and photothermal therapies for GBM management.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| |
Collapse
|
4
|
Hameedat F, Mendes BB, Conniot J, Di Filippo LD, Chorilli M, Schroeder A, Conde J, Sousa F. Engineering nanomaterials for glioblastoma nanovaccination. NATURE REVIEWS MATERIALS 2024; 9:628-642. [DOI: 10.1038/s41578-024-00684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 01/03/2025]
|
5
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Mardikasari SA, Katona G, Sipos B, Csóka I. Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions. Expert Opin Drug Deliv 2024; 21:611-625. [PMID: 38588551 DOI: 10.1080/17425247.2024.2341184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Malekpour MR, Hosseindoost S, Madani F, Kamali M, Khosravani M, Adabi M. Combination nanochemotherapy of brain tumor using polymeric nanoparticles loaded with doxorubicin and paclitaxel: An in vitro and in vivo study. Eur J Pharm Biopharm 2023; 193:175-186. [PMID: 37926270 DOI: 10.1016/j.ejpb.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
This study aims to overcome physiological barriers and increase the therapeutic index for the treatment of glioblastoma (GBM) tumors by using Paclitaxel (PTX) loaded Poly(lactic co-glycolic acid) nanoparticles (PTX-PLGA-NPs) and Doxorubicin (DOX) loaded Poly (lactic co-glycolic acid) nanoparticles (DOX-PLGA-NPs). The hydrodynamic diameter of nanoparticles (NPs) was characterized by dynamic light scattering (DLS) which was 94 ± 4 nm and 133 ± 6 nm for DOX-PLGA-NPs, and PTX-PLGA-NPs, respectively. The zeta potential for DOX-PLGA-NPs and PTX-PLGA-NPs were -15.2 ± 0.18 mV and -17.3 ± 0.34 mV, respectively. The cytotoxicity of PTX-PLGA-NPs and DOX-PLGA-NPs was augmented compared to DOX and PTX on C6 GBM cells. The Lactate dehydrogenase (LDH) tests for various formulations were carried out. The results indicated that the amount of released LDH was 262 ± 7.84 U.L-1 at the concentration of 2 mg/mL in the combination therapy, which was much higher than other groups (DOX-PLGA-NPs (210 ± 6.92 U.L-1), PTX-PLGA-NPs (201 ± 8.65 U.L-1), DOX (110 ± 9.81 U.L-1), PTX (95 ± 5.02 U.L-1) and PTX + DOX (67 ± 4.89 U.L-1)). MRI results of the combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs indicated that GBM tumor size decreased considerably compared to the other formulations. Also, combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs demonstrated a longer median survival of more than 80 days compared to PTX (38 days), DOX (37 days) and PTX + DOX (48 days), PTX-NPs (58 days) and DOX-NPs (62 days). The results of locomotion, body weight, rearing and grooming assays indicated that combination therapy of PTX-PLGA-NPs and DOX-PLGA-NPs had the most positive effect on the movements of rats compared to the other formulations.
Collapse
Affiliation(s)
- Mohammad Reza Malekpour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
9
|
Boyuklieva R, Zagorchev P, Pilicheva B. Computational, In Vitro, and In Vivo Models for Nose-to-Brain Drug Delivery Studies. Biomedicines 2023; 11:2198. [PMID: 37626694 PMCID: PMC10452071 DOI: 10.3390/biomedicines11082198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Direct nose-to-brain drug delivery offers the opportunity to treat central nervous system disorders more effectively due to the possibility of drug molecules reaching the brain without passing through the blood-brain barrier. Such a delivery route allows the desired anatomic site to be reached while ensuring drug effectiveness, minimizing side effects, and limiting drug losses and degradation. However, the absorption of intranasally administered entities is a complex process that considerably depends on the interplay between the characteristics of the drug delivery systems and the nasal mucosa. Various preclinical models (in silico, in vitro, ex vivo, and in vivo) are used to study the transport of drugs after intranasal administration. The present review article attempts to summarize the different computational and experimental models used so far to investigate the direct delivery of therapeutic agents or colloidal carriers from the nasal cavity to the brain tissue. Moreover, it provides a critical evaluation of the data available from different studies and identifies the advantages and disadvantages of each model.
Collapse
Affiliation(s)
- Radka Boyuklieva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Zagorchev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
10
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
11
|
Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S. Nanoparticle-Based Drug Delivery Systems: An Inspiring Therapeutic Strategy for Neurodegenerative Diseases. Polymers (Basel) 2023; 15:2196. [PMID: 37177342 PMCID: PMC10181407 DOI: 10.3390/polym15092196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases are common, incurable neurological disorders with high prevalence, and lead to memory, movement, language, and intelligence impairments, threatening the lives and health of patients worldwide. The blood-brain barrier (BBB), a physiological barrier between the central nervous system and peripheral blood circulation, plays an important role in maintaining the homeostasis of the intracerebral environment by strictly regulating the transport of substances between the blood and brain. Therefore, it is difficult for therapeutic drugs to penetrate the BBB and reach the brain, and this affects their efficacy. Nanoparticles (NPs) can be used as drug transport carriers and are also known as nanoparticle-based drug delivery systems (NDDSs). These systems not only increase the stability of drugs but also facilitate the crossing of drugs through the BBB and improve their efficacy. In this article, we provided an overview of the types and administration routes of NPs, highlighted the preclinical and clinical studies of NDDSs in neurodegenerative diseases, and summarized the combined therapeutic strategies in the management of neurodegenerative diseases. Finally, the prospects and challenges of NDDSs in recent basic and clinical research were also discussed. Above all, NDDSs provide an inspiring therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Rong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Zhizhong Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
| | - Mingyue Kong
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China;
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.D.); (X.L.); (R.J.); (Z.H.)
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China;
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
12
|
Agnihotri TG, Jadhav GS, Sahu B, Jain A. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv Transl Res 2022; 12:3104-3120. [PMID: 35570262 DOI: 10.1007/s13346-022-01173-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
The global burden of neurological disorders has been increasing day by day which calls for immediate attention to the solutions. Novel drug delivery systems are one of the alternatives that we count on to counteract these disorders. As the blood-brain barrier creates a significant hindrance to the delivery of drugs across the endothelium lining of the brain, nose-to-brain delivery has been the favorite option to administer such drugs. In recent times, bioconjugation has been viewed as a rapidly growing area in the field of pharmaceuticals. The pharmaceutical industry and academic research are investing significantly in bioconjugated structures as an attractive and advantageous potential aid to nanoparticulate delivery systems, with all of its flexible benefits in terms of tailor grafting and custom design as well as overcoming the majority of their drawbacks. This review discusses drug delivery via the intranasal route and gives insight into bioconjugation systems for drug molecules, their chemistry, and benefits over other systems. Conjugation of drugs/macromolecules with peptides, carbohydrates, ligands, and nucleic acids has also been discussed in detail. The figure represents few types of novel drug delivery systems and molecules that have been attempted by researchers for nose-to-brain delivery through nasal (mucosal) route for the effective management of epilepsy, Alzheimer's disease, brain cancer, and other brain disorders.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
13
|
Development of Thermoresponsive-Gel-Matrix-Embedded Amoxicillin Trihydrate-Loaded Bovine Serum Albumin Nanoparticles for Local Intranasal Therapy. Gels 2022; 8:gels8110750. [PMID: 36421572 PMCID: PMC9690333 DOI: 10.3390/gels8110750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A high dose of amoxicillin is recommended as the first-line therapy for acute bacterial rhinosinusitis (ABR). However, oral administration of amoxicillin is connected to many adverse reactions coupled with moderate bioavailability (~60%). Therefore, this study aimed to develop a topical nasal preparation of amoxicillin, employing a thermoresponsive nanogel system to increase nasal residence time and prolong drug release. Rheological investigations revealed that formulations containing 21−23% w/w Poloxamer 407 (P407) were in accordance with the requirement of nasal administration (gelling temperature ~35 °C). The average hydrodynamic diameter (<200 nm), pH (6.7−6.9), and hypertonic osmolality (611−663 mOsmol/L) of the in situ gelling nasal nanogel appeared as suitable characteristics for local rhinosinusitis treatment. Moreover, taking into account the mucoadhesive strength and drug release studies, the 21% w/w P407 could be considered as an optimized concentration for effective nasal delivery. Antibacterial activity studies showed that the ability of amoxicillin-loaded in situ gelling nasal nanogel to inhibit bacterial growth (five common ABR pathogens) preserved its effectiveness in comparison to 1 mg/mL amoxicillin aqueous solution as a positive control. Altogether, the developed amoxicillin-loaded in situ gelling thermoresponsive nasal nanogel can be a potential candidate for local antibiotic therapy in the nasal cavity.
Collapse
|
14
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022; 14:pharmaceutics14081697. [PMID: 36015322 PMCID: PMC9415007 DOI: 10.3390/pharmaceutics14081697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Aggressive glioblastoma (GBM) has no known treatment as a primary brain tumor. Since the cancer is so heterogeneous, an immunosuppressive tumor microenvironment (TME) exists, and the blood–brain barrier (BBB) prevents chemotherapeutic chemicals from reaching the central nervous system (CNS), therapeutic success for GBM has been restricted. Drug delivery based on nanocarriers and nanotechnology has the potential to be a handy tool in the continuing effort to combat the challenges of treating GBM. There are various new therapies being tested to extend survival time. Maximizing therapeutic effectiveness necessitates using many treatment modalities at once. In the fight against GBM, combination treatments outperform individual ones. Combination therapies may be enhanced by using nanotechnology-based delivery techniques. Nano-chemotherapy, nano-chemotherapy–radiation, nano-chemotherapy–phototherapy, and nano-chemotherapy–immunotherapy for GBM are the focus of the current review to shed light on the current status of innovative designs.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zahra Talaie
- School of Biology, Nour Danesh Institute of Higher Education, Isfahan 84156-83111, Iran
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
17
|
Madani F, Esnaashari SS, Webster TJ, Khosravani M, Adabi M. Polymeric nanoparticles for drug delivery in glioblastoma: State of the art and future perspectives. J Control Release 2022; 349:649-661. [PMID: 35878729 DOI: 10.1016/j.jconrel.2022.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive, fatal and malignant primary brain tumor. Despite the current standard treatment for glioblastoma patients including neurosurgical resection, followed by concomitant radiation and chemotherapy, the median survival rate is only about 15 months. An unresolved challenge for current therapies is related to getting drugs through the blood-brain barrier (BBB), which hinders many chemotherapeutic agents from reaching tumors cells. Although a large amount of research has been done to circumvent the BBB and deliver drugs to the brain, with nanoparticles (NPs) taking the lead, the challenge is still high. In this regard, the BBB and how to transfer drug pathways through the BBB, especially using NPs, are introduced here. Afterwards, the latest advances in drug delivery, co-drug delivery, and combination modalities are described specifically for GBM treatments using natural and synthetic polymeric NPs and adjuvant therapies including hyperthermia, photodynamic therapy and also ketogenic regimens. In addition, receptor-mediated endocytosis agents that exist in endothelial capillary cells of the brain are explained. Lastly, future directions to finally deliver drugs through the BBB for GBM treatment are emphasized. It is the hope that this review can provide a number of practical pathways for the future development of BBB permeable nanochemotherapeutics against GBM.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Miranda RR, Ferreira NN, Souza EED, Lins PMP, Ferreira LM, Krüger A, Cardoso VMD, Durigon EL, Wrenger C, Zucolotto V. Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS APPLIED BIO MATERIALS 2022; 5:3371-3383. [PMID: 35732506 PMCID: PMC9236206 DOI: 10.1021/acsabm.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Leonardo Miziara
Barboza Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valéria Maria de
Oliveira Cardoso
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edison Luiz Durigon
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| |
Collapse
|
19
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
20
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
21
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
22
|
Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022; 8:1396-1426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Gayatri Prakash
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Ian A E Johnston
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
23
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Chen TC, da Fonseca CO, Levin D, Schönthal AH. The Monoterpenoid Perillyl Alcohol: Anticancer Agent and Medium to Overcome Biological Barriers. Pharmaceutics 2021; 13:2167. [PMID: 34959448 PMCID: PMC8709132 DOI: 10.3390/pharmaceutics13122167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.
Collapse
Affiliation(s)
- Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Clovis O. da Fonseca
- Department of Neurological Surgery, Federal Hospital of Ipanema, Rio de Janeiro 22411-020, Brazil;
| | | | - Axel H. Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|