1
|
Liu MY, Liu X, Wang CY, Wan QQ, Tian YF, Liu SL, Pang DW, Wang ZG. Inhalable Polymeric Microparticles for Phage and Photothermal Synergistic Therapy of Methicillin-Resistant Staphylococcus aureus Pneumonia. NANO LETTERS 2024; 24:8752-8762. [PMID: 38953881 DOI: 10.1021/acs.nanolett.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.
Collapse
Affiliation(s)
- Meng-Yao Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Chun-Yu Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yi-Fan Tian
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, School of Medicine and College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
2
|
Muntu CM, Avanti C, Hayun, Surini S. Promising brain biodistribution of insulin via intranasal dry powder for nose-to-brain delivery. Heliyon 2024; 10:e33657. [PMID: 39027498 PMCID: PMC11255508 DOI: 10.1016/j.heliyon.2024.e33657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Nose-to-brain delivery (NTBD) offering potential benefits for treating Alzheimer's disease. In previous research, insulin dry powder (IDP) formulation for NTBD was developed, exhibiting favorable stability. This study aims to conduct in vitro and ex vivo assessment of release, permeation, mucoadhesion and histopathology, as well as an in vivo biodistribution study to produce IDP for NTBD and evaluate brain biodistribution. Spray-freeze-dried IDP formulations with varying weight ratios of trehalose-to-inulin were produced and analyzed. The release study was carried out in PBS with a pH of 5.8 stirred at 50 rpm and maintained at 37 °C ± 0.5 °C. Goat nasal mucosa was used for ex vivo permeation and mucoadhesion testing under similar conditions. An ex vivo histopathological examination and an in vivo study using enzyme-linked immunosorbent assay, were also performed. The IDP dissolution study demonstrated complete release of all IDPs within 120 min. The permeation study indicated that steady-state conditions were observed between 30 and 240 min. The mucoadhesion study unveiled that IDP F5 exhibited the fastest mucoadhesion time and the least force required within the fastest time of 43.60 ± 2.57 s. The histopathological study confirmed that none of the tested IDPs induced irritation in the nasal mucosa. Furthermore, the biodistribution study demonstrated the absence of detectable insulin in the plasma, while IDP F3 exhibited the highest deposited concentration of insulin within both the olfactory bulb and the whole brain. The extensive evaluation of the IDP formulations through in vitro, ex vivo, and in vivo studies implies their strength non-invasive NTBD. IDP F3, with a 1:1 wt ratio of trehalose to inulin, exhibited favorable brain biodistribution outcomes and was recommended for further investigation and development in the context of NTBD.
Collapse
Affiliation(s)
- Cynthia Marisca Muntu
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, East Java, Indonesia
| | - Christina Avanti
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Surabaya, Surabaya 60293, East Java, Indonesia
| | - Hayun
- Laboratory of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Silvia Surini
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| |
Collapse
|
3
|
Scoffone VC, Barbieri G, Irudal S, Trespidi G, Buroni S. New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics (Basel) 2024; 13:71. [PMID: 38247630 PMCID: PMC10812592 DOI: 10.3390/antibiotics13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.B.); (S.I.); (G.T.)
| |
Collapse
|
4
|
Kabra VD, Lahoti SR. Novel therapeutic approach for the treatment of cystic fibrosis based on freeze-dried tridrug microparticles to treat cystic fibrosis. Daru 2023; 31:39-50. [PMID: 37140775 PMCID: PMC10238345 DOI: 10.1007/s40199-023-00460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Cystic fibrosis is a severe, autosomal recessive disease that shortens life expectancy. According to studies, approximately 27% of patients with CF aged 2-5 years and 60 to 70% of adult patients are infected with P. aeruginosa. The patients experience bronchospasm leading to a persistent contracted state of the airways. OBJECTIVES The current work explores the possibility of combining ivacaftor and ciprofloxacin to combat the bacteria. A third drug L-salbutamol would be coated onto the surface of the drug-entrappped microparticles to instantaneously provide relief from bronchoconstriction. METHODS The microparticles were prepared using bovine serum albumin and L-leucine using the freeze-drying approach. The process and formulation parameters were optimized. The prepared microparticles were surface coated by L-salbutamol using the dry-blending method. The microparticles were subjected to rigorous in-vitro characterization for entrapment, inhalability, antimicrobial activity, cytotoxicity study and safety. The performance of the microparticles to be loaded into a inhaler was checked by the Anderson cascade impactor. RESULTS The freeze-dried microparticles had a particle size of 817.5 ± 5.6 nm with a polydispersity ratio of 0.33. They had a zeta potential of -23.3 ± 1.1 mV. The mass median aerodynamic diameter of the microparticles was 3.75 ± 0.07 μm, and the geometric standard diameter was 1.66 ± 0.033 μm. The microparticles showed good loading efficiency for all three drugs. DSC, SEM, XRD, and FTIR studies confirmed the entrapment of ivacaftor and ciprofloxacin. SEM and TEM scans observed the shape and the smooth surface. Antimicrobial synergism was proven by the agar broth, and dilution technique and the formulation was deemed safe by the results of the MTT assay. CONCLUSION Freeze-dried microparticles of ivacaftor, ciprofloxacin, and L-salbutamol could pave way to a hitherto unexplored combination of drugs as a novel approach to treat P. aeruginosa infcetions and bronchoconstriction commonly associated with cystic fibrosis.
Collapse
Affiliation(s)
- Vinayak D Kabra
- Y. B. Chavan College of Pharmacy, Roza Bagh, Aurangabad, MH, India, 431001
| | - Swaroop R Lahoti
- Y. B. Chavan College of Pharmacy, Roza Bagh, Aurangabad, MH, India, 431001.
| |
Collapse
|
5
|
Dragar Č, Rekar Ž, Potrč T, Nemec S, Kralj S, Kocbek P. Influence of Polymer Concentration on Drying of SPION Dispersions by Electrospinning. Pharmaceutics 2023; 15:1619. [PMID: 37376067 DOI: 10.3390/pharmaceutics15061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
To improve the physical stability of nanoparticle dispersions, several methods for their transformation into stable and easily dispersible dry products have been investigated thus far. Recently, electrospinning was shown to be a novel nanoparticle dispersion drying method, which addresses the crucial challenges of the current drying methods. It is a relatively simple method, but it is affected by various ambient, process, and dispersion parameters, which impact the properties of the electrospun product. The aim of this study was, thus, to investigate the influence of the most important dispersion parameter, namely the total polymer concentration, on the drying method efficiency and the properties of the electrospun product. The formulation was based on a mixture of hydrophilic polymers poloxamer 188 and polyethylene oxide in the weight ratio of 1:1, which is acceptable for potential parenteral application. We showed that the total polymer concentration of prior-drying samples is closely related to their viscosity and conductivity, also affecting the morphology of the electrospun product. However, the change in morphology of the electrospun product does not affect the efficiency of SPION reconstitution from the electrospun product. Regardless of the morphology, the electrospun product is not in powder form and is therefore safer to handle compared to powder nanoformulations. The optimal total polymer concentration in the prior-drying SPION dispersion, which enables the formation of an easily dispersible electrospun product with high SPION-loading (65% (w/w)) and fibrillar morphology, was shown to be 4.2% (w/v).
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žan Rekar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tanja Potrč
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., SI-1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
7
|
Drug Combination of Ciprofloxacin and Polymyxin B for the Treatment of Multidrug–Resistant Acinetobacter baumannii Infections: A Drug Pair Limiting the Development of Resistance. Pharmaceutics 2023; 15:pharmaceutics15030720. [PMID: 36986580 PMCID: PMC10056848 DOI: 10.3390/pharmaceutics15030720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Polymyxins are considered as last–resort antibiotics to treat infections caused by Acinetobacter baumannii. However, there are increasing reports of resistance in A. baumannii to polymyxins. In this study, inhalable combinational dry powders consisting of ciprofloxacin (CIP) and polymyxin B (PMB) were prepared by spray–drying. The obtained powders were characterized with respect to the particle properties, solid state, in vitro dissolution and in vitro aerosol performance. The antibacterial effect of the combination dry powders against multidrug–resistant A. baumannii was assessed in a time–kill study. Mutants from the time–kill study were further investigated by population analysis profiling, minimum inhibitory concentration testing, and genomic comparisons. Inhalable dry powders consisting of CIP, PMB and their combination showed a fine particle fraction above 30%, an index of robust aerosol performance of inhaled dry powder formulations in the literature. The combination of CIP and PMB exhibited a synergistic antibacterial effect against A. baumannii and suppressed the development of CIP and PMB resistance. Genome analyses revealed only a few genetic differences of 3–6 SNPs between mutants and the progenitor isolate. This study suggests that inhalable spray–dried powders composed of the combination of CIP and PMB is promising for the treatment of respiratory infections caused by A. baumannii, and this combination can enhance the killing efficiency and suppress the development of drug resistance.
Collapse
|
8
|
Spray freeze dried niclosamide nanocrystals embedded dry powder for high dose pulmonary delivery. POWDER TECHNOL 2023; 415:118168. [PMID: 36533138 PMCID: PMC9746026 DOI: 10.1016/j.powtec.2022.118168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Based on the drug repositioning strategy, niclosamide (NCL) has shown potential applications for treating COVID-19. However, the development of new formulations for effective NCL delivery is still challenging. Herein, NCL-embedded dry powder for inhalation (NeDPI) was fabricated by a novel spray freeze drying technology. The addition of Tween-80 together with 1,2-Distearoyl-sn-glycero-3-phosphocholine showed the synergistic effects on improving both the dispersibility of primary NCL nanocrystals suspended in the feed liquid and the spherical structure integrity of the spray freeze dried (SFD) microparticle. The SFD microparticle size, morphology, crystal properties, flowability and aerosol performance were systematically investigated by regulating the feed liquid composition and freezing temperature. The addition of leucine as the aerosol enhancer promoted the microparticle sphericity with greatly improved flowability. The optimal sample (SF- 80D-N20L2D2T1) showed the highest fine particle fraction of ∼47.83%, equivalently over 3.8 mg NCL that could reach the deep lung when inhaling 10 mg dry powders.
Collapse
|
9
|
de la Rosa-Carrillo D, Suárez-Cuartín G, Golpe R, Máiz Carro L, Martinez-Garcia MA. Inhaled Colistimethate Sodium in the Management of Patients with Bronchiectasis Infected by Pseudomonas aeruginosa: A Narrative Review of Current Evidence. Infect Drug Resist 2022; 15:7271-7292. [PMID: 36540105 PMCID: PMC9759979 DOI: 10.2147/idr.s318173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
International guidelines on the treatment of bronchiectasis indicate that the use of inhaled antibiotics is effective, especially in symptomatic chronic bronchial infection (CBI) due to Pseudomonas aeruginosa (PA). To date, however, no such treatment has been approved by regulatory agencies. Of the inhaled antibiotics on the market, colistimethate sodium (colistin) is one of the most used in many countries, either in its nebulized presentation or as dry powder. Among the characteristics of this antibiotic, it is worth noting that its main target is the lipopolysaccharide in the outer membrane of the cell wall of gram-negative bacteria and that it has a low rate of resistance to PA (<1%). Most observational studies have shown that the use of colistin in patients with bronchiectasis and CBI due to PA results in a decrease in both the number and severity of exacerbations, an improvement in quality of life, a decrease in sputum volume and purulence, and a high rate of PA eradication, although there are no clear differences with respect to other inhaled antibiotics. However, the lack of randomized clinical trials (RCT) with positive results for its main variable (exacerbations) in an intention-to-treat analysis has prevented its approval by regulatory agencies as a formal indication for use in bronchiectasis. The PROMIS program, made up of two RCT with identical methodology, is currently underway. The first of these RCT (already concluded) has demonstrated a clearly positive effect on the group randomized to colistin in its main variable (number of annual exacerbations), while the results of the second are still pending. This review presents exhaustive information on the pharmacological and microbiological characteristics of colistin, the results of the studies carried out to date, and the future challenges associated with this treatment.
Collapse
Affiliation(s)
| | - Guillermo Suárez-Cuartín
- Respiratory Department, Hospital de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Rafael Golpe
- Respiratory Department, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Luis Máiz Carro
- Respiratory Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Miguel Angel Martinez-Garcia
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
10
|
Dragar Č, Ileršič N, Potrč T, Nemec S, Kralj S, Kocbek P. Electrospinning as a method for preparation of redispersible dry product with high content of magnetic nanoparticles. Int J Pharm 2022; 629:122389. [DOI: 10.1016/j.ijpharm.2022.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
11
|
Guan J, Yuan H, Yu S, Mao S, Tony Zhou Q. Spray dried inhalable ivacaftor co-amorphous microparticle formulations with leucine achieved enhanced in vitro dissolution and superior aerosol performance. Int J Pharm 2022; 622:121859. [PMID: 35643348 PMCID: PMC10017267 DOI: 10.1016/j.ijpharm.2022.121859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
The present study aimed to develop inhalable powder formulations with both dissolution enhancement and superior aerodynamic properties for potential pulmonary delivery of a poorly water-soluble drug, ivacaftor (IVA). The IVA-leucine (LEU) microparticle formulations were produced by spray drying and the physicochemical, aerosolization and cytotoxicity properties were characterized. Co-amorphous microparticle formulation was formed at the IVA: LEU 3:1 M ratio with hydrogen bond interactions as indicated by Fourier transform infrared spectroscopy (FTIR) results. Dissolution rate of the co-spray dried formulations was significantly improved as compared with the IVA alone or physical mixtures. The co-spray dried formulations exhibited > 80% fine particle fraction (FPF) and > 95% emitted dose percentage (ED) values respectively, with superior physical and aerosolization stability under 40℃ at 75% RH for 30 days. The laser scanning confocal microscopy results demonstrated that more IVA was uptake by Calu-3 cell lines for the co-spray dried formulation. In summary, our results demonstrated that co-spray drying IVA with LEU could achieve enhanced in vitro release and superior aerodynamic properties for pulmonary delivery of IVA.
Collapse
Affiliation(s)
- Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
12
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|