1
|
Alwan OM, Jaafar IS. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci Rep 2024; 14:23168. [PMID: 39369062 PMCID: PMC11455884 DOI: 10.1038/s41598-024-74021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Limited solubility is the main cause of the low local availability of anti-candidiasis drug, miconazole nitrate (MN). The study's objective was to develop and characterize microemulsion (ME) based temperature-triggered in situ gel of MN for intravaginal administration to enhance local availability and antifungal activity. The solubility of MN was initially studied in different oils, surfactants, and co-surfactants. Then, pseudo-ternary phase diagrams were constructed to select the best ratio of various components. The ME formulations were characterized by thermodynamic study, droplet size, polydispersity index (PDI), viscosity, and in-vitro antifungal mean inhibition zone (MIZ). Selected MEs were incorporated into different in situ gel bases using a combination of two thermosensitive polymers (poloxamer (PLX) 407 and 188), with 0.6% of hydroxypropyl methylcellulose (HPMC K4M) and gellan gum (GG) as mucoadhesive polymer. ME-based gels (MG) were investigated for gelation temperature, gelation time, viscosity, spreadability, mucoadhesive strength, in vitro release profile, and MIZ test. Furthermore, the optimum MG was assessed for in vivo animal irritation test and FESEM investigation. Tea tree oil, lavender oil, tween 80, and propylene glycol (PG) were chosen for ME preparation for the optimal formulation; formulation ME7 and ME10 were chosen. After incorporation of the selected formulation into a mixture of P407 and P188 (18:2% w/w) with 0.6% mucoadhesive polymer, the resultant MG formulation (MG1) revealed optimum gelation temperature (33 ± 0.01℃) and appropriate viscosity with enhanced sustained release (98%) and retention through sheep vaginal mucosa, MG1 exhibited a better MIZ compared to the 2% MN gel formulation and the marketed MN product, and no rabbit vagina irritation. In conclusion, the miconazole nitrate-loaded MG-based formula sustained the duration of action and better antifungal activity than the marketed miconazole nitrate formulation.
Collapse
Affiliation(s)
- Omar M Alwan
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Iman S Jaafar
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Gunawardana S, Dias B. Methodological advances in formulation and assay of herbal resources-based topical drug delivery systems. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024:jcim-2024-0181. [PMID: 39291730 DOI: 10.1515/jcim-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Medicinal plants have been utilized for centuries as a source of healing compounds, which consist of thousands of known bioactive molecules with therapeutic potentials. This article aims to explore and emphasize the significance of medicinal plants and bioactive compounds in the development of topical pharmaceutical formulations. The journey from the extraction of phytochemicals to the development of topical pharmaceutical formulations is described with the aid of scientific evidence selected from PubMed, Google Scholar, ScienceDirect, and Web of Science. Articles published in English during 2018-2023 period were considered and selected randomly. The review discusses the extraction process of medicinal plants, solvent selection, and green synthesis of metal nanoparticles. Subsequently, various biological activities of plant extracts are elaborated especially focusing on antimicrobial, antioxidant, anti-inflammatory, and sun protection activities, along with the corresponding in vitro assays commonly employed for the evaluation. The article presents the process of compound isolation through bioactivity-guided fractionation and also the toxicity evaluation of isolated fractions. Finally, the formulation of medicinal plant extracts into topical pharmaceuticals is addressed, emphasizing the stability evaluation procedures necessary for ensuring product quality and efficacy.
Collapse
Affiliation(s)
- Shehara Gunawardana
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| | - Bhavantha Dias
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| |
Collapse
|
3
|
Otto F, Froelich A. Microemulsion-Based Polymer Gels with Ketoprofen and Menthol: Physicochemical Properties and Drug Release Studies. Gels 2024; 10:435. [PMID: 39057458 PMCID: PMC11275338 DOI: 10.3390/gels10070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ketoprofen is a non-steroidal, anti-inflammatory drug frequently incorporated in topical dosage forms which are an interesting alternatives for oral formulations. However, due to the physiological barrier function of skin, topical formulations may require some approaches to improve drug permeation across the skin. In this study, ketoprofen-loaded microemulsion-based gels with the addition of menthol, commonly known for absorption-enhancing activity in dermal products, were investigated. The main objective of this study was to analyze the physicochemical properties of the obtained gels in terms of topical application and to investigate the correlation between the gel composition and its mechanical properties and the drug release process. Microemulsion composition was selected with the use of a pseudoternary plot and the selected systems were tested for electrical conductivity, viscosity, pH, and particle diameter. The polymer gels obtained with Carbopol® EZ-3 were subjected to rheological and textural studies, as well as the drug release experiment. The obtained results indicate that the presence of ketoprofen slightly decreased yield stress values. A stronger effect was exerted by menthol presence, even though it was independent of menthol concentration. A similar tendency was seen for hardness and adhesiveness, as tested in texture profile analysis. Sample cohesiveness and the drug release rate were independent of the gel composition.
Collapse
Affiliation(s)
- Filip Otto
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Technology, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Anna Froelich
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Technology, 3D Printing Division, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
4
|
Silant’ev VE, Belousov AS, Trukhin FO, Struppul NE, Shmelev ME, Patlay AA, Shatilov RA, Kumeiko VV. Rational Design of Pectin-Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy. Biomedicines 2024; 12:1393. [PMID: 39061967 PMCID: PMC11273711 DOI: 10.3390/biomedicines12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have developed polymer nanoparticles (NPs) with improved temozolomide (TMZ) delivery for promising brain tumor therapy, performing a rational design of polyelectrolyte complexes of oppositely charged polysaccharides of cationic chitosan and anionic pectin. The NPs' diameter (30 to 330 nm) and zeta-potential (-29 to 73 mV) varied according to the initial mass ratios of the biopolymers. The evaluation of nanomechanical parameters of native NPs demonstrated changes in Young's modulus from 58 to 234 kPa and adhesion from -0.3 to -3.57 pN. Possible mechanisms of NPs' formation preliminary based on ionic interactions between ionogenic functional groups were proposed by IR spectroscopy and dynamic rheology. The study of the parameters and kinetics of TMZ sorption made it possible to identify compounds that most effectively immobilize and release the active substance in model liquids that simulate the internal environment of the body. A polyelectrolyte carrier based on an equal ratio of pectin-chitosan (0.1% by weight) was selected as the most effective for the delivery of TMZ among a series of obtained NPs, which indicates a promising approach to the treatment of brain tumors.
Collapse
Affiliation(s)
- Vladimir E. Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Andrei S. Belousov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Fedor O. Trukhin
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Nadezhda E. Struppul
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Mikhail E. Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Aleksandra A. Patlay
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Roman A. Shatilov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Vadim V. Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
5
|
Wang Y, Liu M, Li J, Jiang P, Han D, Zhang H, Xu L, Qiu Y. Preparing a novel baicalin-loaded microemulsion-based gel for transdermal delivery and testing its anti-gout effect. Saudi Pharm J 2024; 32:102100. [PMID: 38812945 PMCID: PMC11135029 DOI: 10.1016/j.jsps.2024.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
We previously demonstrated that baicalin had efficacy against gouty arthritis (GA) by oral administration. In this paper, a novel baicalin-loaded microemulsion-based gel (B-MEG) was prepared and assessed for the transdermal delivery of baicalin against GA. The preparation method and transdermal capability of B-MEG was screened and optimized using the central composite design, Franz diffusion cell experiments, and the split-split plot design. Skin irritation tests were performed in guinea pigs. The anti-gout effects were evaluated using mice. The optimized B-MEG comprised of 50 % pH 7.4 phosphate buffered saline, 4.48 % ethyl oleate, 31.64 % tween 80, 13.88 % glycerin, 2 % borneol, 0.5 % clove oil and 0.5 % xanthan gum, with a baicalin content of (10.42 ± 0.08) mg/g and particle size of (15.71 ± 0.41) nm. After 12 h, the cumulative amount of baicalin permeated from B-MEG was (672.14 ± 44.11) μg·cm-2. No significant skin irritation was observed following B-MEG application. Compared to the model group, B-MEG groups significantly decreased the rate of auricular swelling (P < 0.01) and number of twists observed in mice (P < 0.01); and also reduced the rate of paw swelling (P < 0.01) and inflammatory cell infiltration in a mouse model of GA. In conclusion, B-MEG represents a promising transdermal carrier for baicalin delivery and can be used as a potential therapy for GA.
Collapse
Affiliation(s)
- Yingzhou Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingxue Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Han
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongling Zhang
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
8
|
Virani A, Dholaria N, Matharoo N, Michniak-Kohn B. A Study of Microemulsion Systems for Transdermal Delivery of Risperidone Using Penetration Enhancers. J Pharm Sci 2023; 112:3109-3119. [PMID: 37429357 DOI: 10.1016/j.xphs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to develop and characterize microemulsion formulations using penetration enhancers as potential transdermal delivery systems for risperidone. Initially, a simple formulation of risperidone in Propylene Glycol (PG) was prepared as a control formulation, together with formulations incorporating various penetration enhancers, alone and/or in combination, and also microemulsion formulations with various chemical penetration enhancers, were prepared and all were evaluated for risperidone transdermal delivery. An ex-vivo permeation study was carried out using human cadaver skin and vertical glass Franz diffusion cells to compare all the microemulsion formulations. The microemulsion prepared from oleic acid as the oil (15%), Tween 80 (15%) as the surfactant and isopropyl alcohol (20%) as the co-surfactant, and water (50%) showed higher permeation with a flux value of 32.50±3.60 ug/hr/sq.cm, a globule size of 2.96±0.01 nm, a polydispersity index of 0.33±0.02 and pH of 4.95. This novel in vitro research disclosed that an optimized microemulsion formulated using penetration enhancers was able to increase permeation of risperidone by 14-fold compared to the control formulation. The data suggested that microemulsions may be useful in the delivery of risperidone via the transdermal route.
Collapse
Affiliation(s)
- Amitkumar Virani
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Namrata Matharoo
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
9
|
van Staden D, Haynes RK, Viljoen JM. The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success. Pharmaceuticals (Basel) 2023; 16:1348. [PMID: 37895819 PMCID: PMC10610238 DOI: 10.3390/ph16101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| | - Richard K. Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
- Rural Health Research Institute, Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia
| | - Joe M. Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| |
Collapse
|
10
|
Leanpolchareanchai J, Teeranachaideekul V. Topical Microemulsions: Skin Irritation Potential and Anti-Inflammatory Effects of Herbal Substances. Pharmaceuticals (Basel) 2023; 16:999. [PMID: 37513911 PMCID: PMC10384732 DOI: 10.3390/ph16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Microemulsions (MEs) have gained prominence as effective drug delivery systems owing to their optical transparency, low viscosity, and thermodynamic stability. MEs, when stabilized with surfactants and/or co-surfactants, exhibit enhanced drug solubilization, prolonged shelf life, and simple preparation methods. This review examines the various types of MEs, explores different preparation techniques, and investigates characterization approaches. Plant extracts and bioactive compounds are well established for their utilization as active ingredients in the pharmaceutical and cosmetic industries. Being derived from natural sources, they serve as preferable alternatives to synthetic chemicals. Furthermore, they have demonstrated a wide range of therapeutic effects, including anti-inflammatory, antimicrobial, and antioxidant activities. However, the topical application of plant extracts and bioactive compounds has certain limitations, such as low skin absorption and stability. To overcome these challenges, the utilization of MEs enables enhanced skin absorption, thereby making them a valuable mode of administration. However, considering the significant surfactant content in MEs, this review evaluates the potential skin irritation caused by MEs containing herbal substances. Additionally, the review explores the topical application of MEs specifically for herbal substances, with an emphasis on their anti-inflammatory properties.
Collapse
|
11
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
12
|
Scomoroscenco C, Teodorescu M, Nistor CL, Gifu IC, Petcu C, Banciu DD, Banciu A, Cinteza LO. Preparation and In Vitro Characterization of Alkyl Polyglucoside-Based Microemulsion for Topical Administration of Curcumin. Pharmaceutics 2023; 15:pharmaceutics15051420. [PMID: 37242662 DOI: 10.3390/pharmaceutics15051420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.
Collapse
Affiliation(s)
- Cristina Scomoroscenco
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristina Lavinia Nistor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Ioana Catalina Gifu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adela Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| |
Collapse
|
13
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
14
|
George MY, El-Derany MO, Ahmed Y, Zaher M, Ibrahim C, Waleed H, Khaled H, Khaled G, Saleh A, Alshafei H, Alshafei R, Ahmed N, Ezz S, Ashraf N, Ibrahim SS. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway. Expert Opin Drug Deliv 2023; 20:159-174. [PMID: 36446395 DOI: 10.1080/17425247.2023.2153831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Yasmine Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Malvina Zaher
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Caroline Ibrahim
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Habiba Waleed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hajar Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehad Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Saleh
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Huda Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rahma Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nirmeen Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Ezz
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Ashraf
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Wang W, Chen YF, Wei ZF, Jiang JJ, Peng JQ, He QT, Xu WY, Liu HM. Microemulsion of Cinnamon Essential Oil Formulated with Tea Polyphenols, Gallic Acid, and Tween 80: Antimicrobial Properties, Stability and Mechanism of Action. Microorganisms 2022; 11:microorganisms11010002. [PMID: 36677295 PMCID: PMC9867123 DOI: 10.3390/microorganisms11010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this article was to combine tea polyphenols, gallic acid, and cinnamon essential oil to construct a natural extract-complex microemulsion system (NMs) with good antibacterial activity, antioxidant activity, and stability, as well as low irritation. NMs were characterized by particle size distribution, electrical conductivity, and light transmittance. The stability, as well as the antimicrobial, antioxidant, irritation, and antimicrobial mechanisms, of NMs were also studied. The results showed that NMs had a significant antimicrobial function against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis. The minimum inhibitory concentrations were 156 μg/mL, 62.5 μg/mL, 125 μg/mL, 250 μg/mL, and 125 μg/mL, respectively. Through the cell membrane permeability test and growth curve test of bacteria and fungi, we concluded that the NMs' mechanism of action on bacteria and fungi could be interpreted as NMs mainly altering the permeability of cell membranes to inhibit the growth of bacteria and fungi. The results of this study have important implications for utilizing plant extracts as natural preservatives for food and cosmetics.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Yin-Feng Chen
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ze-Feng Wei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing-Jing Jiang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia-Qian Peng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qi-Tong He
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wen-Ying Xu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
16
|
Aljuffali IA, Lin CH, Yang SC, Alalaiwe A, Fang JY. Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy. AAPS PharmSciTech 2022; 23:187. [PMID: 35798907 DOI: 10.1208/s12249-022-02344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022] Open
Abstract
Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.
Collapse
Affiliation(s)
- Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan. .,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Chen LC, Cheng YP, Liu CY, Guo JW. Lithosepermic Acid Restored the Skin Barrier Functions in the Imiquimod-Induced Psoriasis-like Animal Model. Int J Mol Sci 2022; 23:ijms23116172. [PMID: 35682849 PMCID: PMC9181672 DOI: 10.3390/ijms23116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Psoriasis is a T helper 1/T helper 17 cells-involved immune-mediated genetic disease. Lithospermic acid, one of the major phenolic acid compounds of Danshen, has antioxidation and anti-inflammation abilities. Due to the inappropriate molecular weight for topical penetration through the stratum corneum, lithospermic acid was loaded into the well-developed microemulsion delivery system for IMQ-induced psoriasis-like dermatitis treatment. (2) Methods: BALB/c mice were administered with topical imiquimod to induce psoriasis-like dermatitis. Skin barrier function, disease severity, histology assessment, autophagy-related protein expression, and skin and spleen cytokine expression were evaluated. (3) Results: The morphology, histopathology, and skin barrier function results showed that 0.1% lithospermic acid treatment ameliorated the IMQ-induced psoriasis-like dermatitis and restored the skin barrier function. The cytokines array results confirmed that 0.1% lithospermic acid treatment inhibited the cutaneous T helper-17/Interleukin-23 axis related cytokines cascades. (4) Conclusions: The results implied that lithospermic acid might represent a possible new therapeutic agent for psoriasis treatment.
Collapse
Affiliation(s)
- Li-Ching Chen
- Division of Infectious Diseases, Cathay General Hospital, Taipei 10630, Taiwan;
| | - Yu-Ping Cheng
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan;
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan;
| | - Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- Correspondence: ; Tel.: +886-2-8646-1500 (ext. 2327)
| |
Collapse
|
18
|
He E, Li H, Li X, Wu X, Lei K, Diao Y. Transdermal Delivery of Indirubin-Loaded Microemulsion Gel: Preparation, Characterization and Anti-Psoriatic Activity. Int J Mol Sci 2022; 23:ijms23073798. [PMID: 35409158 PMCID: PMC8998921 DOI: 10.3390/ijms23073798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is an immune disease caused by rapid and incomplete differentiation of skin basal cells. Natural products such as indirubin have historically served as excellent sources for the treatments of psoriasis. However, the poor solubility and bioavailability due to its plane and rigid crystal structure, which limits its efficacy. Herein, to improve the efficacy of indirubin, a hydrogel-based microemulsion drug delivery system was developed for transdermal delivery. The mean droplet size of the optimized microemulsion was 84.37 nm, with a polydispersity index (PDI) less than 0.2 and zeta potential value of 0~−20 mV. The transdermal flux and skin retention of indirubin at 24 h were 47.34 ± 3.59 μg/cm2 and 8.77 ± 1.26 μg/cm2, respectively. The optimized microemulsion was dispersed in carbomer 934 hydrogel to increase the consistency. The indirubin-loaded microemulsion gel was tested on an imiquimod-induced psoriasis mouse model. Results showed that this preparation can improve psoriasis symptoms by down-regulating the expression of IL-17A, Ki67, and CD4+T. This experiment provides great scalability for researchers to treat psoriasis, avoid first-pass effects, and increase the concentration of targeted drugs.
Collapse
Affiliation(s)
- Enxue He
- School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; (E.H.); (H.L.); (X.L.); (X.W.)
| | - Hailing Li
- School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; (E.H.); (H.L.); (X.L.); (X.W.)
| | - Xiaokun Li
- School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; (E.H.); (H.L.); (X.L.); (X.W.)
| | - Xunxun Wu
- School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; (E.H.); (H.L.); (X.L.); (X.W.)
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Correspondence: (K.L.); (Y.D.); Tel.: +86-595-2269-2516 (Y.D.)
| | - Yong Diao
- School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; (E.H.); (H.L.); (X.L.); (X.W.)
- Correspondence: (K.L.); (Y.D.); Tel.: +86-595-2269-2516 (Y.D.)
| |
Collapse
|