1
|
Gonzales N, Garrity C, Rivas I, McEligot H, Vapniarsky N. Auricular Chondrocytes as a Cell Source for Scaffold-Free Elastic Cartilage Tissue Engineering. Tissue Eng Part C Methods 2024; 30:314-322. [PMID: 38946581 DOI: 10.1089/ten.tec.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.
Collapse
Affiliation(s)
- Nicole Gonzales
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Carissa Garrity
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Iris Rivas
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Heather McEligot
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| |
Collapse
|
2
|
Velasquillo C, Melgarejo-Ramírez Y, García-López J, Gutiérrez-Gómez C, Lecona H, González-Torres M, Sánchez-Betancourt JI, Ibarra C, Lee SJ, Yoo JJ. Remaining microtia tissue as a source for 3D bioprinted elastic cartilage tissue constructs, potential use for surgical microtia reconstruction. Cell Tissue Bank 2024; 25:571-582. [PMID: 38038782 DOI: 10.1007/s10561-023-10118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The absence of ears in children is a global problem. An implant made of costal cartilage is the standard procedure for ear reconstruction; however, side effects such as pneumothorax, loss of thoracic cage shape, and respiratory complications have been documented. Three-dimensional (3D) printing allows the generation of biocompatible scaffolds that mimic the shape, mechanical strength, and architecture of the native extracellular matrix necessary to promote new elastic cartilage formation. We report the potential use of a 3D-bioprinted poly-ε-caprolactone (3D-PCL) auricle-shaped framework seeded with remaining human microtia chondrocytes for the development of elastic cartilage for autologous microtia ear reconstruction. An in vivo assay of the neo-tissue formed revealed the generation of a 3D pinna-shaped neo-tissue, and confirmed the formation of elastic cartilage by the presence of type II collagen and elastin with histological features and a protein composition consistent with normal elastic cartilage. According to our results, a combination of 3D-PCL auricle frameworks and autologous microtia remnant tissue generates a suitable pinna structure for autologous ear reconstruction.
Collapse
Affiliation(s)
- Cristina Velasquillo
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación LGII, Mexico City, Mexico.
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación LGII, Mexico City, Mexico.
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación LGII, Mexico City, Mexico
| | - Claudia Gutiérrez-Gómez
- División de Cirugía Plástica y Reconstructiva, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Hugo Lecona
- Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Maykel González-Torres
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación LGII, Mexico City, Mexico
| | - José Iván Sánchez-Betancourt
- Departamento de Producción Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación LGII, Mexico City, Mexico
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Jakob Y, Kern J, Gvaramia D, Fisch P, Magritz R, Reutter S, Rotter N. Suitability of Ex Vivo-Expanded Microtic Perichondrocytes for Auricular Reconstruction. Cells 2024; 13:141. [PMID: 38247833 PMCID: PMC10814984 DOI: 10.3390/cells13020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Tissue engineering (TE) techniques offer solutions for tissue regeneration but require large quantities of cells. For microtia patients, TE methods represent a unique opportunity for therapies with low donor-site morbidity and reliance on the surgeon's individual expertise. Microtia-derived chondrocytes and perichondrocytes are considered a valuable cell source for autologous reconstruction of the pinna. The aim of this study was to investigate the suitability of perichondrocytes from microtia patients for autologous reconstruction in comparison to healthy perichondrocytes and microtia chondrocytes. Perichondrocytes were isolated via two different methods: explant culture and enzymatic digestion. The isolated cells were analyzed in vitro for their chondrogenic cell properties. We examined migration activity, colony-forming ability, expression of mesenchymal stem cell markers, and gene expression profile. We found that microtic perichondrocytes exhibit similar chondrogenic properties compared to chondrocytes in vitro. We investigated the behavior in three-dimensional cell cultures (spheroids and scaffold-based 3D cell cultures) and assessed the expression of cartilage-specific proteins via immunohistochemistry, e.g., collagen II, which was detected in all samples. Our results show that perichondrocytes from microtia patients are comparable to healthy perichondrocytes and chondrocytes in terms of chondrogenic cell properties and could therefore be a promising cell source for auricular reconstruction.
Collapse
Affiliation(s)
- Yvonne Jakob
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Johann Kern
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - David Gvaramia
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Philipp Fisch
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland;
| | - Ralph Magritz
- Clinic for Otorhinolaryngology, Oberhavel-Kliniken GmbH, Klinik Henningsdorf, Marwitzer Strasse 91, D-16761 Henningsdorf, Germany;
| | - Sven Reutter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany; (J.K.); (D.G.); (N.R.)
| |
Collapse
|
4
|
Facial Cosmetic Surgery. J Oral Maxillofac Surg 2023; 81:E300-E324. [PMID: 37833027 DOI: 10.1016/j.joms.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
|
5
|
Liu Y, Wu W, Seunggi C, Li Z, Huang Y, Zhou K, Wang B, Chen Z, Zhang Z. The application and progress of stem cells in auricular cartilage regeneration: a systematic review. Front Cell Dev Biol 2023; 11:1204050. [PMID: 37564374 PMCID: PMC10409996 DOI: 10.3389/fcell.2023.1204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: The treatment of microtia or acquired ear deformities by surgery is a significant challenge for plastic and ENT surgeons; one of the most difficult points is constructing the scaffold for auricular reconstruction. As a type of cell with multiple differentiation potentials, stem cells play an essential role in the construction of cartilage scaffolds, and therefore have received widespread attention in ear reconstructive research. Methods: A literature search was conducted for peer-reviewed articles between 2005 and 2023 with the following keywords: stem cells; auricular cartilage; ear cartilage; conchal cartilage; auricular reconstruction, regeneration, and reparation of chondrocytes; tissue engineering in the following databases: PubMed, MEDLINE, Cochrane, and Ovid. Results: Thirty-three research articles were finally selected and their main characteristics were summarized. Adipose-derived stem cells (ADSCs), bone marrow mesenchymal stem cells (BMMSCs), perichondrial stem/progenitor cells (PPCs), and cartilage stem/progenitor cells (CSPCs) were mainly used in chondrocyte regeneration. Injecting the stem cells into the cartilage niche directly, co-culturing the stem cells with the auricular cartilage cells, and inducing the cells in the chondrogenic medium in vitro were the main methods that have been demonstrated in the studies. The chondrogenic ability of these cells was observed in vitro, and they also maintained good elasticity and morphology after implantation in vivo for a period of time. Conclusion: ADSC, BMMSC, PPC, and CSPC were the main stem cells that have been researched in craniofacial cartilage reconstruction, the regenerative cartilage performed highly similar to normal cartilage, and the test of AGA and type II collagen content also proved the cartilage property of the neo-cartilage. However, stem cell reconstruction of the auricle is still in the initial stage of animal experiments, transplantation with such scaffolds in large animals is still lacking, and there is still a long way to go.
Collapse
Affiliation(s)
- Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chun Seunggi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
κ-Carrageenan and PVA blends as bioinks to 3D print scaffolds for cartilage reconstruction. Int J Biol Macromol 2022; 222:1861-1875. [DOI: 10.1016/j.ijbiomac.2022.09.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
7
|
Otto IA, Bernal PN, Rikkers M, van Rijen MH, Mensinga A, Kon M, Breugem CC, Levato R, Malda J. Human Adult, Pediatric and Microtia Auricular Cartilage harbor Fibronectin-adhering Progenitor Cells with Regenerative Ear Reconstruction Potential. iScience 2022; 25:104979. [PMID: 36105583 PMCID: PMC9464889 DOI: 10.1016/j.isci.2022.104979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Iris A. Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Margot Rikkers
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Mattie H.P. van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Moshe Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Corstiaan C. Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, 1105 ZA, the Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, Yalelaan 108, Utrecht, 3584 CM, the Netherlands
- Corresponding author
| |
Collapse
|
8
|
Mairpady A, Mourad AHI, Mozumder MS. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers (Basel) 2022; 14:polym14091802. [PMID: 35566970 PMCID: PMC9104973 DOI: 10.3390/polym14091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate the physical, mechanical, and biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially, a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix package in the R program. Then, the database was created by extracting the mechanical properties of the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools. Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend as the best candidate for cartilage repair.
Collapse
Affiliation(s)
- Anusha Mairpady
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
9
|
Ramya S, Agrawal KK, Singh SV, Chand P. Acquired partial auricular defect rehabilitation aided by four-part mold technique and spectrophotometer. Natl J Maxillofac Surg 2021; 12:422-425. [PMID: 35153443 PMCID: PMC8820311 DOI: 10.4103/njms.njms_115_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 11/04/2022] Open
Abstract
Patients with auricular defects benefit greatly by an ear prosthesis. However, during the fabrication of auricular prosthesis, difficulties can be faced in obtaining a satisfactory outcome, such as tearing of the prosthesis, fracture of the mold and poor color matching. An 18 year old male lost part of his left auricle in an assault and battery because of which the patient was suffering from adverse psychosocial impact. Surgical reconstruction was ruled out because of patient's desire and financial constraints. Partial auricular prosthesis using four part mold technique and spectrophotometer was fabricated leading to a desirable outcome. Four part mold technique prevented fracture of mold and made retrieval of prosthesis easier. Spectrophotometer reduced the duration of patient visit and the artistic skill required for colour matching in tral and error method.
Collapse
Affiliation(s)
- S Ramya
- Department of Prosthodontics, Crown and Bridge, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Kaushal Kishor Agrawal
- Department of Prosthodontics, Crown and Bridge, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Saumyendra Vikram Singh
- Department of Prosthodontics, Crown and Bridge, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pooran Chand
- Department of Prosthodontics, Crown and Bridge, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Ciorba A, Skarżyński PH, Gocmenler H, Hatzopoulos S. Advances in Pediatric and Adult Cochlear Implant and Middle Ear Prostheses. J Clin Med 2021; 10:3152. [PMID: 34300318 PMCID: PMC8307648 DOI: 10.3390/jcm10143152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this special issue, entitled 'Advances in Pediatric and Adult Cochlear Implant and Middle Ear Prostheses', is to report the undergoing novel research in the area of ear prostheses, either for the middle or inner ear [...].
Collapse
Affiliation(s)
- Andrea Ciorba
- Audiology and ENT Unit, Department of Neurosciences and Rehabilitation, University Hospital of Ferrara, University of Ferrara, 44224 Ferrara, Italy;
| | - Piotr H. Skarżyński
- Institute of Sensory Organs, Kajetany, 05-830 Warsaw, Poland;
- Institute of Physiology and Pathology of Hearing, 05-830 Warsaw, Poland
- Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Hulya Gocmenler
- Department of Audiology, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul 34720, Turkey;
| | - Stavros Hatzopoulos
- Audiology and ENT Unit, Department of Neurosciences and Rehabilitation, University Hospital of Ferrara, University of Ferrara, 44224 Ferrara, Italy;
| |
Collapse
|
11
|
Evaluation of Auricular Cartilage Reconstruction Using a 3-Dimensional Printed Biodegradable Scaffold and Autogenous Minced Auricular Cartilage. Ann Plast Surg 2021; 85:185-193. [PMID: 32118635 DOI: 10.1097/sap.0000000000002313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Auricular cartilage reconstruction represents one of the greatest challenges for otolaryngology-head and neck surgery. The native structure and composition of the auricular cartilage can be achieved by combining a suitable chondrogenic cell source with an appropriate scaffold. In reconstructive surgery for cartilage tissue, autogenous cartilage is considered to be the best chondrogenic cell source. Polycaprolactone is mainly used as a tissue-engineered scaffold owing to its mechanical properties, miscibility with a large range of other polymers, and biodegradability. In this study, scaffolds with or without autogenous minced auricular cartilage were implanted bilaterally in rabbits for auricular regeneration. Six weeks (n = 4) and 16 weeks (n = 4) after implantation, real-time quantitative reverse transcription polymerase chain reaction and histology were used to assess the regeneration of the auricular cartilage. Quantitative reverse transcription polymerase chain reaction analysis revealed that the messenger RNA expression of aggrecan, collagen I, and collagen II was higher in scaffolds with 50% minced cartilage than the scaffold-only groups or scaffolds with 30% minced cartilage (P < 0.05). Furthermore, histological analysis demonstrated significantly superior cartilage regeneration in scaffolds with the minced cartilage group compared with the scaffold-only and control groups (P < 0.05). Autogenous cartilage can be easily obtained and loaded onto a scaffold to promote the presence of chondrogenic cells, allowing for an improvement of the reconstruction of auricular cartilage. Here, the regeneration of auricular cartilage was also successful in the 50% minced cartilage group. The results presented in this study could have clinical implications, as they demonstrate the potential of a 1-stage process for auricular reconstruction.
Collapse
|
12
|
Poly(vinyl alcohol)/Gelatin Scaffolds Allow Regeneration of Nasal Tissues. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Need for regeneration and repair of nasal tissues occurs as a consequence of several pathologies affecting the nose, including, but not limited to infective diseases, traumas and tumor resections. A platform for nasal tissue regeneration was set up using poly(vinyl alcohol)/gelatin sponges with 20%–30% (w/w) gelatin content to be used as scaffolds, for their intrinsic hydrophilic, cell adhesive and shape recovery properties. We propose mesodermal progenitor cells (MPCs) isolated from the bone marrow as a unique stem cell source for obtaining different connective tissues of the nose, including vascular tissue. Finally, epithelial cell immune response to these scaffolds was assessed in vitro in an environment containing inflammatory molecules. The results showed that mesenchymal stromal cells (MSCs) deriving from MPCs could be used to differentiate into cartilage and fibrous tissue; whereas, in combination with endothelial cells still deriving from MPCs, into pre-vascularized bone. Finally, the scaffold did not significantly alter the epithelial cell response to inflammatory insults derived from interaction with bacterial molecules.
Collapse
|
13
|
Xu L, Ma F, Huang J, Frankie Leung KL, Qin C, Lu WW, Guo XE, Tang B. Metformin Hydrochloride Encapsulation by Alginate Strontium Hydrogel for Cartilage Regeneration by Reliving Cellular Senescence. Biomacromolecules 2021; 22:671-680. [PMID: 33486954 DOI: 10.1021/acs.biomac.0c01488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cartilage lesion is a common tissue defect and is challenging in clinical practice. Trauma-induced cellular senescence could decrease the chondrocyte capability of maintaining cartilage tissue regeneration. A previous investigation showed that, by controlling the cellular senescence, the cartilage regeneration can be significantly accelerated. Based on this finding, we design a novel hydrogel, Alg/MH-Sr, that combines metformin, an established drug for inhibiting senescence, and strontium, an effective anti-inflammatory material for cartilage tissue engineering. A RT-PCR test suggests the significant inhibitory effect of the hydrogel on senescent, apoptotic, oxidative, and inflammatory genes' expression. Histological examinations demonstrate that the Alg/MH-Sr hydrogel accelerated cartilage repairment, and chondrocyte senescence was significantly inhibited. Our study demonstrates that the Alg/MH-Sr hydrogel is effective for cartilage defect treatment and provides a new clue in accelerating tissue repairment by inhibiting the senescence of cells and tissues.
Collapse
Affiliation(s)
- Lei Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China.,Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong 999077, SAR, People's Republic of China.,Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, 10027 New York, United States.,Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guang Dong, People's Republic of China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Jun Huang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Ka Li Frankie Leung
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong 999077, SAR, People's Republic of China
| | - Chenghe Qin
- Department of Orthopeadics and Traumatology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guang Dong, People's Republic of China
| | - William Weijia Lu
- Department of Orthopeadics and Traumatology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong 999077, SAR, People's Republic of China
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, 10027 New York, United States
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, SUSTech, Schenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Cell Microenvironment, SUSTech, Schenzhen, Guangdong, People's Republic of China
| |
Collapse
|
14
|
Otto IA, Capendale PE, Garcia JP, de Ruijter M, van Doremalen RFM, Castilho M, Lawson T, Grinstaff MW, Breugem CC, Kon M, Levato R, Malda J. Biofabrication of a shape-stable auricular structure for the reconstruction of ear deformities. Mater Today Bio 2021; 9:100094. [PMID: 33665603 PMCID: PMC7903133 DOI: 10.1016/j.mtbio.2021.100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 11/04/2022] Open
Abstract
Bioengineering of the human auricle remains a significant challenge, where the complex and unique shape, the generation of high-quality neocartilage, and shape preservation are key factors. Future regenerative medicine–based approaches for auricular cartilage reconstruction will benefit from a smart combination of various strategies. Our approach to fabrication of an ear-shaped construct uses hybrid bioprinting techniques, a recently identified progenitor cell population, previously validated biomaterials, and a smart scaffold design. Specifically, we generated a 3D-printed polycaprolactone (PCL) scaffold via fused deposition modeling, photocrosslinked a human auricular cartilage progenitor cell–laden gelatin methacryloyl (gelMA) hydrogel within the scaffold, and cultured the bioengineered structure in vitro in chondrogenic media for 30 days. Our results show that the fabrication process maintains the viability and chondrogenic phenotype of the cells, that the compressive properties of the combined PCL and gelMA hybrid auricular constructs are similar to native auricular cartilage, and that biofabricated hybrid auricular structures exhibit excellent shape fidelity compared with the 3D digital model along with deposition of cartilage-like matrix in both peripheral and central areas of the auricular structure. Our strategy affords an anatomically enhanced auricular structure with appropriate mechanical properties, ensures adequate preservation of the auricular shape during a dynamic in vitro culture period, and enables chondrogenically potent progenitor cells to produce abundant cartilage-like matrix throughout the auricular construct. The combination of smart scaffold design with 3D bioprinting and cartilage progenitor cells holds promise for the development of clinically translatable regenerative medicine strategies for auricular reconstruction. First application of human auricular cartilage progenitor cells for bioprinting. Dual-printing of hybrid ear-shaped constructs with excellent shape fidelity over time. Strategy and design ensured adequate deposition of cartilage-like matrix throughout large auricular constructs.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - P E Capendale
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J P Garcia
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - M de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - R F M van Doremalen
- Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics & Computer Science, University of Twente, Enschede, the Netherlands.,Bureau Science & Innovation, Deventer Hospital, Deventer, the Netherlands
| | - M Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - T Lawson
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - M W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, USA
| | - C C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, Emma Children's Hospital, Amsterdam, the Netherlands
| | - M Kon
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Levato
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Science, Utrecht University, the Netherlands
| |
Collapse
|
15
|
Yang ZG, Tang RF, Qi YY, Chen WP, Xiong Y, Wu LD. Restoration of cartilage defects using a superparamagnetic iron oxide-labeled adipose-derived mesenchymal stem cell and TGF-β3-loaded bilayer PLGA construct. Regen Med 2020; 15:1735-1747. [PMID: 32811280 DOI: 10.2217/rme-2019-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: We aimed to evaluate the capacity of the bilayer polylactic-co-glycolic acid (PLGA)/TGF-β3/adipose-derived mesenchymal stem cell (ADSC) construct used to repair cartilage defects and the role of ADSCs in the repair process in vivo. Materials & methods: Defects were created surgically on the femoropatellar groove of knee joints in 64 rabbits. All the rabbits were randomly divided into four groups: defect group, PLGA group, PLGA/TGF-β3 group and PLGA/TGF-β3/ADSC group. In vivo MRI and Prussian blue staining were applied. Quantitative real-time PCR and western blot methods were used to analyze the gene and protein expression. Results & conclusion: The result showed that TGF-β3 could effectively stimulate the expressions of aggrecan, collagen type II and SRY-related HMG box 9 (SOX9). The bilayer PLGA/TGF-β3/ADSC construct showed a promising repair effect.
Collapse
Affiliation(s)
- Zhi-Gao Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu City, Anhui Province, China.,Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Ruo-Fu Tang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Yi-Ying Qi
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Wei-Ping Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Yan Xiong
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Li-Dong Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
16
|
Zhu Z, Bai X, Wang H, Li X, Sun G, Zhang P. A study on the mechanism of Wnt inhibitory factor 1 in osteoarthritis. Arch Med Sci 2020; 16:898-906. [PMID: 32542093 PMCID: PMC7286342 DOI: 10.5114/aoms.2020.95667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/26/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION In our study we aimed to investigate the mechanism of Wnt inhibitory factor 1 (WIF1) on regulating chondrocyte proliferation and apoptosis via reactive oxygen species (ROS) and the Wnt/βcatenin signaling pathway in osteoarthritis (OA). MATERIAL AND METHODS Osteoarthritis chondrocytes were treated with interleukin 1β (IL-1β) to simulate an inflammatory condition. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were applied for detecting WIF1 expression in OA chondrocytes. MTT assay and flow cytometry were carried out to analyze the cell proliferation and apoptosis. Content of ROS was detected using flow cytometry, and activity of the Wnt/βcatenin signaling pathway was detected using immunofluorescence, western blot and luciferase reporter assay. Western blot and enzyme-linked immunosorbent assay (ELISA) were performed to detect the expression of apoptosis-related proteins and secretion of matrix metalloproteinases (MMPs). RESULTS WIF1 expression in OA chondrocytes was significantly lower than in normal chondrocytes. After WIF1 cDNA transfection, the aberrantly high ROS level in OA chondrocytes was down-regulated, which led to the increase of proliferation and reduction of apoptosis. The Wnt/βcatenin signaling pathway was suppressed by WIF1 overexpression and the secretion of MMPs was therefore reduced. CONCLUSIONS Up-regulation of WIF1 would promote proliferation and suppress apoptosis of OA chondrocytes through eliminating ROS production and reduce secretion of MMPs via blocking the Wnt/βcatenin signaling pathway.
Collapse
Affiliation(s)
| | - Xizhuang Bai
- Corresponding author: Xizhuang Bai MD, Department of Sports Medicine and Joint Surgery, The People’s Hospital of China Medical University, 33 Wenyi Road Shenhe District, Shenyang 110016 Liaoning, China, Phone: +86 024 24016114, E-mail:
| | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Bhattacharya R, Das P, Joardar SN, Biswas BK, Batabyal S, Das PK, Nandi SK. Novel decellularized animal conchal cartilage graft for application in human patient. J Tissue Eng Regen Med 2018; 13:46-57. [PMID: 30358120 DOI: 10.1002/term.2767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 08/19/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Restoration of the external ear and nose in human patients, in either congenital deformity or acquired defects, is a challenge in reconstructive surgery. Optimization of the currently available materials is necessary for rhinoplasty and microtia correction to avoid intraoperative manoeuvring and early rejection. The aim of this study was to develop cross-linked decellularized caprine conchal cartilages as biocompatible, robust, and non-toxic matrix template. The characterization of the decellularized tissue encompasses in vitro lymphoproliferation assay, cytotoxicity test, agar gel precipitation test, in vivo immunocompatibility study, histology, and determination of pro-inflammatory cytokines in animal model. Decellularized cartilage was implanted in human volunteer at R. G. Kar Medical College and Hospital, Kolkata, India, and samples were assessed histologically by retrieving those after 4 months. The processed cartilages were implanted in rhinoplasty (nine) and microtia patients (six) keeping autogenous cartilage graft as control up to 18 months after surgery. Primary outcomes were viability and safety of the material, both in animal model and human pre-application in actual site. Secondary outcomes included self-assessed clinical findings on gross examination. This study is under the ethical approval no. RKC/14 dated January 27, 2012. The in vitro cellular reactivity was less in processed cartilage protein than control. Histology of retrieved tissues in animal model and human volunteer showed no adverse reactions. Production of IL-2, IL-6, and TNF-α cytokines was lower at 4 weeks. The rhinoplasty and microtia operation in clinical patients utilizing the processed cartilage showed satisfactory recovery with improved facial look. These low cost, easily available, biocompatible, safe xenocartilage biomatrices of caprine conchal cartilage origin are very flexible in shape and size, enabling them as potential bioimplant for repair of nasal and auricular structure without any rejection or diverse biomedical applications.
Collapse
Affiliation(s)
- Rupnarayan Bhattacharya
- Department of Plastic Surgery, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Piyali Das
- Department of Biotechnology Project, Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Siddhartha Narayan Joardar
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Bikash Kanti Biswas
- Directorate of Research, Extension and Farms, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Subhasis Batabyal
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Otto IA, van Doremalen RFM, Melchels FPW, Kolodzynski MN, Pouran B, Malda J, Kon M, Breugem CC. Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1146. [PMID: 28293505 PMCID: PMC5222650 DOI: 10.1097/gox.0000000000001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Background: The limited cranial skin covering auricular implants is an important yet underrated factor in auricular reconstruction for both reconstruction surgery and tissue engineering strategies. We report exact measurements on skin deficiency in microtia patients and propose an accessible preoperative method for these measurements. Methods: Plaster ear models (n = 11; male:female = 2:1) of lobular-type microtia patients admitted to the University Medical Center Utrecht in The Netherlands were scanned using a micro-computed tomographic scanner or a cone-beam computed tomographic scanner. The resulting images were converted into mesh models from which the surface area could be calculated. Results: The mean total skin area of an adult-size healthy ear was 47.3 cm2, with 49.0 cm2 in men and 44.3 cm2 in women. Microtia ears averaged 14.5 cm2, with 15.6 cm2 in men and 12.6 cm2 in women. The amount of skin deficiency was 25.4 cm2, with 26.7 cm2 in men and 23.1 cm2 in women. Conclusions: This study proposes a novel method to provide quantitative data on the skin surface area of the healthy adult auricle and the amount of skin deficiency in microtia patients. We demonstrate that the microtia ear has less than 50% of skin available compared with healthy ears. Limited skin availability in microtia patients can lead to healing problems after auricular reconstruction and poses a significant challenge in the development of tissue-engineered cartilage implants. The results of this study could be used to evaluate outcomes and investigate new techniques with regard to tissue-engineered auricular constructs.
Collapse
Affiliation(s)
- Iris A Otto
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Rob F M van Doremalen
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Ferry P W Melchels
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Michail N Kolodzynski
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Behdad Pouran
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Jos Malda
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Moshe Kon
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| | - Corstiaan C Breugem
- Departments of Plastic, Reconstructive and Hand Surgery and Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; and Department of Plastic Surgery, Meander Medical Centre, Amersfoort, The Netherlands
| |
Collapse
|
21
|
Satisfactory surgical option for cartilage graft absorption in microtia reconstruction. J Craniomaxillofac Surg 2016; 44:471-8. [DOI: 10.1016/j.jcms.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 11/23/2022] Open
|
22
|
Li Y, Zheng Z, Cao Z, Zhuang L, Xu Y, Liu X, Xu Y, Gong Y. Enhancing proliferation and osteogenic differentiation of HMSCs on casein/chitosan multilayer films. Colloids Surf B Biointerfaces 2016; 141:397-407. [PMID: 26895501 DOI: 10.1016/j.colsurfb.2016.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/02/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Creating a bioactive surface is important in tissue engineering. Inspired by the natural calcium binding property of casein (CA), multilayer films ((CA/CS)n) with chitosan (CS) as polycation were fabricated to enhance biomineralization, cell adhesion and differentiation. LBL self-assembly technique was used and the assembly process was intensively studied based on changes of UV absorbance, zeta potential and water contact angle. The increasing content of chitosan and casein with bilayers was further confirmed with XPS and TOF-SIMS analysis. To improve the biocompatibility, gelatin was surface grafted. In vitro mineralization test demonstrated that multilayer films had more hydroxyapatite crystal deposition. Human mesenchymal stem cells (HMSCs) were seeded onto these films. According to fluorescein diacetate (FDA) and cell cytoskeleton staining, MTT assay, expression of osteogenic marker genes, ALP activity, and calcium deposition quantification, it was found that these multilayer films significantly promoted HMSCs attachment, proliferation and osteogenic differentiation than TCPS control.
Collapse
Affiliation(s)
- Yan Li
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zebin Zheng
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Zhinan Cao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Liangting Zhuang
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yong Xu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiaozhen Liu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yue Xu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Yihong Gong
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
23
|
Kajbafzadeh AM, Khorramirouz R, Akbarzadeh A, Sabetkish S, Sabetkish N, Saadat P, Tehrani M. A novel technique for simultaneous whole-body and multi-organ decellularization: umbilical artery catheterization as a perfusion-based method in a sheep foetus model. Int J Exp Pathol 2015; 96:116-32. [PMID: 26031202 DOI: 10.1111/iep.12124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/09/2015] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to develop a method to generate multi-organ acellular matrices. Using a foetal sheep model have developed a method of systemic pulsatile perfusion via the umbilical artery which allows for simultaneous multi-organ decellularization. Twenty sheep foetuses were systemically perfused with Triton X-100 and sodium dodecyl sulphate. Following completion of the whole-body decellularization, multiple biopsy samples were taken from different parts of 21 organs to ascertain complete cell component removal in the preserved extracellular matrices. Both the natural and decellularized organs were subjected to several examinations. The samples were obtained from the skin, eye, ear, nose, throat, cardiovascular, respiratory, gastrointestinal, urinary, musculoskeletal, central nervous and peripheral nervous systems. The histological results depicted well-preserved extracellular matrix (ECM) integrity and intact vascular structures, without any evidence of residual cellular materials, in all decellularized bioscaffolds. Scanning electron microscope (SEM) and biochemical properties remained intact, similar to their age-matched native counterparts. Preservation of the collagen structure was evaluated by a hydroxyproline assay. Dense organs such as bone and muscle were also completely decellularized, with a preserved ECM structure. Thus, as shown in this study, several organs and different tissues were decellularized using a perfusion-based method, which has not been previously accomplished. Given the technical challenges that exist for the efficient generation of biological scaffolds, the current results may pave the way for obtaining a variety of decellularized scaffolds from a single donor. In this study, there have been unique responses to the single acellularization protocol in foetuses, which may reflect the homogeneity of tissues and organs in the developing foetal body.
Collapse
Affiliation(s)
- Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Reza Khorramirouz
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Aram Akbarzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Shabnam Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Nastaran Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Paria Saadat
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Mona Tehrani
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| |
Collapse
|
24
|
Otto IA, Melchels FPW, Zhao X, Randolph MA, Kon M, Breugem CC, Malda J. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 2015. [PMID: 26200941 DOI: 10.1088/1758-5090/7/3/032001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Auricular malformations, which impose a significant social and psychological burden, are currently treated using ear prostheses, synthetic implants or autologous implants derived from rib cartilage. Advances in the field of regenerative medicine and biofabrication provide the possibility to engineer functional cartilage with intricate architectures and complex shapes using patient-derived or donor cells. However, the development of a successful auricular cartilage implant still faces a number of challenges. These challenges include the generation of a functional biochemical matrix, the fabrication of a customized anatomical shape, and maintenance of that shape. Biofabrication technologies may have the potential to overcome these challenges due to their ability to reproducibly deposit multiple materials in complex geometries in a highly controllable manner. This topical review summarizes this potential of biofabrication technologies for the generation of implants for auricular reconstruction. In particular, it aims to discuss how biofabrication technologies, although still in pre-clinical phase, could overcome the challenges of generating and maintaining the desired auricular shapes. Finally, remaining bottlenecks and future directions are discussed.
Collapse
Affiliation(s)
- I A Otto
- Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands. Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Poly (vinyl alcohol) modification of low acyl gellan hydrogels for applications in tissue regeneration. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
Microtia represents a spectrum of maldevelopment of the external ear. Reconstructive techniques may utilize an autogenous rib cartilage framework and require 2-4 stages; alternatively, an alloplastic framework can be used and typically requires 1-2 stages. Successful reconstruction of microtia with either technique can provide a significant quality of life improvement, and both techniques are described in this article.
Collapse
|
27
|
|
28
|
Chen J, Zhu X, Xu Y, Tang Y, Xiong S, Zhuo S, Chen J. Stereoscopic visualization and quantification of auricular cartilage regeneration in rabbits using multiphoton microscopy. SCANNING 2014; 36:540-546. [PMID: 25195587 DOI: 10.1002/sca.21153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Multiphoton microscopy (MPM) was applied for imaging and quantifying the elastic cartilage regeneration tissue in a rabbit ear model without using labeling agents. Morphology of cells and collagen matrix were analysis, showing significant difference between regenerated and intact cartilage in cellular size and collagen distribution. The results demonstrate that high resolution images provide by MPM are consistent with the histological results, and show additional biological behavior which is not visible in standard histology. Advantages in instrumentation may lead to the application of MPM for intravital detection and treatment.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
WENG XIAPING, LIN PINGDONG, LIU FAYUAN, CHEN JIASHOU, LI HUITING, HUANG LICHAN, ZHEN CHUNSONG, XU HUIFENG, LIU XIANXIANG, YE HONGZHI, LI XIHAI. Achyranthes bidentata polysaccharides activate the Wnt/β-catenin signaling pathway to promote chondrocyte proliferation. Int J Mol Med 2014; 34:1045-50. [DOI: 10.3892/ijmm.2014.1869] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/15/2014] [Indexed: 11/06/2022] Open
|
30
|
Ciorba A, Martini A. Regeneration in the mammalian inner ear: A glimpse into the future. HEARING BALANCE AND COMMUNICATION 2014. [DOI: 10.3109/21695717.2013.872835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Bermueller C, Schwarz S, Elsaesser AF, Sewing J, Baur N, von Bomhard A, Scheithauer M, Notbohm H, Rotter N. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 2013; 19:2201-14. [PMID: 23621795 DOI: 10.1089/ten.tea.2012.0650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair.
Collapse
Affiliation(s)
- Christian Bermueller
- Department of Otorhinolaryngology, Ulm University Medical Center, Frauensteige 12, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 2013; 28:626-40. [DOI: 10.1177/0885328212472547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we investigated the effects of human primary chondrocytes, derived from routine septorhino- and otoplasties on a novel nondegradable biomaterial. This biomaterial, porous bacterial nanocellulose, is produced by Gluconacetobacter xylinus. Porosity is generated by paraffin beads embedded during the fermentation process. Human primary chondrocytes were able to adhere to bacterial nanocellulose and produce cartilaginous matrix proteins such as aggrecan (after 14 days) and collagen type II (after 21 days) in the presence of differentiation medium. Cells were located within the pores and in a dense cell layer covering the surface of the biomaterial. Cells were able to re-differentiate, as cell shape and extra cellular matrix gene expression showed a chondrogenic phenotype in three-dimensional bacterial nanocellulose culture. Collagen type I and versican expression decreased during three-dimensional culture. Variations in pore sizes of 150–300 µm and 300–500 µm did not influence cartilaginous extra cellular matrix synthesis. Varying seeding densities from 9.95 × 102 to 1.99 × 103 cells/mm2 and 3.98 × 103 cells/mm2 did not result in differences in quality of extra cellular matrix neo-synthesis. Our results demonstrated that both nasal and auricular chondrocytes are equally suitable to synthesize new extra cellular matrix on bacterial nanocellulose. Therefore, we propose both cell sources in combination with bacterial nanocellulose as promising candidates for the special needs of auricular reconstruction.
Collapse
|
33
|
Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W, Cao Y, Zhang Y, Zhang WJ. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 2013; 34:2624-31. [PMID: 23352044 DOI: 10.1016/j.biomaterials.2012.12.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 11/29/2022]
Abstract
Tissue engineering approach continuously requires for emerging strategies to improve the efficacy in repairing and regeneration of tissue defects. Previously, we developed a sandwich model strategy for cartilage engineering, using the combination of acellular cartilage sheets (ACSs) and chondrocytes. However, the process for the preparation of ACSs is complicated, and it is also difficult to obtain large ACSs. The aim of this study was to engineer cartilage with precise three-dimensional (3-D) structures by applying electrospun fibrous membranes of gelatin/polycaprolactone (GT/PCL). We first prepared the electrospun GT/PCL membranes into rounded shape, and then seeded chondrocytes in the sandwich model. After in vitro and in vivo cultivation, the newly formed cartilage-like tissues were harvested. Macroscopic observations and histological analysis confirmed that the engineering of cartilage using the electrospun GT/PCL membranes was feasible. An ear-shaped cartilage was then constructed in the sandwich model, with the help of an ear-shaped titanium alloy mold. After 2 weeks of culture in vitro and 6 weeks of subcutaneous incubation in vivo, the ear-shaped cartilage largely maintained their original shape, with a shape similarity up to 91.41% of the titanium mold. In addition, the engineered cartilage showed good elasticity and impressive mechanical strength. These results demonstrated that the engineering of 3-D cartilage in a sandwich model using electrospun fibrous membranes was a facile and effective approach, which has the potential to be applied for the engineering of other tissues with complicated 3-D structures.
Collapse
Affiliation(s)
- Jixin Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The loss or absence of an auricle may result from trauma, disease or congenital anomalies and causes a considerable aesthetic problem. If the deformity involves the external auditory canal, it can affect hearing. This case report describes the surgical and prosthetic treatment of two patients with partial defects of their right external ears from different causes. Implant-retained auricular prostheses fabricated from heat-temperature-vulcanised silicone were used in both the cases; they were designed to be harmonious with the remaining tissues. The patients experienced improved retention, aesthetics, hearing and quality of life with these prostheses. During the approximately 3 year follow-up, both the prostheses were re-fabricated once; however, problems related to implant stability and peri-implant tissue health were not encountered.
Collapse
|
35
|
|
36
|
Sobol E, Shekhter A, Guller A, Baum O, Baskov A. Laser-induced regeneration of cartilage. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:080902. [PMID: 21895308 DOI: 10.1117/1.3614565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.
Collapse
Affiliation(s)
- Emil Sobol
- Institute on Laser and Information Technologies, Russian Academy of Sciences, 2, Pionerskya, Troitsk, 142192, Russia.
| | | | | | | | | |
Collapse
|
37
|
Mantri SS, Thombre RU, Pallavi D. Prosthodontic rehabilitation of a patient with bilateral auricular deformity. J Adv Prosthodont 2011; 3:101-5. [PMID: 21814620 PMCID: PMC3141117 DOI: 10.4047/jap.2011.3.2.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/11/2011] [Accepted: 04/20/2011] [Indexed: 11/08/2022] Open
Abstract
Maxillofacial prosthodontics is an art and science which provides life like appearance to the person with facial deformity. Maxillofacial prosthetic rehabilitation for acquired defects has become more complex and sophisticated with advancement in techniques and materials. This case report describes the clinical and laboratory procedure for fabricating an auricular prosthesis for a patient with trauma related bilateral auricular deformity. Ear prosthesis was fabricated in two parts taking retention from external auditory canal.
Collapse
|
38
|
Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BHI, Goh BS. Stem cell genes are poorly expressed in chondrocytes from microtic cartilage. Int J Pediatr Otorhinolaryngol 2011; 75:835-40. [PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis. STUDY DESIGN Laboratory experiment using auricular chondrocytes. METHODS Chondrocytes were isolated from normal and microtic human auricular cartilage after ear reconstructive surgeries carried out at the Universiti Kebangsaan Malaysia Medical Centre. Chondrocytes were cultured in vitro and subcultured until passage 4. Upon confluency, cultured chondrocytes at each passage (P1, P2, P3 and P4) were harvested and subjected to growth profile and gene expression analyses. Comparison was made between the microtic and normal chondrocytes. RESULTS For growth profile analysis cell viability did not show significant differences between both samples. There are no significance differences between both samples in terms of its growth rate, except in passage 1 where microtic chondrocytes were significant lower in their growth rate. Population doubling time and total number of cell doubling of all samples also did not show any significant differences. Gene expression is measured using Real Time-Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). There is no significant differences in the expression of collagen type I, collagen type II, collagen type X, aggrecan core protein, elastin and sox9 genes in both samples. There are significant lower in the expression of sox2, nestin, BST-1 and OCT-4 gene in microtic chondrocytes compared to the normal chondrocytes. Stem cells markers are included in this study as stemness in cells may imply a greater proliferative potential and plasticity in vitro. CONCLUSION Chondrocytes from microtic samples have the same properties as chondrocytes from normal samples and hold promises to be used as a starting material in the reconstruction of the external ear in future clinical application. The reduction in sox2, nestin, BST-1 and OCT-4 gene expression in microtic samples could be the possible cause of the arrested development of the external ear.
Collapse
Affiliation(s)
- M F Ishak
- Dept. of Otorhinolaryngology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
39
|
Rickert D. Polymeric implant materials for the reconstruction of tracheal and pharyngeal mucosal defects in head and neck surgery. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc06. [PMID: 22073099 PMCID: PMC3199816 DOI: 10.3205/cto000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The existing therapeutical options for the tracheal and pharyngeal reconstruction by use of implant materials are described. Inspite of a multitude of options and the availability of very different materials none of these methods applied for tracheal reconstruction were successfully introduced into the clinical routine. Essential problems are insufficiencies of anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The advances in Tissue Engineering (TE) offer new therapeutical options also in the field of the reconstructive surgery of the trachea. In pharyngeal reconstruction far reaching developments cannot be recognized at the moment which would allow to give a prognosis of their success in clinical application. A new polymeric implant material consisting of multiblock copolymers was applied in our own work which was regarded as a promising material for the reconstruction of the upper aerodigestive tract (ADT) due to its physicochemical characteristics. In order to test this material for applications in the ADT under extreme chemical, enzymatical, bacterial and mechanical conditions we applied it for the reconstruction of a complete defect of the gastric wall in an animal model. In none of the animals tested either gastrointestinal complications or negative systemic events occurred, however, there was a multilayered regeneration of the gastric wall implying a regular structured mucosa. In future the advanced stem cell technology will allow further progress in the reconstruction of different kind of tissues also in the field of head and neck surgery following the principles of Tissue Engineering.
Collapse
Affiliation(s)
- Dorothee Rickert
- University Hospital and Ambulance for Ear, Nose and Throat Diseases, Ulm, Germany
| |
Collapse
|
40
|
Cals FLJ, Hellingman CA, Koevoet W, Baatenburg de Jong RJ, van Osch GJVM. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J Tissue Eng Regen Med 2011; 6:68-76. [PMID: 21305699 DOI: 10.1002/term.399] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 11/11/2010] [Indexed: 12/19/2022]
Abstract
Human bone marrow stromal-derived mesenchymal stem cells (hBMSCs) will differentiate into chondrocytes in response to defined chondrogenic medium containing transforming growth factor-β (TGFβ). Results in the literature suggest that the three mammalian subtypes of TGFβ (TGFβ1, TGFβ2 and TGFβ3) provoke certain subtype-specific activities. Therefore, the aim of our study was to investigate whether the TGFβ subtypes affect chondrogenic differentiation of in vitro cultured hBMSCs differently. HBMSC pellets were cultured for 5 weeks in chondrogenic media containing either 2.5, 10 or 25 ng/ml of TGFβ1, TGFβ2 or TGFβ3. All TGFβ subtypes showed a comparable dose-response curve, with significantly less cartilage when 2.5 ng/ml was used and no differences between 10 and 25 ng/ml. Four donors with variable chondrogenic capacity were used to evaluate the effect of 10 ng/ml of either TGFβ subtype on cartilage formation. No significant TGFβ subtype-dependent differences were observed in the total amount of collagen or glycosaminoglycans. Cells from a donor with low chondrogenic capacity performed equally badly with all TGFβ subtypes, while a good donor overall performed well. After addition of β-glycerophosphate during the last 2 weeks of culture, the expression of hypertrophy markers was analysed and mineralization was demonstrated by alkaline phosphatase activity and alizarin red staining. No significant TGFβ subtype-dependent differences were observed in expression collagen type X or VEGF secretion. Nevertheless, pellets cultured with TGFβ1 had significantly less mineralization than pellets cultured with TGFβ3. In conclusion, this study suggests that TGFβ subtypes do affect terminal differentiation of in vitro cultured hBMSCs differently.
Collapse
Affiliation(s)
- F L J Cals
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
|
42
|
A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2010; 32:2265-73. [PMID: 21194746 DOI: 10.1016/j.biomaterials.2010.11.078] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 11/30/2010] [Indexed: 11/24/2022]
Abstract
Acellular cartilage can provide a native extracellular matrix for cartilage engineering. However, it is difficult for cells to migrate into acellular cartilage because of its non-porous structure. The aim of this study is to establish a sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Cartilage from adult pig ear was cut into a circular cylinder with a diameter of approximately 6 mm and freeze-sectioned at thicknesses of 10 μm and 30 μm. The sheets were then decellularized and lyophilized. Chondrocytes isolated from newborn pig ear were expanded for 2 passages. The acellular sheets and chondrocytes were then stacked layer-by-layer, in a sandwich model, and cultured in dishes. After 4 weeks of cultivation, the constructs were then either maintained in culture for another 12 weeks or implanted subcutaneously in nude mouse. Histological analysis showed that cells were completely removed from cartilage sheets after decellularization. By re-seeding cells and stacking 20 layers of sheets together, a cylinder-shaped cell sheet was achieved. Cartilage-like tissues formed after 4 weeks of culture. Histological analyses showed the formation of cartilage with a typical lacunar structure. Cartilage formation was more efficient with 10 μm-thick sheets than with 30 μm sheets. Mature cartilage was achieved after 12 weeks of implantation, which was demonstrated by histology and confirmed by Safranin O, Toluidine blue and anti-type II collagen antibody staining. Furthermore, we achieved cartilage with a designed shape by pre-shaping the sheets prior to implantation. These results indicate that the sandwich model could be a useful model for engineering cartilage in vitro and in vivo.
Collapse
|
43
|
Abstract
The projection and exposure of the auricle make it particularly susceptible to actinic injury and thus to cutaneous malignancies. Auricular reconstruction is challenging because of its unique surface anatomy and undulating topography. This article organizes auricular defects into different categories based on anatomic location and extent of tissue loss, including skin-only defects, small composite defects, full-thickness defects involving or sparing the upper third of the ear, and total auricular loss. The authors share an algorithm for repair of the array of auricular defects.
Collapse
Affiliation(s)
- David C Shonka
- Department of Otolaryngology-Head & Neck Surgery, University of Virginia Health System, Charlottesville, USA
| | | |
Collapse
|
44
|
Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, Lowder E, Landis WJ. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 2009; 17:136-46. [PMID: 19152661 DOI: 10.1111/j.1524-475x.2008.00451.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examines the tissue engineering of a human ear model through use of bovine chondrocytes isolated from four different cartilaginous sites (nasoseptal, articular, costal, and auricular) and seeded onto biodegradable poly(l-lactic acid) and poly(L-lactide-epsilon-caprolactone) (50 : 50) polymer ear-shaped scaffolds. After implantation in athymic mice for up to 40 weeks, cell/scaffold constructs were harvested and analyzed in terms of size, shape, histology, and gene expression. Gross morphology revealed that all the tissue-engineered cartilages retained the initial human auricular shape through 40 weeks of implantation. Scaffolds alone lost significant size and shape over the same period. Quantitative reverse transcription-polymerase chain reaction demonstrated that the engineered chondrocyte/scaffolds yielded unique expression patterns for type II collagen, aggrecan, and bone sialoprotein mRNA. Histological analysis showed type II collagen and proteoglycan to be the predominant extracellular matrix components of the various constructs sampled at different implantation times. Elastin was also present but it was found only in constructs seeded with auricular chondrocytes. By 40 weeks of implantation, tissue-engineered cartilage of costal origin became calcified, marked by a notably high relative gene expression level of bone sialoprotein and the presence of rigid, nodular protrusions formed by mineralizing rudimentary cartilaginous growth plates. The collective data suggest that nasoseptal, articular, and auricular cartilages represent harvest sites suitable for development of tissue-engineered human ear models with retention over time of three-dimensional construct architecture, gene expression, and extracellular matrix composition comparable to normal, nonmineralizing cartilages. Calcification of constructs of costal chondrocyte origin clearly shows that chondrocytes from different tissue sources are not identical and retain distinct characteristics and that these specific cells are inappropriate for use in engineering a flexible ear model.
Collapse
Affiliation(s)
- Hirohisa Kusuhara
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-sayama, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 2009; 5:328-37. [PMID: 18723417 DOI: 10.1016/j.actbio.2008.07.030] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/09/2008] [Accepted: 07/15/2008] [Indexed: 11/20/2022]
Abstract
Poly(lactide-co-glycotide) (PLGA) microspheres integrated into gelatin/chitosan/hyaluronan scaffolds were fabricated by freeze-drying and crosslinking with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. The effects of the microspheres on porosity, density, compressive modulus, phosphate-buffered saline uptake ratio and weight loss of the scaffolds were evaluated. Generally, a scaffold with a higher PLGA content had a lower porosity and weight loss, and a medium uptake ratio, but a larger apparent density and compressive modulus. When the PLGA content was lower than 50%, the PLGA-integrated scaffolds had a similar pore size (approximately 200microm) as that of the control, and as much as 90% of their porosity could be preserved. In vitro chondrocyte culture in the 50% PLGA-integrated scaffold demonstrated that the cells could proliferate and secrete extracellular matrix at the same level as in the control gelatin/chitosan/hyaluronan scaffold.
Collapse
|
46
|
Subburaj K, Nair C, Rajesh S, Meshram SM, Ravi B. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 2007; 36:938-43. [PMID: 17822875 DOI: 10.1016/j.ijom.2007.07.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 03/01/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022]
Abstract
External ear defects can be corrected by surgery, but this may not be feasible for personal or medical reasons. Reconstructive solutions are a good alternative, but rely on the artistry and availability of the anaplastologist. A semi-automated methodology using computer-aided design (CAD) and rapid prototyping (RP) technologies was developed for auricular prosthesis development, and demonstrated in a real-life case. The correct geometry and position of the prosthesis were ensured by stacking the computed tomography scan images of the contralateral normal ear in reverse order, and joining them using a medical modelling software program. The CAD model of the remnant portion of the defective ear was subtracted from the model of the mirrored contralateral ear, using a haptic CAD system, to obtain the final geometry of the prosthesis. Polymer models were fabricated in RP systems, and used for making a corresponding mould. Medical grade silicone rubber of the appropriate colour was packed into the mould to fabricate the final ear prosthesis and fitted to the deficient side of the patient using medical grade adhesive. The computer-aided methodology gave a high level of accuracy in terms of shape, size and position of the prosthesis, and a significantly shorter lead time compared to the conventional (manual) technique.
Collapse
Affiliation(s)
- K Subburaj
- Department of Mechanical Engineering, Indian Institute of Technology, Powai, Mumbai, India
| | | | | | | | | |
Collapse
|
47
|
Gong Y, Zhu Y, Liu Y, Ma Z, Gao C, Shen J. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomater 2007; 3:677-85. [PMID: 17576103 DOI: 10.1016/j.actbio.2007.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Layer-by-layer (LBL) assembly of cytocompatible chondroitin sulfate (CS) and collagen type I (Col) onto PLLA scaffolds were implemented to enhance the cell-material interaction. To introduce charges onto the hydrophobic and neutral PLLA surface so that the electronic assembly can be processed, the PLLA was aminolyzed in hexane diamine solution to obtain free amino groups that are positively charged at neutral pH. Ultaviolet-visible spectroscopy and ninhydrin analysis verified the consecutive deposition of CS/Col multilayers on the aminolyzed PLLA membranes. Confocal laser scanning microscopy (CLSM) observation and hydroxyproline quantification revealed the process of LBL assembly of CS/Col multilayers in the interior of PLLA porous scaffolds. In vitro chondrocyte culture found that the presence of CS and Col greatly improved the cytocompatibility of the PLLA scaffolds in terms of cell attachment, proliferation, cytoviability and GAG secretion.
Collapse
Affiliation(s)
- Yihong Gong
- Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, and Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|