1
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
2
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
3
|
Huang X, Kou X, Zhan T, Wei G, He F, Mao X, Yang H. Apoptotic vesicles resist oxidative damage in noise-induced hearing loss through activation of FOXO3a-SOD2 pathway. Stem Cell Res Ther 2023; 14:88. [PMID: 37061707 PMCID: PMC10105953 DOI: 10.1186/s13287-023-03314-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for noise-induced hearing loss (NIHL). As the indispensable role of apoptosis in MSC transplantation was raised, the benefits of MSC-derived apoptotic vesicles (apoVs) in several disease models have been proved. However, whether apoVs benefit in NIHL have not been studied yet. METHODS Female CBA/J mice and HEI-OC1 cells were used in this study. Flow cytometry, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize apoVs. Proteomic analysis was used to identify function proteins in apoVs. Immunofluorescence was used to reveal distribution pattern. Auditory brainstem response (ABR) test was used to measure the effect of apoVs treatment. DCFH-DA staining and MitoSOX staining were used to indicate oxidative damage. Western-blot and qRT-PCR were used to study the signaling pathways. RESULTS We found that apoVs can be endocytosed by hair cells through systemic administration. Importantly, apoVs administration effectively attenuated NIHL and reduced hair cell loss by resisting oxidative damage in vivo. Further, apoVs application activated forkhead box o3 (FOXO3a)-mitochondrial superoxide dismutase 2(SOD2) pathway, which may relate to signal transduction and activators of transcription 3 (STAT3) in apoVs. CONCLUSIONS These findings uncovered the role of apoVs in preventing NIHL and resisting oxidative damage, indicating that apoVs is a promising way for inner ear delivery and a prospective cell-free therapy for NIHL.
Collapse
Affiliation(s)
- Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhan
- Department of Otolaryngology, Zhujiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510285, China
| | - Guokun Wei
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Feinan He
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Hearing and Speech Science, Guangzhou Xinhua University, Guangzhou, 510310, China.
| |
Collapse
|
4
|
Burdo S, Di Berardino F, Bruno G. Is auditory neuropathy an appropriate term? A systematic literature review on its aetiology and pathogenesis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2021; 41:496-506. [PMID: 34825666 PMCID: PMC8686806 DOI: 10.14639/0392-100x-n0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
To clarify the aetio-pathogenesis of Auditory Neuropathy Spectrum Disorder (ANSD), a total of 845 papers were divided into four categories: Review, Audiology, Treatment and Aetiology. Aetiology was the topic analysed categorising papers as: Genetics, Histopathology, Imaging and Medical diseases. Isolated ANs were in relation to Otoferlin, Pejvakin and DIAPH3 deficiency, and the syndromes were mainly Charcot Marie Tooth, Friedreich Ataxia, mitochondrial disorders and those associated with optic neuropathies. In histopathology papers, important information was available from analyses on human premature newborns and on some syndromic neuropathies. From cochlear dysmorphism to cerebral tumours associated with ANs, these are described in what is identified as the Imaging area. Finally, the prevalent clinical pathology was bilirubinopathy, followed by diabetes. In conclusion, AN/ANSDs do not refer to a clear pathological condition, but to an instrumental pattern without any evidence of auditory nerve involvement, except in a few conditions. The terms AN/ANSD are misleading and should be avoided, including terms such as “synaptopathy” or “dis-synchrony”.
Collapse
|
5
|
Li T, Shi C, Jin F, Yang F, Gu L, Wang T, Dong W, Feng ZQ. Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator. SCIENCE ADVANCES 2021; 7:eabh2350. [PMID: 34559554 PMCID: PMC8462902 DOI: 10.1126/sciadv.abh2350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The biophysical characteristics of the extracellular matrix (ECM), such as a three-dimensional (3D) network and bioelectricity, have a profound influence on cell development, migration, function expression, etc. Here, inspired by these biophysical cues of ECM, we develop an electromechanical coupling bio-nanogenerator (bio-NG) composed of highly discrete piezoelectric fibers. It can generate surface piezopotential up to millivolts by cell inherent force and thus provide in situ electrical stimulation for the living cells. Besides, the unique 3D space in the bio-NGs provides an ECM-like growth microenvironment for cells. As a result, our bio-NGs effectively promote cell viability and development and, more importantly, maintain its specific functional expression. These advanced in vitro bio-NGs are expected to fill the gap between the inaccurate 2D systems and the expensive and time-consuming animal models, mimicking the complexity of the ECM and the physiological relevance of an in vivo biological system.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chuanmei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fan Yang
- Institute of Rail Transit, Tongji University, Shanghai 201804, P. R. China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Corresponding author.
| |
Collapse
|
6
|
Guo L, Wei X, Jiang P. The use of gene-modified bone marrow mesenchymal stem cells for cochlear cell therapy. Transpl Immunol 2021; 68:101433. [PMID: 34197926 DOI: 10.1016/j.trim.2021.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The aim of this study was to investigate the potential of using bone marrow mesenchymal stem cells (BMSCs) for treatment of inflammation and autoimmune sensorineural hearing loss. METHODS Fifty-five immunized guinea pigs were divided into five groups. Group A received BMSCs expressing IL-4, group B received BMSCs expressing an empty carrier vector, group C received recombinant lentivirus expressing IL-4, group D received recombinant lentivirus expressing an empty carrier vector, and group E received phosphate-buffered saline. Auditory function was monitored using brain stem responses (ABRs) to evaluate the auditory changes. The distribution of implanted BMSCs in the inner ear was estimated using fluorescence microscopy. The distribution and expression of IL-4 gene products in the inner ear were detected via immunohistochemistry. RESULTS After transplantation, the ABR III wave threshold decreased significantly in BMSCs expressing exogenous IL-4 group (group A), BMSCs expressing empty carrier vector group (group B), and recombinant lentivirus expressing IL-4 group (group C) (P < 0.001), which means the auditory functions of the experimental guinea pigs were improved. Further statistical analysis revealed that BMSCs expressing exogenous IL-4 group (group A) and BMSCs expressing empty carrier vector group (group B) were able to improve the auditory function more obviously (P < 0.05). Lentivirus-infected BMSCs were able to migrate to the inner ear. Fluorescence-positive BMSCs were scattered in the scala tympani and vestibule. CONCLUSIONS These results demonstrated that BMSCs expressing exogenous IL-4 successfully migrated into the inner ear in an in vitro study. BMSCs expressing exogenous IL-4 and BMSCs can be used to treat inflammatory injury in autoimmune inner ear diseases.
Collapse
Affiliation(s)
- Lang Guo
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xu Wei
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ping Jiang
- Department of Otolaryngology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Wrobel C, Bevis NF, Meyer AC, Beutner D. Access to the Apical Cochlear Modiolus for Possible Stem Cell-based and Gene Therapy of the Auditory Nerve. Otol Neurotol 2021; 42:e371-e377. [PMID: 33165157 DOI: 10.1097/mao.0000000000002941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Loss of spiral ganglion neurons (SGN) is permanent and responsible for a substantial number of patients suffering from hearing impairment. It can derive from the degeneration of SGNs due to the death of sensory hair cells as well as from auditory neuropathy. Utilizing stem cells to recover lost SGNs increasingly emerges as a possible therapeutic option, but access to human SGNs is difficult due to their protected location within the bony impacted cochlea. Aim of this study was to establish a reliable and practicable approach to access SGNs in the human temporal bone for possible stem cell and gene therapies. METHODS In seven human temporal bone specimen a transcanal approach was used to carefully drill a cochleostomy in the lateral second turn followed by insertion of a tungsten needle into the apical modiolus to indicate the spot for intramodiolar injections. Subsequent cone beam computed tomography (CBCT) served as evaluation for positioning of the marker and cochleostomy size. RESULTS The apical modiolus could be exposed in all cases by a cochleostomy (1.6 mm2, standard deviation ±0.23 mm2) in the lateral second turn. 3D reconstructions and analysis of CBCT revealed reliable positioning of the marker in the apical modiolus, deviating on average 0.9 mm (standard deviation ±0.49 mm) from the targeted center of the second cochlear turn. CONCLUSION We established a reliable, minimally invasive, transcanal surgical approach to the apical cochlear modiolus in the human temporal bone in foresight to stem cell-based and gene therapy of the auditory nerve.
Collapse
Affiliation(s)
- Christian Wrobel
- Department of Otorhinolaryngology.,InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
8
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
9
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|