1
|
Shu Y, Zhao P, Li X, Shi X, Fu Q. Counter-intuitive discovery in the formulation of poorly water-soluble drugs: Amorphous small-molecule gels. Med Res Rev 2024; 44:2624-2639. [PMID: 38807483 DOI: 10.1002/med.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Amorphous strategies have been extensively used in improving the dissolution of insoluble drugs for decades due to their high free energy. However, the formation of amorphous small-molecule gels (ASMGs) presents a counter-intuitive discovery that significantly limits their practical application. Recently, ASMGs have garnered attention because of their noncovalent structures, excellent biodegradability, and significant potential in various drug delivery systems in the pharmaceutical field. Hence, a comprehensive review is necessary to contribute to a better understanding of recent advances in ASMGs. This review aimed to introduce the main formation mechanisms, summarize possible influencing factors, generalize unique properties, outline elimination strategies, and discuss clinical application potential with preclinical cases of ASMGs. Moreover, few ASMGs are advanced to clinical stages. Intensive clinical research is needed for further development. We hope that this review can provide more efficient and rational guidance for exploring further clinical applications of ASMGs.
Collapse
Affiliation(s)
- Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Shen P, Hu E, Zhang C, Gao Y, Qian S, Heng W, Zhang J, Wei Y. Hot "Dissolving" Extrusion of Lurasidone with Natural Liquid Small Molecule for Amorphous Solid Dispersion Based Self-Assembled Submicron Emulsion. Adv Healthc Mater 2024; 13:e2302488. [PMID: 38050839 DOI: 10.1002/adhm.202302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Nowadays, ≈90% of new drug candidates under development are poorly bioavailable due to their low solubility and/or permeability. Herein, a natural liquid small molecule trans-anethole (TA) is introduced into the drug-polymer system lurasidone (LUS)-poly (1-vinylpyrrolidone-co-vinyl acetate) (VA64), notably improving the compatibility of components for the successful preparation of amorphous solid dispersion (ASD) and facilitating the formation of self-emulsifying drug delivery system (SEDDS) during dissolution. LUS-TA-VA64 ASD shows enhanced supersaturation with a long maintenance time of at least 24 h over pure LUS. The strong non-covalent force between VA64 (as emulsifier) and TA (as oil phase)/ water promotes the self-assembly of submicron emulsion and ensures its stability for at least 10 h. Compared to the commercial salt form of LUS, the ASD shows twofold increase in peak plasma concentration (Cmax ) and area under plasma concentration-time profiles (AUC), 1.5-fold increase in peak time (Tmax ), and twofold decrease in AUC-based coefficient of variation (CV) (59%→26%) after a single oral dose to a rabbit.
Collapse
Affiliation(s)
- Peiya Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Enshi Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chunfeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
4
|
Su M, Huang M, Pang Z, Wei Y, Gao Y, Zhang J, Qian S, Heng W. Functional in situ formed deep eutectic solvents improving mechanical properties of powders by enhancing interfacial interactions. Int J Pharm 2023:123181. [PMID: 37364786 DOI: 10.1016/j.ijpharm.2023.123181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
As novel green solvents, deep eutectic solvent (DES) with distinct liquid properties has gained increasing interest in pharmaceutical fields. In this study, DES was firstly utilized for improving powder mechanical properties and tabletability of drugs, and the interfacial interaction mechanism was explored. Honokiol (HON), a natural bioactive compound, was used as model drug, and two novel HON-based DESs were synthesized with choline chloride (ChCl) and l-menthol (Men), respectively. The extensive non-covalent interactions were account for DES formation according to FTIR, 1H NMR and DFT calculation. PLM, DSC and solid-liquid phase diagram revealed that DES successfully in situ formed in HON powders, and the introduction of trace amount DES (99:1 w/w for HON-ChCl, 98:2 w/w for HON-Men) significantly improve mechanical properties of HON. Surface energy analysis and molecular simulation revealed that the introduced DES promoted the formation of solid-liquid interfaces and generation of polar interactions, which increase interparticulate interactions, thus better tabletability. Compared to nonionic HON-Men DES, ionic HON-ChCl DES exhibited better improvement effect, since their more hydrogen-bonding interactions and higher viscosity promote stronger interfacial interactions and adhesion effect. The current study provides a brand-new green strategy for improving powder mechanical properties and fills in the blank of DES application in pharmaceutical industry.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Maoli Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Han J, Zhang C, Zhang Y, Liu X, Wang J. Mechanistic insight into gel formation of co-amorphous resveratrol and piperine during dissolution process. Int J Pharm 2023; 634:122644. [PMID: 36716831 DOI: 10.1016/j.ijpharm.2023.122644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Different from previous co-amorphous systems, co-amorphous resveratrol and piperine (namely RES-PIP CM) showed much lower dissolution in comparison to the original two crystalline drugs owing to its gel formation during dissolution. The purpose of this study is to investigate the mechanism of gel formation and seek strategies to eliminate such gelation. It was found that the dissolution performance of RES-PIP CM and the properties of formed gels were significantly affected by the medium temperature and stoichiometric ratio of components. Multiple characterization results confirmed that the gelation process underwent the decrease of Tg caused by water plasticization, and then entered into its supercooled liquid state with high viscosity, accompanied by self-assembly of molecules. Furthermore, the study answered the question that whether such gelation of RES-PIP CM could be eliminated by porous carrier materials. The materials, mesoporous silica (MES) and attapulgite (ATT), provided barrier and well separation between molecules and particles of RES-PIP CM by the pore steric hindrance, and impeded the self-assembly and aggregation, hence achieving the degelation and dissolution improvement. The present study highlights the importance of recognizing gelation potential of some co-amorphous formulations, and provides an effective strategy to eliminate gelation in developing high quality co-amorphous drug products.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Chuchu Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Yanpei Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P.R., China.
| |
Collapse
|
6
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|