1
|
Narwade M, Haldar N, Samanta R, Pawar A, Gajbhiye V, Gajbhiye KR. α vβ 3 integrin aptamer functionalized pH-responsive lipid polymer hybrid nanoparticles for targeted co-delivery of paclitaxel and tamoxifen. Int J Biol Macromol 2025; 306:141754. [PMID: 40049497 DOI: 10.1016/j.ijbiomac.2025.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest type due to its aggressive behavior, high recurrence, metastatic, and mortality rates. This study was aimed at the targeted co-delivery of paclitaxel (PTX) and tamoxifen (TMF) via lipid polymer hybrid nanoparticles (LPHNPs) for treating TNBC. Here, we conjugated αvβ3 integrin aptamer over LPHNPs for targeting TNBC cells. The aptamer-conjugated LPHNPs showed significantly higher uptake in 4 T1 cells than non-targeted LPHNPs. The PTX + TMX co-loaded targeted LPHNPs have cell viabilities of 5.9 ± 0.7 and 7.8 ± 0.6 % in 4 T1 and MDA-MB-231 cells, respectively, in 48 h. The cell viabilities of PTX + TMX co-loaded non-targeted LPHNPs and free PTX + TMX were 17.27 ± 1.56 and 24.31 ± 0.81 % in 4 T1 cells and 16.07 ± 0.14 and 20.15 ± 1.11 % in MDA-MB-231 cells, respectively, in 48 h. Flow cytometry indicated that targeted LPHNP-mediated PTX + TMF delivery was considerably more efficient (~31 %) in inducing apoptosis than PTX + TMF co-loaded non-targeted LPHNPs (~21 %) and free PTX + TMF (~13 %). The anti-cancer efficiency was better when PTX and TMF were delivered together rather than separately. The cytotoxicity assessment in the 3D cell culture demonstrated higher anti-cancer effectiveness of aptamer-conjugated co-loaded LPHNPs, confirmed by significantly inducing cell death. Thus, the results concluded that PTX and TMF-loaded αvβ3 integrin aptamer conjugated LPHNPs have tremendous potential for treating TNBC.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Niladri Haldar
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Rajkumar Samanta
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India.
| |
Collapse
|
2
|
Deshmukh V, Narwade M, Gajbhiye KR. Intranasal Delivery of Paclitaxel-Loaded Ligand Conjugated Polymeric Nanoparticles for Targeted Brain Delivery. AAPS PharmSciTech 2025; 26:49. [PMID: 39900701 DOI: 10.1208/s12249-025-03046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
Compared to the conventional blood-brain barrier crossing over, nose-to-brain delivery provides a potentially effective substitution, particularly when large molecules of drugs need to be delivered. The majority of macromolecules degrade quickly in a physiological environment. Therefore, drug molecules can be protected against early breakdown by using nanocarrier systems. Targeting nanocarrier system with ligand potential of enhancing bioavailability due to tailored binding affinity to targeting site. In the current study, we prepared paclitaxel (PTX) loaded ascorbic acid (AA) conjugated polycaprolactone (PCL) nanoparticles (NPs) for intranasal administration. Polymeric nanoparticles (PNPs) were prepared using the solvent evaporation method, which was further analyzed for particle size, polydispersity index (PDI), surface charge, encapsulation-efficiency (EE), drug loading (DL), surface morphology, in-vitro drug release, and in-vivo pharmacokinetic evaluation. Results showed the optimized PTX-PNPs showed particle size 114.7 ± 2.96 nm, zeta potential -27.6 ± 1.63 mV, with entrapment efficiency 97.3 ± 0.41%, and drug loading 35.3 ± 0.38%. In-vitro PTX release showed a biphasic release pattern, primary burst release followed by sustained release was observed. An in-vivo pharmacokinetic study showed a 5.6-fold increase in the PTX concentration reaching to the brain. Histopathological results of the nasal mucosa showed minimal alteration after 72 h of administering surface-modified paclitaxel loaded polymeric nanoparticles (AA-PTX-PNPs). Thus, this study highlighted the suitability of a AA-PTX-PNPs as a promising strategy for intranasal administration therapy for various brain disorders.
Collapse
Affiliation(s)
- Vishawambhar Deshmukh
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Mahaveer Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Kavita Rai Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India.
| |
Collapse
|
3
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
4
|
Chauhan S, Nagpal K. Latest Delivery Advancements of Lipid Nanoparticles for Cancer Treatment. Assay Drug Dev Technol 2024; 22:340-360. [PMID: 38968367 DOI: 10.1089/adt.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
As one of the primary causes of illness and death globally, cancer demands novel and potent treatment approaches, which is why lipid nanoparticles (LNPs) have gained attention as a promising delivery system for anticancer drugs with precision and efficacy. The article discusses the salient characteristics of LNPs, such as the lipid components, particle size, polydispersity index, and encapsulation efficiency, followed by strategies that enhance their remarkable drug delivery capabilities. The articles explore LNPs ability to improve the solubility, stability, and bioavailability of various chemotherapeutics, nucleic acids, and immunotherapeutic modalities. It also highlights the recent advancement in surface modification of LNPs, which is essential to improve their effectiveness. Tailored coatings of LNPs improve targeting precision, stability, and biocompatibility; enhancing their transport to boost therapeutic efficacy for cancer targeting. The review summarizes the recent advancements made in using LNPs to treat different forms of cancer and focuses on the most recent clinical studies. Overall, the review highlights that the LNPs can target and treat cancer in a tailored manner through gene therapy, RNA interference, and immunotherapy.
Collapse
Affiliation(s)
- Somia Chauhan
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
5
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
6
|
Payamifard M, Nemattalab M, Rezaie Shirmard L, Hesari Z. SLN and chitosan nano-delivery systems for antibacterial effect of black seed ( Nigella sativa) oil against S. aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 39033513 DOI: 10.1080/09603123.2024.2378103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Staphylococcus aureus with current universal importance represents a main carrier of emerging antimicrobial resistance determinatives of global health concerns that have developed drug resistance mechanisms to the various available antibiotics. On the other hand, due to the antimicrobial potential of Nigella Sativa oil (NSO), it was hypothesized that incorporation of nano-carriers (NS-SLN and NS-chitosan (CH) nanoparticles) can enhance its antibacterial effects. This study evaluated the physico-chemical and antibacterial characteristics of NS-SLN and NS-CH. TEM images revealed a round shape with clear edges for both nanoparticles, and the average sizes were reported to be 196.4 and 446.6 nm for NS-SLN and NS-CH, respectively. The zeta potential and encapsulation efficiency were -28.9 and 59.4 mV and 73.22% and 88% for NS-SLN and NS-CH, respectively. The Minimum Inhibitory Concentrations for NSO, NS-SLN, and NS-CH against S. aureus were 480, 200, and 80 µg/mL, respectively. The results confirm significantly stronger antibacterial influences of NSO when loaded into chitosan nanoparticles as a potential candidate for nano-delivery of antimicrobial agents.
Collapse
Affiliation(s)
| | - Mehran Nemattalab
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Hesari
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
da Silva MJF, Rodrigues AM, Costa MCP, Camara AL, Cabral LM, Ricci Junior E, Vanzan DF, Matos APDS, da Silva Honorio T, Borges ACR. Solid Lipid Nanoparticles Based on Babassu Oil and Copaiba Oleoresin: A Promising Approach for Prostate Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1014. [PMID: 38921890 PMCID: PMC11206491 DOI: 10.3390/nano14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
Solid lipid nanoparticles (SLNs) represent promising nanostructures for drug delivery systems. This study successfully synthesized SLNs containing different proportions of babassu oil (BBS) and copaiba oleoresin (COPA) via the emulsification-ultrasonication method. Before SLN synthesis, the identification and quantification of methyl esters, such as lauric acid and β-caryophyllene, were performed via GC-MS analysis. These methyl esters were used as chemical markers and assisted in encapsulation efficiency experiments. A 22 factorial design with a center point was employed to assess the impact of stearic acid and Tween 80 on particle hydrodynamic diameter (HD) and polydispersity index (PDI). Additionally, the effects of temperature (8 ± 0.5 °C and 25 ± 1.0 °C) and time (0, 7, 15, 30, 40, and 60 days) on HD and PDI values were investigated. Zeta potential (ZP) measurements were utilized to evaluate nanoparticle stability, while transmission electron microscopy provided insights into the morphology and nanometric dimensions of the SLNs. The in vitro cytotoxic activity of the SLNs (10 µg/mL, 30 µg/mL, 40 µg/mL, and 80 µg/mL) was evaluated using the MTT assay with PC-3 and DU-145 prostate cancer cell lines. Results demonstrated that SLNs containing BBS and COPA in a 1:1 ratio exhibited a promising cytotoxic effect against prostate cancer cells, with a percentage of viable cells of 68.5% for PC-3 at a concentration of 30 µg/mL and 48% for DU-145 at a concentration of 80 µg/mL. These findings underscore the potential therapeutic applications of SLNs loaded with BBS and COPA for prostate cancer treatment.
Collapse
Affiliation(s)
- Michael Jackson Ferreira da Silva
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil; (M.J.F.d.S.)
| | - Alisson Mendes Rodrigues
- Programa de Pós-Graduação em Ciência de Materiais, Faculdade UnB Planaltina, Universidade de Brasília (UnB), Brasília 70904-910, DF, Brazil
| | - Maria Célia Pires Costa
- Departamento de Química, Universidade Estadual do Maranhão (UEMA), Campus Universitário Paulo VI, São Luís 65055-970, MA, Brazil;
| | - Adriana Leandro Camara
- Departamento de Ciências Fisiológicas, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil;
| | - Lucio Mendes Cabral
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Eduardo Ricci Junior
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Daniel Figueiredo Vanzan
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Ana Paula dos Santos Matos
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Thiago da Silva Honorio
- Departamento de Fármacos e Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (L.M.C.); (E.R.J.); (A.P.d.S.M.)
| | - Antonio Carlos Romão Borges
- Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966, Bacanga, São Luís 65080-805, MA, Brazil; (M.J.F.d.S.)
| |
Collapse
|
8
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Hu Y, Song J, Feng A, Li J, Li M, Shi Y, Sun W, Li L. Recent Advances in Nanotechnology-Based Targeted Delivery Systems of Active Constituents in Natural Medicines for Cancer Treatment. Molecules 2023; 28:7767. [PMID: 38067497 PMCID: PMC10708032 DOI: 10.3390/molecules28237767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Owing to high efficacy and safety, natural medicines have found their way into the field of cancer therapy over the past few decades. However, the effective ingredients of natural medicines have shortcomings of poor solubility and low bioavailability. Nanoparticles can not only solve the problems above but also have outstanding targeting ability. Targeting preparations can be classified into three levels, which are target tissues, cells, and organelles. On the premise of clarifying the therapeutic purpose of drugs, one or more targeting methods can be selected to achieve more accurate drug delivery and consequently to improve the anti-tumor effects of drugs and reduce toxicity and side effects. The aim of this review is to summarize the research status of natural medicines' nano-preparations in tumor-targeting therapies to provide some references for further accurate and effective cancer treatments.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Anjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jieyu Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Mengqi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Yu Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Wenxiu Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| |
Collapse
|
10
|
Trzaskowski M, Drozd M, Ciach T. Study on Saccharide-Glucose Receptor Interactions with the Use of Surface Plasmon Resonance. Int J Mol Sci 2023; 24:16079. [PMID: 38003267 PMCID: PMC10671554 DOI: 10.3390/ijms242216079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the process of attachment of saccharide particles differing in degree of complexity to cell receptors responsible for transport of glucose across the cell membrane (GLUT proteins). This phenomenon is currently considered when designing modern medicines, e.g., peptide drugs to which glucose residues are attached, enabling drugs to cross the barrier of cell membranes and act inside cells. This study aims to help us understand the process of assimilation of polysaccharide nanoparticles by tumour cells. In this study, the interactions between simple saccharides (glucose and sucrose) and dextran nanoparticles with two species of GLUT proteins (GLUT1 and GLUT4) were measured using the surface plasmon resonance technique. We managed to observe the interactions of glucose and sucrose with both applied proteins. The lowest concentration that resulted in the detection of interaction was 4 mM of glucose on GLUT1. Nanoparticles were measured using the same proteins with a detection limit of 40 mM. These results indicate that polysaccharide nanoparticles interact with GLUT proteins. The measured strengths of interactions differ between proteins; thus, this study can suggest which protein is preferable when considering it as a mean of nanoparticle carrier transport.
Collapse
Affiliation(s)
- Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Marcin Drozd
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland;
| |
Collapse
|
11
|
Vase H, Nemattalab M, Rohani M, Hesari Z. Comparison of chitosan and SLN nano-delivery systems for antibacterial effect of tea tree (Melaleuca alternifolia) oil against P. aeruginosa and S. aureus. Lett Appl Microbiol 2023; 76:ovad130. [PMID: 37989849 DOI: 10.1093/lambio/ovad130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.
Collapse
Affiliation(s)
- Hasti Vase
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, 73774-41941 Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, 73774-41941 Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, 73774-41941 Rasht, Iran
| | - Masoumeh Rohani
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, 73774-41941 Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, 73774-41941 Rasht, Iran
| |
Collapse
|
12
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
14
|
Hazari SA, Sheikh A, Abourehab MAS, Tulbah AS, Kesharwani P. Self-assembled Gallic acid loaded lecithin-chitosan hybrid nanostructured gel as a potential tool against imiquimod-induced psoriasis. ENVIRONMENTAL RESEARCH 2023; 234:116562. [PMID: 37419194 DOI: 10.1016/j.envres.2023.116562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Increased thickness of the skin and hyperproliferation of keratinocyte cell is the main obstacle in the treatment of psoriasis. Gallic Acid (GA) has shown efficacious results against the hyperproliferation of keratinocytes while lipid-polymer loaded hybrid nanoparticles (LPHNs) have an edge over lipidic and polymeric nanoparticles considering drug loading, controlled release, stability, and retention. The LPHNs were optimized using Box-Behnken method and was further characterized by FTIR, DSC and Zetasizer. The optimized preparation demonstrated a size of 170.5 ± 0.087 nm and a PDI of 0.19 ± 0.0015, respectively. The confocal study has suggested that the hybrid nanosystem enhanced the drug penetration into the deeper layer with a higher drug release of 79 ± 0.001% as compared to the gallic acid-loaded gel. In addition, the formulation significantly reduced PASI score and splenomegaly without causing any serious irritation. The morphological study of the spleen suggested that the prepared formulation has well controlled the disease compared to the marketed formulation while maintaining a normal level of immune cells after treatment. Hence GALPHN could be accepted as one of the excellent vehicles for the topical conveyance of GA (gallic acid) due to enhanced penetration, and good retention, along with fewer side effects and higher efficacy of the GALPHN gel against imiquimod (IMQ) induced psoriasis.
Collapse
Affiliation(s)
- Sahim Aziz Hazari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, 61519, Egypt; Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Alaa S Tulbah
- Pharmaceutics Department, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
15
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|