1
|
Catlin EJ, Fandiño OE, Lopez-Vidal L, Sangalli M, Donnelly RF, Palma SD, Paredes AJ. A novel temperature-controlled media milling device to produce drug nanocrystals at the laboratory scale. Int J Pharm 2024; 666:124780. [PMID: 39349227 DOI: 10.1016/j.ijpharm.2024.124780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Poor aqueous solubility of preexisting and emerging drug molecules is a common issue faced in the field of pharmaceutics. To address this, particle size reduction techniques, including drug micro- and nanonisation have been widely employed. Nanocrystals (NCs), drug particles with particle sizes below 1 µm, offer high drug content, improved dissolution, and long-acting capabilities. Media milling is the most used method to prepare NCs using of-the-shelf machinery, both at the laboratory and industrial scales. However, early NCs development, especially when limited amounts of the active are available, require the use of milligram-scale media milling. This study introduces a novel mini-scale milling device (Mini-mill) that incorporates temperature control through a water-cooled jacket. The device was used to produce NCs of three model hydrophobic drugs, itraconazole, ivermectin and curcumin, with lowest particle sizes of 162.5 ± 0.4 nm, 178 ± 2 nm, and 116.7 ± 0.7 nm, respectively. Precise control of milling temperature was achieved at 15, 45, and 75°C, with drug dependent particle size reduction trends, with no adverse effects on the milling materials or polymorphic changes in the NCs, as confirmed by calorimetric analysis. Finally, a scale-up feasibility study was carried out in a lab-scale NanoDisp®, confirming that the novel Mini-mills are a material-efficient tool for early formulation development, with potential for scale-up to commercial mills.
Collapse
Affiliation(s)
- Elise J Catlin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Octavio E Fandiño
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lucía Lopez-Vidal
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Martina Sangalli
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Santiago D Palma
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
3
|
Qin N, Li M, Vora LK, Peng K, Sabri AHB, Tao Y, Paredes AJ, McCarthy HO, Donnelly RF. Enhanced long-acting simvastatin delivery via effervescent powder-carrying hollow microneedles and nanocrystal-loaded microneedles. Int J Pharm 2024; 665:124691. [PMID: 39278288 DOI: 10.1016/j.ijpharm.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Hyperlipidemia and its associated cardiovascular complications are the major causes of mortality and disability worldwide. Simvastatin (SIM) is one of the most commonly prescribed lipid-lowering drugs for the treatment of hyperlipidemia by competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. However, the extensive first-pass metabolism leading to low oral bioavailability and frequent daily doses may lead to poor patient compliance and adverse effects caused by plasma fluctuations. To overcome these challenges, this work purposed two microneedle (MN) delivery strategies for the potential enhancement of SIM delivery. Firstly, nanocrystal (NC) formulations of SIM were investigated, followed by incorporation into a trilayer dissolving microneedle (DMN) design. Furthermore, a novel effervescent powder-carrying MN (EMN) design was developed to enhance intradermal delivery by incorporating the effervescent agents into the drug powder. Both MN approaches exhibited significantly improved permeation and in-skin deposition ability in the Franz cell study, with the ex vivo delivery efficiency of 64.33 ± 6.17 % and 40.11 ± 4.53 % for EMNs and DMNs, respectively. Most importantly, in vivo studies using a female Sprague-Dawley rat model confirmed the successful delivery of SIM from NCs-loaded DMNs (Cmax = 287.39 ± 106.82 ng/mL) and EMNs (Cmax = 203.05 ± 17.07 ng/mL) and maintain therapeutically relevant plasma concentrations for 15 days following a single application. The enhanced bioavailabilities of DMNs and EMNs were 24.28 % and 103.82 %, respectively, which were both significantly higher than that of conventional oral administration.
Collapse
Affiliation(s)
- Nuoya Qin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yushi Tao
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Zhao L, Li L, Larrañeta E, Paredes AJ, Donnelly RF. Novel long-acting treatment for schizophrenia based on paliperidone dissolving and implantable microarray patches. Eur J Pharm Biopharm 2024; 204:114481. [PMID: 39255921 DOI: 10.1016/j.ejpb.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Schizophrenia is a severe mental disorder that affects millions of people worldwide. Several atypical antipsychotic medications, including paliperidone (PPD), has been developed and proven effective in treating it. To date, four PPD extended-release products have been launched commercially, providing up to six months of therapeutic effect with a single administration. However, the need for hospital injections by professional healthcare workers not only lead to poor patients' adherence, but also put additional pressure on the healthcare system. Therefore, three PPD microarray patch (PPD MAP) systems based on dissolving microneedle technology and implantable microneedle technology were developed in this work. The two dissolving microarray patch systems contained either PPD crude drug (PPD DMAP-CD) or PPD nanocrystal (PPD DMAP-NC) and the implantable MAP contained PPD crude drug (PPD IMAP). All three types of PPD MAPs showed excellent mechanical and insertion properties as they achieved over 256 µm insertion depth in skin model. In vitro release study showed that PPD released from IMAP in a much more sustained manner (up to 14 days) than PPD did from DMAPs (7 days), with only 20 % initial burst release from IMAP compared with 43-71 % from DMAPs. The MAP dissolution study showed that both DMAPs can be immediately dissolved within less than 3 min once inserted into the skin, indicating a faster action potential compared with IMAP. Ex vivo delivery study showed that 1.68 ± 0.23 mg, 1.39 ± 0.07 mg, and 1.18 ± 0.12 mg were delivered from DMAP-CD, DMAP-NC and IMAP, respectively, demonstrating that over 50 % and up to 70 % of PPD in the MAPs can be delivered into the skin. The IMAP offers most sustained release of PPD whereas DMAP-NC exhibits fastest PPD release (11.19 % vs 20.01 % into Franz cell receiver compartment over 24 h). This work presents a promising alternative for the sustained delivery of antipsychotic drugs, allowing for patient self-administration and extended release concurrently. Patients may potentially use both DMAP and IMAP to achieve a sustained release of PPD while also avoid having an initial therapeutic lag.
Collapse
Affiliation(s)
- Li Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Shrestha N, Karve T, Kipping T, Banga AK. Fabrication of Poly Lactic- co-Glycolic Acid Microneedles for Sustained Delivery of Lipophilic Peptide-Carfilzomib. Mol Pharm 2024; 21:5192-5204. [PMID: 39255036 DOI: 10.1021/acs.molpharmaceut.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (MW: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.
Collapse
Affiliation(s)
- Nisha Shrestha
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| | - Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| | - Thomas Kipping
- MilliporeSigma a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States
| |
Collapse
|
6
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
7
|
Khan MUA, Aslam MA, Abdullah MFB, Gul H, Stojanović GM, Abdal-Hay A, Hasan A. Microneedle system for tissue engineering and regenerative medicines: a smart and efficient therapeutic approach. Biofabrication 2024; 16:042005. [PMID: 39121888 DOI: 10.1088/1758-5090/ad6d90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The global demand for an enhanced quality of life and extended lifespan has driven significant advancements in tissue engineering and regenerative medicine. These fields utilize a range of interdisciplinary theories and techniques to repair structurally impaired or damaged tissues and organs, as well as restore their normal functions. Nevertheless, the clinical efficacy of medications, materials, and potent cells used at the laboratory level is always constrained by technological limitations. A novel platform known as adaptable microneedles has been developed to address the abovementioned issues. These microneedles offer a solution for the localized distribution of various cargos while minimizing invasiveness. Microneedles provide favorable patient compliance in clinical settings due to their effective administration and ability to provide a painless and convenient process. In this review article, we summarized the most recent development of microneedles, and we started by classifying various microneedle systems, advantages, and fundamental properties. Subsequently, it provides a comprehensive overview of different types of microneedles, the material used to fabricate microneedles, the fundamental properties of ideal microneedles, and their applications in tissue engineering and regenerative medicine, primarily focusing on preserving and restoring impaired tissues and organs. The limitations and perspectives have been discussed by concluding their future therapeutic applications in tissue engineering and regenerative medicines.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Hilal Gul
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Goran M Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo-Fifth Settlement, Cairo 11835, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
Apolinário AC, Naser YA, Volpe-Zanutto F, Vora LK, Sabri AH, Li M, Hutton ARJ, McCarthy HO, Lopes LB, Donnelly RF. Novel lipid nanovesicle-loaded dissolving microarray patches for fenretinide in breast cancer chemoprevention. J Control Release 2024; 374:76-88. [PMID: 39111598 DOI: 10.1016/j.jconrel.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The retinoid fenretinide (FENR) is a promising compound for preventing breast cancer recurrence but faces challenges due to poor solubility and low bioavailability. This study explores the development of dissolving microneedles (MNs) containing FENR-loaded ethosomes for minimally invasive breast cancer chemoprevention, aiming to enhance local drug distribution. Ethosomes were formulated using ethanol, propylene glycol, soya lecithin, water, and polysorbate 80 micelles. MNs were created from poly(vinyl alcohol) and poly(vinylpyrrolidone) hydrogels by adding polymer powder directly into ethosomes suspensions, reducing manufacturing time and cost. Two methods were used to load ethosomes into high-density moulds: 1) only in the needle area, and 2) in both the needle area and baseplate. Dynamic light scattering confirmed nanostructures in the hydrogels and MNs. Micelle-based ethosomes dissolved MNs in 15 min, compared to 30 min for other MNs. Skin deposition studies showed greater drug deposition (up to 10 μg/patch) and enhanced skin permeation of FENR (up to 40 μg) with Method 2. In-vivo studies in rats demonstrated that oral administration resulted in plasma FENR levels below 10 ng/g in the first three hours, whereas MN administration delayed delivery, reaching a maximum plasma concentration of 52 ng/g at 48 h. Skin deposition of FENR from MNs decreased from 3 μg/g on day 1 to <0.3 μg/g by the last day. This study indicates that MNs are a potential minimally invasive dosage form for delivering FENR, offering a new approach for breast cancer chemoprevention.
Collapse
Affiliation(s)
- Alexsandra Conceição Apolinário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Li Y, Wang J, Vora LK, Sabri AHB, McGuckin MB, Paredes AJ, Donnelly RF. Dissolving microarray patches loaded with a rotigotine nanosuspension: A potential alternative to Neupro® patch. J Control Release 2024; 372:304-317. [PMID: 38906420 DOI: 10.1016/j.jconrel.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.
Collapse
Affiliation(s)
- Yaocun Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Jiawen Wang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Akmal Hidayat Bin Sabri
- Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mary B McGuckin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
10
|
Zhang C, Wu Y, Hutton ARJ, Hidayat Bin Sabri A, Hobson JJ, Savage AC, McCarthy HO, Paredes AJ, Owen A, Rannard SP, Donnelly RF. Systemic delivery of bictegravir and tenofovir alafenamide using dissolving microneedles for HIV preexposure prophylaxis. Int J Pharm 2024; 660:124317. [PMID: 38851410 DOI: 10.1016/j.ijpharm.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Human immunodeficiency virus (HIV) continues to pose a serious threat to global health. Oral preexposure prophylaxis (PrEP), considered highly effective for HIV prevention, is the utilisation of antiretroviral (ARV) drugs before HIV exposure in high-risk uninfected individuals. However, ARV drugs are associated with poor patient compliance and pill fatigue due to their daily oral dosing. Therefore, an alternative strategy for drug delivery is required. In this work, two dissolving microneedle patches (MNs) containing either bictegravir (BIC) or tenofovir alafenamide (TAF) solid drug nanoparticles (SDNs) were developed for systemic delivery of a novel ARV regimen for potential HIV prevention. According to ex vivo skin deposition studies, approximately 11% and 50% of BIC and TAF was delivered using dissolving MNs, respectively. Pharmacokinetic studies in Sprague Dawley rats demonstrated that BIC MNs achieved a long-acting release profile, maintaining the relative plasma concentration above the 95% inhibitory concentration (IC95) for 3 weeks. For TAF MNs, a rapid release of drug and metabolism of TAF into TFV were obtained from the plasma samples. This work has shown that the proposed transdermal drug delivery platform could be potentially used as an alternative method to systemically deliver ARV drugs for HIV PrEP.
Collapse
Affiliation(s)
- Chunyang Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland
| | - Yu Wu
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland
| | - Aaron R J Hutton
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, the United Kingdom of Great Britain and Northern Ireland
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland
| | - James J Hobson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, the United Kingdom of Great Britain and Northern Ireland; Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, the United Kingdom of Great Britain and Northern Ireland
| | - Alison C Savage
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, the United Kingdom of Great Britain and Northern Ireland; Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, the United Kingdom of Great Britain and Northern Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool, L69 3GF, the United Kingdom of Great Britain and Northern Ireland; Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, the United Kingdom of Great Britain and Northern Ireland.
| | - Steven P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, the United Kingdom of Great Britain and Northern Ireland; Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, the United Kingdom of Great Britain and Northern Ireland.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, the United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
11
|
Karve T, Dandekar A, Agrahari V, Melissa Peet M, Banga AK, Doncel GF. Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches. Adv Drug Deliv Rev 2024; 210:115326. [PMID: 38692457 DOI: 10.1016/j.addr.2024.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems. Each subsection describes an approach including key considerations in formulation development, design, and process parameters with schematics. An overview of commercially available conventional (adhesive) patches for long-acting drug delivery (longer than 24 h), the reservoir- and matrix-type systems under preclinical evaluation, as well as the advanced transdermal formulations, such as the core-shell, nanoformulations-incorporated and stimuli-responsive microneedles, and 3D-printed and molecularly imprinted polymers that are in development, is also provided. Finally, we elaborated on translational aspects, challenges in patch formulation development, and future directions for the clinical advancement of new long-acting transdermal products.
Collapse
Affiliation(s)
- Tanvi Karve
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Amruta Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - M Melissa Peet
- CONRAD, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | | |
Collapse
|
12
|
Fuster MG, Wang J, Fandiño O, Víllora G, Paredes AJ. Folic Acid-Decorated Nanocrystals as Highly Loaded Trojan Horses to Target Cancer Cells. Mol Pharm 2024; 21:2781-2794. [PMID: 38676649 DOI: 10.1021/acs.molpharmaceut.3c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The nanocrystal (NC) technology has become one of the most commonly used strategies for the formulation of poorly soluble actives. Given their large specific surface, NCs are mainly used to enhance the oral absorption of poorly soluble actives. Differently from conventional nanoparticles, which require the use of carrier materials and have limited drug loadings, NCs' drug loading approaches 100% since they are formed of the pure drug and surrounded by a thin layer of a stabilizer. In this work, we report the covalent decoration of curcumin NCs with folic acid (FA) using EDC/NHS chemistry and explore the novel systems as highly loaded "Trojan horses" to target cancer cells. The decorated NCs demonstrated a remarkable improvement in curcumin uptake, exhibiting enhanced growth inhibition in cancer cells (HeLa and MCF7) while sparing healthy cells (J774A.1). Cellular uptake studies revealed significantly heightened entry of FA-decorated NCs into cancer cells compared to unmodified NCs while also showing reduced uptake by macrophages, indicating a potential for prolonged circulation in vivo. These findings underline the potential of NC highly loaded nanovectors for drug delivery and, in particular, for cancer therapies, effectively targeting folate receptor-overexpressing cells while evading interception by macrophages, thus preserving their viability and offering a promising avenue for precise and effective treatments.
Collapse
Affiliation(s)
- Marta G Fuster
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, Murcia 30100, Spain
| | - Jiawen Wang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Octavio Fandiño
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Gloria Víllora
- Department of Chemical Engineering, Faculty of Chemistry, University of Murcia (UMU), Campus de Espinardo, Murcia 30100, Spain
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
13
|
Dai X, Permana AD, Li M, Habibie, Nur Amir M, Peng K, Zhang C, Dai H, Paredes AJ, Vora LK, Donnelly RF. Calcipotriol Nanosuspension-Loaded Trilayer Dissolving Microneedle Patches for the Treatment of Psoriasis: In Vitro Delivery and In Vivo Antipsoriatic Activity Studies. Mol Pharm 2024; 21:2813-2827. [PMID: 38752564 DOI: 10.1021/acs.molpharmaceut.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.
Collapse
Affiliation(s)
- Xianbing Dai
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Andi Dian Permana
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Mingshan Li
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Habibie
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Muhammad Nur Amir
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Ke Peng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Chunyang Zhang
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Haodong Dai
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, U.K
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
14
|
Li Y, Vora LK, Wang J, Sabri AHB, Graham A, McCarthy HO, Donnelly RF. Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies. Pharmaceutics 2024; 16:676. [PMID: 38794339 PMCID: PMC11125810 DOI: 10.3390/pharmaceutics16050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (LD) has been the most efficacious medication and the gold standard therapy for Parkinson's disease (PD) for decades. However, its long-term administration is usually associated with motor complications, which are believed to be the result of the fluctuating pharmacokinetics of LD following oral administration. Duodopa® is the current option to offer a continuous delivery of LD and its decarboxylase inhibitor carbidopa (CD); however, its administration involves invasive surgical procedures, which could potentially lead to lifelong complications, such as infection. Recently, dissolving microarray patches (MAPs) have come to the fore as an alternative that can bypass the oral administration route in a minimally invasive way. This work explored the potential of using dissolving MAPs to deliver LD and CD across the skin. An acidic polymer poly(acrylic acid) (PAA) was used in the MAP fabrication to prevent the potential oxidation of LD at neutral pH. The drug contents of LD and CD in the formulated dissolving MAPs were 1.82 ± 0.24 and 0.47 ± 0.04 mg/patch, respectively. The in vivo pharmacokinetic study using female Sprague-Dawley® rats (Envigo RMS Holding Corp, Bicester, UK) demonstrated a simultaneous delivery of LD and CD and comparable AUC values between the dissolving MAPs and the oral LD/CD suspension. The relative bioavailability for the dissolving MAPs was calculated to be approximately 37.22%. Accordingly, this work highlights the use of dissolving MAPs as a minimally invasive approach which could potentially bypass the gastrointestinal pathway and deliver both drugs continuously without surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (L.K.V.); (J.W.); (A.H.B.S.); (A.G.); (H.O.M.)
| |
Collapse
|
15
|
Eltayib EM, Himawan A, Detamornrat U, Muhtadi WK, Li H, Li L, Vora L, Donnelly RF. Porous microneedle arrays as promising tools for the quantification of drugs in the skin: a proof of concept study. Pharm Dev Technol 2024; 29:164-175. [PMID: 38363720 DOI: 10.1080/10837450.2024.2319734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to demonstrate the potential of using porous microneedles (PMNs) as a promising tool for the noninvasive quantification of topically applied pharmaceutical products. We fabricated a porous microneedle (PMN) from a blend of cellulose acetate and dimethyl sulfoxide by casting and phase separation; it was characterized using scanning electron microscopy, Raman spectroscopy, differential scanning calorimetry, and a Texture Analyzer. An ex vivo study was conducted as a proof-of-concept study to assess whether this PMN could be used to quantify drug absorption through the skin after the topical administration of two nonequivalent products of sodium ibuprofen (gel and dissolving microneedles). Three cellulose acetate formulations (PMN1: 37.5%, PMN-2: 44.4%, and PMN-3: 50%) were used to prepare PMN patches; subsequently, these were evaluated for their morphological and insertion properties. Only PMN-2 microneedle patches were chosen to continue with the ex vivo study. The ex vivo study results demonstrated that PMNs could absorb and release sodium ibuprofen (SDIB) and differentiate between two different SDIB topical products. This can be attributed to the porous and interconnected architecture of these microneedles. This developmental study highlights the potential success of such a tool for the quantification of dermal drug concentration and supports moving to in vivo tests.
Collapse
Affiliation(s)
- Eyman M Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Department of Pharmaceutical Science and Technology, Universitas Hasanuddin, Makassar, Indonesia
| | | | | | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Luchi Li
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
16
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
17
|
Vora LK, Tekko IA, Zanutto FV, Sabri A, Choy RKM, Mistilis J, Kwarteng P, Jarrahian C, McCarthy HO, Donnelly RF. A Bilayer Microarray Patch (MAP) for HIV Pre-Exposure Prophylaxis: The Role of MAP Designs and Formulation Composition in Enhancing Long-Acting Drug Delivery. Pharmaceutics 2024; 16:142. [PMID: 38276512 PMCID: PMC10819247 DOI: 10.3390/pharmaceutics16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug.
Collapse
Affiliation(s)
- Lalitkumar K. Vora
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ismaiel A. Tekko
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Fabiana Volpe Zanutto
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Akmal Sabri
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Robert K. M. Choy
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | - Jessica Mistilis
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | | | | | - Helen O. McCarthy
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| |
Collapse
|
18
|
Limenh LW. Advances in the transdermal delivery of antiretroviral drugs. SAGE Open Med 2024; 12:20503121231223600. [PMID: 38249942 PMCID: PMC10798114 DOI: 10.1177/20503121231223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Antiretroviral therapy regimens are successful in stopping the advancement of human immunodeficiency virus infection to acquired immunodeficiency syndrome, and other opportunistic infections. However, they do have significant disadvantages, including long-term treatment, limited oral bioavailability, inaccessibility to organs, non-adherence by patients, and the development of medication resistance. Because of the listed drawbacks of available routes and the availability of curative medicines for human immunodeficiency virus/acquired immunodeficiency syndrome, advanced solutions are required. Antiretroviral therapy transdermal delivery is one of the current strategies that have attracted much attention from many researchers. In this narrative review, various in vitro, in vivo, and ex vivo transdermal antiretroviral therapy delivery strategies were reviewed, such as transdermal patches and films, lipid-based nano-delivery systems, microneedles, chemical penetration enhancers, and iontophoresis, which showed promising results. Although the majority of studies on Antiretroviral transdermal delivery have produced hopeful findings, additional in-depth research on passive and physical enhancement techniques, both existing and new, is necessary to fully understand the potential of this route and to make it accessible to human immunodeficiency virus patients.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
19
|
Zhang C, Jahan SA, Zhang J, Bianchi MB, Volpe-Zanutto F, Baviskar SM, Rodriguez-Abetxuko A, Mishra D, Magee E, Gilmore BF, Singh TRR, Donnelly RF, Larrañeta E, Paredes AJ. Curcumin nanocrystals-in-nanofibres as a promising platform for the management of periodontal disease. Int J Pharm 2023; 648:123585. [PMID: 37952560 DOI: 10.1016/j.ijpharm.2023.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
It is estimated that nearly a half of the world's population over 30 years old suffer from some kind of periodontal disease (PD). Although preventable, PD can pose a significant health burden to patients, causing from pain and discomfort to disfigurement and death. The management of PD often requires surgical procedures accompanied of systemic antibiotic and anti-inflammatory treatments. Curcumin (CUR), a potent anti-inflammatory and antimicrobial active, has shown great promise in the management of PD; however, its effects are often limited by its low bioavailability. In this work, we report the development of electrospun nanofibres (NFs) loaded with CUR nanocrystals (NCs) for the management of PD. NCs of 100 nm were obtained by media milling and loaded into dissolving polyvinyl alcohol NFs using electrospinning. The resultant NCs-in-NFs dissolved in water spontaneously, releasing NCs with a particle size of ∼120 nm. The physiochemical characterisation of the systems indicated the absence of chemical interactions between drug and polymer, and nanofibres with an amorphous nature. In vitro release profiles demonstrated that the NCs had a significantly higher dissolution rate (∼100 % at day 40) than the control group (approximately 6 % at day 40), which consisted of NFs containing a physical mixture of the drug and stabiliser. Finally, mucosal deposition studies demonstrated a 10-fold higher capacity of the novel NCs-in-NFs system to deposit CUR ex vivo using excised neonatal porcine mucosal tissue, when compared to the control group.
Collapse
Affiliation(s)
- Chunyang Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Subrin A Jahan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jingru Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Maria Beatrice Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shubhamkumar M Baviskar
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
20
|
Vora LK, Sabri AH, Naser Y, Himawan A, Hutton ARJ, Anjani QK, Volpe-Zanutto F, Mishra D, Li M, Rodgers AM, Paredes AJ, Larrañeta E, Thakur RRS, Donnelly RF. Long-acting microneedle formulations. Adv Drug Deliv Rev 2023; 201:115055. [PMID: 37597586 DOI: 10.1016/j.addr.2023.115055] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara Naser
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Abu Ershaid JM, Vora LK, Volpe-Zanutto F, Sabri AH, Peng K, Anjani QK, McKenna PE, Ripolin A, Larrañeta E, McCarthy HO, Donnelly RF. Microneedle array patches for sustained delivery of fluphenazine: A micron scale approach for the management of schizophrenia. BIOMATERIALS ADVANCES 2023; 153:213526. [PMID: 37348183 DOI: 10.1016/j.bioadv.2023.213526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Schizophrenia is a severe chronic mental illness characterised by impaired emotional and cognitive functioning. To treat this condition, antipsychotics are available in limited dosage forms, mainly oral and injectable formulations. Although injectable antipsychotics were designed to enhance adherence, they are invasive, painful and require a healthcare professional to be administered. To overcome such administration issues, extensive research has been focused on developing transdermal antipsychotic formulations. In this work, three microneedle (MN) systems were developed to deliver fluphenazine (FLU) systemically. A decanoic prodrug of FLU called fluphenazine decanoate (FLUD) was used in two of the MN formulations due to its high lipophilicity. FLU-D was loaded into dissolving MNs and nanoemulsion (NE)-loaded MNs. The parent drug FLU was loaded into poly(lactic-co-glycolic acid) (PLGA)-tipped MNs. All MN systems were characterised and evaluated in vitro and in vivo. The in vivo evaluation of the three developed MN systems showed their ability to deliver FLU into the systemic circulation, as the Cmax of FLU-D dissolving MNs was 36.11 ± 12.37 ng/ml. However, the Cmax of FLU-D NE loaded dissolving MNs was 12.92 ± 6.3 ng/ml and for FLU-PLGA tipped MNs was 21.57 ± 2.45 ng/ml. Compared to an intramuscular (IM) injection of FLU-D in sesame oil, the relative bioavailabilities were 26.96 %, 21.73 % and 42.45 % for FLU-D dissolving MNs, FLU-D NE dissolving MNs and FLU-PLGA tipped MNs, respectively. FLU plasma levels were maintained above the minimum human therapeutic limits for a week. Consequently, these various MN formulations are considered to be a viable options for the transdermal delivery of fluphenazine and its prodrug. The three MN systems developed offer patients a user-friendly, painless, and convenient long-acting delivery method for FLU. Reducing dosing frequency and using less invasive drug administration methods can enhance adherence and foster positive therapeutic outcomes. This study demonstrates the capability and adaptability of MNs technology to transport hydrophobic molecules from the skin to the systemic circulation.
Collapse
Affiliation(s)
- Juhaina M Abu Ershaid
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy, Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Isra University, Amman 11622, Jordan
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmaceutical Sciences, R. Cândido Portinari, 200 - Cidade Universitária, Campinas, SP 13083-871, University of Campinas, Brazil
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anastasia Ripolin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
22
|
Sabri AHB, Anjani QK, Gurnani P, Domínguez-Robles J, Moreno-Castellanos N, Zhao L, Hutton ARJ, Donnelly RF. Fabrication and characterisation of poly(sulfonated) and poly(sulfonic acid) dissolving microneedles for delivery of antibiotic and antifungal agents. Int J Pharm 2023; 644:123292. [PMID: 37553057 DOI: 10.1016/j.ijpharm.2023.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Skin and soft tissue infections (SSTIs) arise from microbial ingress into the skin. In this study, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (polyAMPS), which has been reported to exhibit antimicrobial properties was synthesised for the manufacture of microarray patches (MAPs). The free acid and sodium salt of polyAMPS with controlled molar masses and narrow dispersity were synthesised via reversible addition - fragmentation chain-transfer (RAFT) polymerisation reaction with a monomer conversion of over 99%, as determined by 1H NMR. The polymers were shown to be biocompatible when evaluated using a fibroblast dermal cell line while agar plating assay using cultures of C. albican demonstrated that the acid form of polyAMPS exhibited antimicrobial inhibition, which is potentiated in the presence of antimicrobial agents. The synthesised polymers were then used to fabricate dissolving MAPs, which were loaded with either ITRA or levofloxacin (LEV). The MAPs displayed acceptable mechanical resistance and punctured ex vivo skin to a depth of 600 µm. Skin deposition studies revealed that the MAPs were able to administer up to ∼ 1.9 mg of LEV (delivery efficiency: 94.7%) and ∼ 0.2 mg of ITRA (delivery efficiency: 45.9%), respectively. Collectively, the synthesis and development of this novel pharmaceutical system may offer a strategy to manage SSTIs.
Collapse
Affiliation(s)
- Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Li Zhao
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
23
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|