1
|
Khan D, Ahmed N, Muhammad A, Shah KU, Mir M, Rehman AU. A macromolecule infliximab loaded reverse nanomicelles-based transdermal hydrogel: An innovative approach against rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 167:214093. [PMID: 39492133 DOI: 10.1016/j.bioadv.2024.214093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Infliximab (IFX) is used as a biotherapeutic agent for the treatment of rheumatoid arthritis (RA); however, its biological activity is lost orally because of variations in gastric pH and enzymatic degradation, and reduced bioavailability. The authors have tried to improve the efficacy of macromolecule delivery through transdermal route. Polycaprolactone-Polyethylene glycol-Polycaprolactone (PCL-PEG-PCL) triblock copolymer previously synthesized and was used as an efficient carrier for the preparation of IFX loaded reverse nanomicelles (IFX-RNMs). The RNMs were fabricated via nanoprecipitation technique, characterized and then were incorporated into a Carbopol-based hydrogel with eucalyptus oil (EO) as a penetration enhancer. The optimized RNMs had a particle size of 72.32 nm and an encapsulation efficiency of 83 %. In vitro release, exhibited a sustained pattern of IFX from the prepared carrier system, ex-vivo skin permeation and fluorescence microscopic studies revealed that IFX-RNMs loaded hydrogel with EO markedly improved permeation. An in vivo study was carried out on a CFA-induced RA mice model that revealed significant improvements in the results of behavioral parameters, biochemical assays, histopathological and radiological analysis. Overall, the results concluded that the IFX-RNMs loaded hydrogel can be used as a suitable approach for treating RA.
Collapse
Affiliation(s)
- Dildar Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Adil Muhammad
- Infection Medicine, College of Medicine and Veterinary Medicine, the University of Edinburgh, EH16 4UU, United Kingdom
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Mir
- Department of Pharmacy and Allied Health Sciences, Iqra University Islamabad Campus, Sector H-9/1 Islamabad Capital Territory, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
2
|
Priya S, Jain KK, Daryani J, Desai VM, Kathuria H, Singhvi G. Revolutionizing rheumatoid arthritis treatment with emerging cutaneous drug delivery systems: overcoming the challenges and paving the way forward. NANOSCALE 2024; 17:65-87. [PMID: 39560334 DOI: 10.1039/d4nr03611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of the articulating joints. Though considerable progress has been made in understanding the disease in the past 50 years, its pathogenesis remains unclear. The therapies for RA, such as nonsteroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, and glucocorticoids through conventional therapeutic delivery systems by percutaneous, intra-articular, intraperitoneal, oral, and intravenous administration, have shown their own disadvantages, which eventually reduce patient compliance for long-term therapy. Recently, drug delivery via a topical or transdermal route has gained attention as an alternative to the conventional approach. Though skin acts as a barrier for the delivery of drugs due to its structure, various permeation pathways are manipulated to enhance the drug delivery across or into the skin. However, poor skin retention is the reason for the failure of many conventional topical dosage forms, such as gels, sprays, and creams. Hence, there is an urgent need for conquering the skin boundary to improve skin partitioning. Nanotechnology is a developing and dynamic field gaining popularity in the nanoscale design. This review extensively describes the potential of various nanoformulations, such as vesicular systems, lipid nanoparticles, and polymeric nanoparticles, with a targeted approach to deliver the drugs to the inflamed joint region. Limelight has also been provided to next-generation approaches like surface modification, stimuli-responsive formulations, multifunctional carrier systems, microneedles, and microsponge systems. Physical methods for enhancing the transdermal delivery, such as electroporation and sonophoresis, and emerging treatment therapies, such as gene therapy, photothermal therapy, and photodynamic therapy, have been evaluated to enhance the treatment efficacy. The clinical status, patents and current challenges associated with nanotechnology and the future prospects of targeted drug delivery have also been discussed.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Kaushal Kailash Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Jeevika Daryani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, 3791 Jalan Bukit Merah, E-Centre@Redhill, Singapore - 159471
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan, India - 333031.
| |
Collapse
|
3
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez‐Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024; 13:e2401936. [PMID: 39380387 PMCID: PMC11616258 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Yun An Chen
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | | | - Jonathan Chan
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Kam Shojania
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Raheem B. Kherani
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Carson Chin
- Burnaby Medical and Surgical SpecialistsBurnabyBCV3J 1M2Canada
| | - John T. Kelsall
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | | | | | - David Collins
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2CopenhagenDenmark2100
| |
Collapse
|
4
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Motzwickler-Németh A, Party P, Simon P, Sorrenti M, Ambrus R, Csóka I. Preparation of Ibuprofen-Loaded Inhalable γCD-MOFs by Freeze-Drying Using the QbD Approach. Pharmaceutics 2024; 16:1361. [PMID: 39598485 PMCID: PMC11597434 DOI: 10.3390/pharmaceutics16111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Research on cyclodextrin-based metal-organic frameworks (CD-MOFs) is still in its infancy, but their potential for use in drug delivery-expressly in the lung-seems promising. We aimed to use the freeze-drying method to create a novel approach for preparing CD-MOFs. MOFs consisting of γ-cyclodextrin (γCD) and potassium cations (K+) were employed to encapsulate the poorly water-soluble model drug Ibuprofen (IBU) for the treatment of cystic fibrosis (CF). METHODS Using the LeanQbD® software (v2022), we designed the experiments based on the Quality by Design (QbD) concept. According to QbD, we identified the three most critical factors, which were the molar ratio of the IBU to the γCD, incubation time, and the percentage of the organic solvent. light-, scanning electron microscope (SEM) and laser diffraction were utilized to observe the morphology and particle size of the samples. In addition, the products were characterized by Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). RESULTS Based on characterizations, we concluded that a γCD-MOF/IBU complex was also formed using the freeze-drying method. Using formulations with optimal aerodynamic properties, we achieved 38.10 ± 5.06 and 47.18 ± 4.18 Fine Particle Fraction% (FPF%) based on the Andersen Cascade Impactor measurement. With these formulations, we achieved a fast dissolution profile and increased IBU solubility. CONCLUSIONS This research successfully demonstrates the innovative use of freeze-drying to produce γCD-MOFs for inhalable IBU delivery. The method enabled to modify the particle size, which was crucial for successful pulmonary intake, emphasizing the need for further investigation of these formulations as effective delivery systems.
Collapse
Affiliation(s)
- Anett Motzwickler-Németh
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Péter Simon
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Hungary;
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (A.M.-N.); (P.P.); (I.C.)
| |
Collapse
|
6
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
7
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
8
|
Yılmaz Usta D, Teksin ZS, Tugcu-Demiroz F. Evaluation of Emulgel and Nanostructured Lipid Carrier-Based Gel Formulations for Transdermal Administration of Ibuprofen: Characterization, Mechanical Properties, and Ex-Vivo Skin Permeation. AAPS PharmSciTech 2024; 25:124. [PMID: 38822143 DOI: 10.1208/s12249-024-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
In transdermal applications of nonsteroidal anti-inflammatory drugs, the rheological and mechanical properties of the dosage form affect the performance of the drug. The aim of this study to develop emulgel and nanostructured lipid carrier NLC-based gel formulations containing ibuprofen, evaluate their mechanical properties, bioadhesive value and ex-vivo rabbit skin permeability. All formulations showed non-Newtonian pseudoplastic behavior and their viscosity values are suitable for topical application. The particle size of the nanostructured lipid carrier system was found to be 468 ± 21 nm, and the encapsulation efficiency was 95.58 ± 0.41%. According to the index of viscosity, consistency, firmness, and cohesiveness values obtained as a result of the back extrusion study, E2 formulation was found to be more suitable for transdermal application. The firmness and work of shear values of the E2 formulation, which has the highest viscosity value, were also found to be the highest and it was chosen as the most suitable formulation in terms of the spreadability test. The work of bioadhesion values of NLC-based gel and IBU-loaded NLC-based gel were found as 0.226 ± 0.028 and 0.181 ± 0.006 mJ/cm2 respectively. The percentages of IBU that penetrated through rabbit skin from the Ibuactive-Cream and the E2 were 87.4 ± 2.11% and 93.4 ± 2.72% after 24 h, respectively. When the penetration of ibuprofen through the skin was evaluated, it was found that the E2 formulation increased penetration due to its lipid and nanoparticle structure. As a result of these findings, it can be said that the NLC-based gel formulation will increase the therapeutic efficacy and will be a good alternative transdermal formulation.
Collapse
Affiliation(s)
- Duygu Yılmaz Usta
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Zeynep Safak Teksin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Fatmanur Tugcu-Demiroz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| |
Collapse
|
9
|
Shah DK, Ghosh S, More N, Choppadandi M, Sinha M, Srivalliputtur SB, Velayutham R, Kapusetti G. ECM-mimetic, NSAIDs loaded thermo-responsive, immunomodulatory hydrogel for rheumatoid arthritis treatment. BMC Biotechnol 2024; 24:26. [PMID: 38724967 PMCID: PMC11080159 DOI: 10.1186/s12896-024-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.
Collapse
Affiliation(s)
- Dipesh Kumar Shah
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Opp. Airforce station, Gandhinagar, Gujarat, 382355, India
| | - Sumanta Ghosh
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Opp. Airforce station, Gandhinagar, Gujarat, 382355, India
| | - Namdev More
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Opp. Airforce station, Gandhinagar, Gujarat, 382355, India
| | - Mounika Choppadandi
- National Institute of Pharmaceutical Education and Research - Ahmedabad, Opp. Airforce station, Gandhinagar, Gujarat, 382355, India
| | - Mukty Sinha
- Siemens Healthcare Pvt. Ltd, Hosur, Bangalore, Karnataka, 560100, India
| | - Sarath Babu Srivalliputtur
- National Institute of Pharmaceutical Education and Research - Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research - Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Govinda Kapusetti
- National Institute of Pharmaceutical Education and Research - Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, 700054, India.
| |
Collapse
|
10
|
Chapa-Villarreal FA, Stephens M, Pavlicin R, Beussman M, Peppas NA. Therapeutic delivery systems for rheumatoid arthritis based on hydrogel carriers. Adv Drug Deliv Rev 2024; 208:115300. [PMID: 38548104 DOI: 10.1016/j.addr.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease suffered by millions of people worldwide. It can significantly affect the patient's quality of life by damaging not only the joints but also organs such as the lungs and the heart. RA is normally treated using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease-modifying antirheumatic drugs (DMARDs), and biologics. These active agents often cause side effects and offer low efficacy due to their lack of specificity and limited retention time. In an attempt to improve RA treatments, hydrogel-based systems have been proposed as drug delivery carriers. Due to their exceptional adaptability and biocompatibility, hydrogels have the potential of enhancing the delivery of RA therapy through different administration routes in an efficient and effective manner. In this review, we explore the application of hydrogel systems as potential carriers in RA treatment. Additionally, we discuss recent work in the field and highlight the required hydrogel properties, depending on the administration route. The outstanding potential of hydrogel systems as carriers for RA was demonstrated; however, there is extensive research yet to be done to improve available treatments for RA.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Madeleine Stephens
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Rachel Pavlicin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712
| | - Micaela Beussman
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin TX, USA, 78712; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712; Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin TX, USA, 78712; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin TX, USA, 78712; Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin TX, USA, 78712; Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Blvd., Austin TX, USA, 78723.
| |
Collapse
|
11
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Ain QU, Zeeshan M, Mazhar D, Zeb A, Afzal I, Ullah H, Ali H, Rahdar A, Díez-Pascual AM. QbD-Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture. Macromol Biosci 2024; 24:e2300336. [PMID: 37815044 DOI: 10.1002/mabi.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Biomaterials such as nanohydroxyapatite and gelatin are widely explored to improve damaged joint architecture associated with rheumatoid arthritis (RA). Besides joint damage, RA is associated with inflammation of joints and cartilage, which potentiates the need for both bone nucleation and therapeutic intervention. For such purpose, a modified nanoprecipitation method is used herein to fabricate tofacitinib (Tofa)-loaded nanohydroxyapatite (nHA) embedded gelatin (GLT) nanoparticles (NPs) (Tofa-nHA-GLT NPs). The quality by design (QbD) approach is chosen to assess the key parameters that determine the efficiency of the NPs, and are further optimized via Box-Behnken design of experiment. The particle size, polydispersity, zeta potential, and encapsulation efficiency (EE) of the prepared NPs are found to be 269 nm, 0.18, -20.5 mV, and 90.7%, respectively. Furthermore, the NPs have improved stability, skin permeability, and a sustained drug release pattern at pH 6.5 (arthritic joint pH). Moreover, rhodamine-B loaded nHA-GLT NPs demonstrates considerably higher cellular uptake by the murine-derived macrophages than free rhodamine-B solution. In vitro, cell-based experiments confirm the good cell biocompatibility with insignificant toxicity. Thus, QbD-based approach has successfully led to the development of Tofa-nHA-GLT NPs with the potential to target inflamed arthritic joint.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ahmed Zeb
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hameed Ullah
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
13
|
Baig MMFA, Wong LK, Zia AW, Wu H. Development of biomedical hydrogels for rheumatoid arthritis treatment. Asian J Pharm Sci 2024; 19:100887. [PMID: 38419762 PMCID: PMC10900807 DOI: 10.1016/j.ajps.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 03/02/2024] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that hinders the normal functioning of bones and joints and reduces the quality of human life. Every year, millions of people are diagnosed with RA worldwide, particularly among elderly individuals and women. Therefore, there is a global need to develop new biomaterials, medicines and therapeutic methods for treating RA. This will improve the Healthcare Access and Quality Index and also relieve administrative and financial burdens on healthcare service providers at a global scale. Hydrogels are soft and cross-linked polymeric materials that can store a chunk of fluids, drugs and biomolecules for hydration and therapeutic applications. Hydrogels are biocompatible and exhibit excellent mechanical properties, such as providing elastic cushions to articulating joints by mimicking the natural synovial fluid. Hence, hydrogels create a natural biological environment within the synovial cavity to reduce autoimmune reactions and friction. Hydrogels also lubricate the articulating joint surfaces to prevent degradation of synovial surfaces of bones and cartilage, thus exhibiting high potential for treating RA. This work reviews the progress in injectable and implantable hydrogels, synthesis methods, types of drugs, advantages and challenges. Additionally, it discusses the role of hydrogels in targeted drug delivery, mechanistic behaviour and tribological performance for RA treatment.
Collapse
Affiliation(s)
| | - Lee Ki Wong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Abdul Wasy Zia
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
14
|
Xia MQ, Chen J, Liu L, Tian CL, Cheng WK, Zheng Z, Chu XQ. Transdermal administration of ibuprofen-loaded hexagonal liquid crystal gel for enhancement of drug concentration in the uterus: in vitro and in vivo evaluation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2021-2039. [PMID: 37089114 DOI: 10.1080/09205063.2023.2205728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Primary dysmenorrhea is a common disease in women, and oral administration of Ibuprofen (IBU) is associated with first-pass effects and gastrointestinal irritation. Here, we developed ibuprofen-loaded hexagonal liquid crystal (IBU HLC) gel for transdermal administration. In this study, the structure of prepared IBU HLC was characterized using polarizing microscopey (PLM) and small angle X ray diffraction (SAXS). In vitro drug release behavior and percutaneous penetration were investigated, and drug transdermal behavior was observed by confocal laser scanning microscope (CLSM). Finally, the pharmacokinetic profile and tissue distribution were investigated after transdermal administration. The PLM and SAXS results showed that the inner structure of IBU HLC was hexagonal phase. Moreover, in vitro release, skin permeation and CLSM demonstrated that IBU HLC had an excellent sustained-release effect, and a good transdermal penetration effect accompanied by the combination of multiple percutaneous routes. Pharmacokinetic studies indicated that IBU entered the blood circulation through abdominal transdermal administration in small amounts, mainly entering the uterus, and had a certain targeting ability. In conclusion, the IBU HLC gel would be a promising sustained-release preparation for transdermal administration to relieve dysmenorrhea with a significant drug concentration in the uterus.
Collapse
Affiliation(s)
- Meng-Qiu Xia
- School of Pharmacy, Wuhu Institute of Technology, Wuhu, Anhui, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Life and Health Engineering Research Center of Wuhu, Wuhu Institute of Technology, Wuhu, Anhui, China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chun-Ling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wang-Kai Cheng
- School of Pharmacy, Wuhu Institute of Technology, Wuhu, Anhui, China
- Life and Health Engineering Research Center of Wuhu, Wuhu Institute of Technology, Wuhu, Anhui, China
| | - Zhiyun Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao-Qin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui, PR China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, PR China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
15
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
16
|
Zafar A, Khan D, Rehman AU, Ullah N, Ur-Rehman T, Ahmad NM, Ahmed N. Fabrication of bergenin nanoparticles based hydrogel against infected wounds: An In vitro and In vivo study. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
18
|
Ali A, Madni A, Shah H, Jamshaid T, Jan N, Khan S, Khan MM, Mahmood MA. Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma. PLoS One 2023; 18:e0281004. [PMID: 36854019 PMCID: PMC9974133 DOI: 10.1371/journal.pone.0281004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023] Open
Abstract
The present study aimed to prepare solid lipid-based nanoparticles (SLNs) using Precirol® ATO 5 as solid lipid and Poloxamer 188 and Tween 80 as surfactant and co-surfactant respectively, and SLNs-derived gel for sustained delivery, enhanced in-vitro cytotoxicity, enhanced cellular uptake of 5-FU and enhanced permeation of 5-FU across the skin. The 5-FU-loaded SLNs were prepared by the hot melt encapsulation method and converted into SLN-derived gel using a gelling agent (Carbopol 940). The 5-FU-loaded SLNs had a particle size in the range of 76.82±1.48 to 327±4.46 nm, zeta potential between -11.3±2.11 and -28.4±2.40 mV, and entrapment efficiency (%) in range of 63.46±1.13 and 76.08±2.42. The FTIR analysis depicted that there was no chemical interaction between 5-FU and formulation components. Differential scanning calorimetric analysis showed thermal stability of 5-FU in the nanoparticles and powdered X-ray diffraction analysis revealed successful incorporation of 5-FU in nanoparticles. The in-vitro release study of 5-FU-loaded SLNs showed biphasic release behavior with initial burst release followed by sustained release over 48 hr. The 5-FU-loaded SLNs showed a greater cytotoxic effect on skin melanoma (B16F10 cells) and squamous cell carcinoma (A-431 cells) as compared to free 5-FU drug solution after 48 hr. Flow cytometry and fluorescence microscopy displayed enhanced quantitative and qualitative cellular uptake of SLNs. The SLNs formulation showed acceptable safety and biocompatible profile after an acute toxicity study in Wistar rats. Moreover, ex-vivo permeation studies depicted 2.13±0.076 folds enhanced flux of 5-FU-loaded SLN derived gel compared to 5-FU plain gel, and skin retention studies revealed target efficiency (%) 2.54±0.03 of 5-FU-loaded SLN derived gel compared to 5-FU plain gel.
Collapse
Affiliation(s)
- Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- * E-mail:
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, AJ&K, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Cadson College of Pharmacy, Kharian, Pakistan
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahmad Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
19
|
Arooj A, Rehman AU, Iqbal M, Naz I, Alhodaib A, Ahmed N. Development of Adapalene Loaded Liposome Based Gel for Acne. Gels 2023; 9:gels9020135. [PMID: 36826305 PMCID: PMC9956198 DOI: 10.3390/gels9020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Retinoids are considered the mainstay treatment for moderate to severe acne. Adapalene, a third-generation retinoid, has physiochemical properties which hinder the effective delivery of the drug to the skin. Therefore, the current study aimed to develop and evaluate adapalene liposomal loaded gel (ADA-LP gel) for the effective management of acne to improve tolerability and delivery to targeted sites as compared to the conventional dosage form of the drug. A novel spontaneous phase transition method (SPT) was used to formulate liposomes. Liposomal formulation (ADA-LP) was prepared and optimized based on particle size, zeta potential, and PDI. Optimized formulation was further characterized by different techniques and loaded into Carbopol gel. In vitro drug release, ex vivo permeation, and in vivo studies were performed using the prepared adapalene-loaded liposomal-based gel. The in vivo study was done employing the testosterone-induced acne model in mice. The optimized formulation had a size of 181 nm, PDI 0.145, and a zeta potential of -35 mV, indicating that the formulation was stable. Encapsulation efficiency was 89.69 ± 0.5%. ADA-LPs were loaded into the gel. Prepared ADA-LP showed a 79 ± 0.02% release of drug in a sustained manner, within 24 h. The ex vivo permeability study showed a total of 43 ± 0.06 µg/cm2 of drug able to permeate through the skin within 24 h. Moreover, only 28.27 ± 0.04% was retained on the epidermis. The developed ADA-LP gel showed significant improvement in the acne lesions in mice with no visible scars and inflammation on the skin. Therefore, ADA-LP-based gel could be a promising carrier system for the safe and effective delivery of Adapalene.
Collapse
Affiliation(s)
- Asma Arooj
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Iqbal
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aiyeshah Alhodaib
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.A.); (N.A.); Tel.: +92-5190644180 (N.A.)
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (A.A.); (N.A.); Tel.: +92-5190644180 (N.A.)
| |
Collapse
|
20
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
21
|
Wang X, Liu K, Fu S, Wu X, Xiao L, Yang Y, Zhang Z, Lu Q. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2023; 6:74-82. [PMID: 36603189 DOI: 10.1021/acsabm.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transdermal drug delivery is an attractive option for multiple disease therapies as it reduces adverse reactions and improves patient compliance. Water-dispersible β-sheet rich silk nanofiber carriers have hydrophobic properties that benefit transdermal delivery but still show inferior transdermal capacities. Thus, hydrophobic silk nanofibers were fabricated to fine-tune their size and endow them with desirable transdermal delivery capacities. Silk nanocarrier length was shortened from 2000 nm to approximately 40 nm after ultrasonic treatment. In vitro human skin and in vivo animal studies revealed different transdermal behaviors for silk nanocarriers at different nanosizes. Silk nanocarriers passed slowly through the corneum without destroying the corneum structure. Improved transdermal capacity was achieved for smaller size carriers. Both hydrophilic and hydrophobic drugs could be loaded onto silk nanocarriers, suggesting a promising future for different disease therapies. No cytotoxicity and skin irritation were identified for silk nanocarriers, which strengthened their superiority as transdermal carriers. Therefore, silk nanocarriers <100 nm may promote the percutaneous absorption of active cargos for disease therapy and cosmetic applications.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Xiaoqian Wu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| |
Collapse
|
22
|
Ullah N, Khan D, Ahmed N, Zafar A, Shah KU, ur Rehman A. Lipase-sensitive fusidic acid polymeric nanoparticles based hydrogel for on-demand delivery against MRSA-infected burn wounds. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Hassan SSU, Abbas SQ, Muhammad I, Wu JJ, Yan SK, Ali F, Majid M, Jin HZ, Bungau S. Metals-triggered compound CDPDP exhibits anti-arthritic behavior by downregulating the inflammatory cytokines, and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies. Front Pharmacol 2022; 13:1053744. [PMID: 36506587 PMCID: PMC9727203 DOI: 10.3389/fphar.2022.1053744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Triggering through abiotic stress, including chemical triggers like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metal Nickel on actinobacteria Streptomyces sp. SH-1327 to obtain a stress-derived compound was firstly investigated. A new compound cyclo-(D)-Pro-(D)-Phe (CDPDP) was triggered from the actinobacteria strain SH-1327 with the addition of nickel ions 1 mM. The stress compound was further evaluated for its anti-oxidant, analgesic, and anti-inflammatory activity against rheumatoid arthritis through in-vitro and in-vivo assays in albino mice. A remarkable in-vitro anti-oxidant potential of CDPDP was recorded with the IC50 value of 30.06 ± 5.11 μg/ml in DPPH, IC50 of 18.98 ± 2.91 against NO free radicals, the IC50 value of 27.15 ± 3.12 against scavenging ability and IC50 value of 28.40 ± 3.14 μg/ml for iron chelation capacity. Downregulation of pro-inflammatory mediators (NO and MDA), suppressed levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-Iβ) and upregulation of expressions of anti-oxidant enzymes (GSH, catalase, and GST) unveiled its anti-inflammatory potential. CDPDP was analyzed in human chondrocyte cell line CHON-001 and the results demonstrated that CDPDP significantly increased cell survival, and inhibited apoptosis of IL-1β treated chondrocytes and IL-1β induced matrix degrading markers. In addition, to evaluate the mitochondrial fitness of CHON-001 cells, CDPDP significantly upregulated pgc1-α, the master regulator of mitochondrial biogenesis, indicating that CDPDP provides protective effects in CHON-001 cells. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of the CDPDP showed that CDPDP is safe in cases of hepatotoxicity, cardiotoxicity, and cytochrome inhibition. Furthermore, docking results showed good binding of CDPDP with IL-6-17.4 kcal/mol, and the simulation studies proved the stability between ligand and protein. Therefore, the findings of the current study prospect CDPDP as a potent anti-oxidant and a plausible anti-arthritic agent with a strong pharmacokinetic and pharmacological profile.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Jia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Kai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan,*Correspondence: Muhammad Majid, ; Hui-Zi Jin,
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Muhammad Majid, ; Hui-Zi Jin,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
24
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
25
|
Yi J, Liu Y, Xie H, An H, Li C, Wang X, Chai W. Hydrogels for the treatment of rheumatoid arthritis. Front Bioeng Biotechnol 2022; 10:1014543. [PMID: 36312537 PMCID: PMC9597294 DOI: 10.3389/fbioe.2022.1014543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Rheumatoid Arthritis is a universal disease that severely affects the normal function of human joints and the quality of life. Millions of people around the world are diagnosed with rheumatoid arthritis every year, carrying a substantial burden for both the individual and society. Hydrogel is a polymer material with good mechanical properties and biocompatibility, which shows great potential in the treatment of rheumatoid arthritis. With the progress of tissue engineering and biomedical material technology in recent years, more and more studies focus on the application of hydrogels in rheumatoid arthritis. We reviewed the progress of hydrogels applied in rheumatoid arthritis in recent years. Also, the needed comprehensive performance and current applications of therapeutic hydrogels based on the complex pathophysiological characteristics of rheumatoid arthritis are also concluded. Additionally, we proposed the challenges and difficulties in the application of hydrogels in rheumatoid arthritis and put forward some prospects for the future research.
Collapse
Affiliation(s)
- Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China
- *Correspondence: Chao Li, ; Xing Wang, ; Wei Chai,
| |
Collapse
|
26
|
Nanocrytals-Mediated Oral Drug Delivery: Enhanced Bioavailability of Amiodarone. Pharmaceutics 2022; 14:pharmaceutics14061300. [PMID: 35745871 PMCID: PMC9245605 DOI: 10.3390/pharmaceutics14061300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to improve the saturation solubility, dissolution profile and oral bioavailability of amiodarone hydrochloride (AMH), a highly lipophilic drug. Stabilizer (Pluronic F-127)-coated AMH nanocrystals (AMH-NCs) were developed by a combination of antisolvent precipitation and homogenization techniques. The optimized formulation comprised pluronic F-127 and AMH at the concentration of 4% and 2% w/v, respectively. The particle size (PS), zeta potential (ZP) and polydispersity index (PDI) of the optimized formulation was found to be 221 ± 1.2 nm, 35.3 mV and 0.333, respectively. The optimized formulation exhibited a rough surface morphology with particles in colloidal dimensions and a significant reduction in crystallinity of the drug. AMH-NCs showed a marked increase in the saturation solubility as well as rapid dissolution rate when compared with the AMH and marketed product. The stability study displayed that the formulation was stable for 3 months, with no significant change in the PS, ZP and PDI. The in vivo pharmacokinetic study demonstrated the ability of AMH-NCs to significantly (p < 0.05) improve the oral bioavailability (2.1-fold) of AMH in comparison with AMH solution, indicating that the production of AMH-NCs using a combination of antisolvent precipitation and homogenization techniques could enhance the bioavailability of the drug.
Collapse
|
27
|
Ranjan Yadav P, Iqbal Nasiri M, Vora LK, Larrañeta E, Donnelly RF, Pattanayek SK, Bhusan Das D. Super-swelling Hydrogel-forming Microneedle based Transdermal Drug Delivery: Mathematical Modelling, Simulation and Experimental Validation. Int J Pharm 2022; 622:121835. [PMID: 35597393 DOI: 10.1016/j.ijpharm.2022.121835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022]
Abstract
Super-swelling hydrogel-forming microneedles (HFMNs) based transdermal drug delivery (TDD) is gaining significant interest due to their non-invasiveness and ability to deliver a wide range of drugs. The HFMNs swell by imbibing interstitial skin fluid (ISF), and they facilitate drug transport from the reservoir attached at the base into the skin without polymer dissolution. To develop HFMNs for practical applications, a complete understanding of the drug transport mechanism is required, allowing for controlled TDD and geometrical optimisation. A three-phase system consisting of a reservoir, microneedle, and skin is considered. A mathematical model is developed to incorporate the drug binding within the matrix of the compartment, which was not considered earlier. Super-swelling nature of the HFMNs is incorporated through the swelling ratio obtained experimentally for a polymer. The results are validated with in vitro diffusion studies of ibuprofen sodium (IBU) across excised porcine skin, showing that around 20% of the loaded IBU in lyophilised wafer was delivered in 24 hours. It was observed that increasing IBU solubility in reservoir can achieve high drug transport across the skin. The developed model is shown to be in good agreement with the experimental data. It is concluded that the proposed model can be considered a tool with predictive design and development of super-swelling HFMNs based TDD systems.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Muhammad Iqbal Nasiri
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad Campus, 44000 Pakistan; School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India.
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom.
| |
Collapse
|
28
|
Bashir K, Khan MFA, Alhodaib A, Ahmed N, Naz I, Mirza B, Tipu MK, Fatima H. Design and Evaluation of pH-Sensitive Nanoformulation of Bergenin Isolated from Bergenia ciliata. Polymers (Basel) 2022; 14:polym14091639. [PMID: 35566808 PMCID: PMC9104231 DOI: 10.3390/polym14091639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current study is extraction and isolation of bergenin from Bergenia ciliata and fabrication of pH-sensitive Eudragit® L100 (EL100) polymeric nanoparticles (NP) to tackle limitations of solubility. Bergenin-loaded EL100 nanoparticles (BN-NP) were fabricated via nanoprecipitation and an experimental design was conducted for optimization. A reverse phase-high performance liquid chromatography (RP-HPLC) method was developed for the quantitation of bergenin. The optimized nanoformulation was characterized by its particle size, morphology, loading capacity, entrapment efficiency, drug-excipient interaction and crystallinity. An in vitro assay was executed to gauge the release potential of pH-sensitive nanoformulation. The mean particle size, zeta potential and polydispersity index (PDI) of the optimized nanoparticles were observed to be 86.17 ± 2.1 nm, -32.33 ± 5.53 mV and 0.30 ± 0.03, respectively. The morphological analysis confirmed the spherical nature of the nanoparticles. Drug loading capacity and entrapment efficiency were calculated to be 16 ± 0.34% and 84 ± 1.3%, respectively. Fourier transform infrared spectroscopy (FTIR) studies unfolded that no interaction was present between the drug and the excipients in the nanoformulation. Crystallography studies revealed that the crystalline nature of bergenin was changed to amorphous and the nanoformulation was stable for up to 3 months at 40 °C. The present study confirms that bergenin isolation can be scaled up from abundantly growing B. ciliata. Moreover, it could also be delivered by entrapment in stimuli-responsive polymer, preventing the loss of drug in healthy tissues.
Collapse
Affiliation(s)
- Kashaf Bashir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Aiyeshah Alhodaib
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.A.); (H.F.)
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Iffat Naz
- Science Unit, Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia;
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
| | - Humaira Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (K.B.); (M.F.A.K.); (N.A.); (M.K.T.)
- Correspondence: (A.A.); (H.F.)
| |
Collapse
|
29
|
Majid M, Farhan A, Asad MI, Khan MR, Hassan SSU, Haq IU, Bungau S. An Extensive Pharmacological Evaluation of New Anti-Cancer Triterpenoid (Nummularic Acid) from Ipomoea batatas through In Vitro, In Silico, and In Vivo Studies. Molecules 2022; 27:molecules27082474. [PMID: 35458672 PMCID: PMC9030838 DOI: 10.3390/molecules27082474] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, accounting for approximately 10% of all new cases in the United States. Plant-derived bioactive compounds, such as pentacyclic triterpenoids (PTs), have the ability to inhibit PCa cell proliferation. We isolated and characterized nummularic acid (NA), a potent PT, as a major chemical constituent of Ipomoea batatas, a medicinal food plant used in ethnomedicine for centuries. In the current study, in vitro antiproliferative potential against PCa cells (DU145 and PC3) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay; Western blot protein expression analysis; absorption, distribution, metabolism, excretion (ADME); pharmacokinetic prediction studies; and bisphenol A (BPA)-induced prostate inhibition in Sprague Dawley rats were conducted to gauge the anti-cancer ability of NA. Significant (p < 0.05 and p < 0.01) time- and dose-dependent reductions in proliferation of PCa cells, reduced migration, invasion, and increased apoptotic cell population were recorded after NA treatment (3−50 µM). After 72 h of treatment, NA displayed significant IC50 of 21.18 ± 3.43 µM against DU145 and 24.21 ± 3.38 µM against PC3 cells in comparison to the controls cabazitaxel (9.56 ± 1.45 µM and 12.78 ± 2.67 µM) and doxorubicin (10.98 ± 2.71 µM and 15.97 ± 2.77 µM). Further deep mechanistic studies reveal that NA treatment considerably increased the cleavage of caspases and downstream PARP, upregulated BAX and P53, and downregulated BCL-2 and NF-κB, inducing apoptosis in PCa cells. Pharmacokinetic and ADME characterization indicate that NA has a favorable physicochemical nature, with high gastrointestinal absorption, low blood−brain barrier permeability, no hepatotoxicity, and cytochrome inhibition. BPA-induced perturbations of prostate glands in Sprague Dawley rats show a potential increase (0.478 ± 0.28 g) in prostate weight compared to the control (0.385 ± 0.13 g). Multi-dose treatment with NA (10 mg/kg) significantly reduced the prostate size (0.409 ± 0.21 g) in comparison to the control. NA-treated groups exhibited substantial restoration of hematological and histological parameters, reinstatement of serum hormones, and suppression of inflammatory markers. This multifaceted analysis suggests that NA, as a novel small molecule with a strong pharmacokinetic and pharmacological profile, has the potential to induce apoptosis and death in PCa cells.
Collapse
Affiliation(s)
- Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Anam Farhan
- Department of Biology, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54810, Pakistan;
| | - Muhammad Imran Asad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan;
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.S.u.H.); (I.-u.H.); (S.B.)
| | - Ihsan-ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan;
- Correspondence: (S.S.u.H.); (I.-u.H.); (S.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (S.S.u.H.); (I.-u.H.); (S.B.)
| |
Collapse
|
30
|
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers (Basel) 2022; 14:polym14051010. [PMID: 35267833 PMCID: PMC8912535 DOI: 10.3390/polym14051010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Clinically available medications face several hurdles that limit their therapeutic activity, including restricted access to the target tissues due to biological barriers, low bioavailability, and poor pharmacokinetic properties. Drug delivery systems (DDS), such as nanoparticles (NPs) and hydrogels, have been widely employed to address these issues. Furthermore, the DDS improves drugs’ therapeutic efficacy while reducing undesired side effects caused by the unspecific distribution over the different tissues. The integration of NPs into hydrogels has emerged to improve their performance when compared with each DDS individually. The combination of both DDS enhances the ability to deliver drugs in a localized and targeted manner, paired with a controlled and sustained drug release, resulting in increased drug therapeutic effectiveness. With the incorporation of the NPs into hydrogels, it is possible to apply the DDS locally and then provide a sustained release of the NPs in the site of action, allowing the drug uptake in the required location. Additionally, most of the materials used to produce the hydrogels and NPs present low toxicity. This article provides a systematic review of the polymeric NPs-loaded hydrogels developed for various biomedical applications, focusing on studies that present in vivo data.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| |
Collapse
|