1
|
Kiene F, Springer A, Andriatsitohaina B, Ramsay MS, Rakotondravony R, Strube C, Radespiel U. Filarial infections in lemurs: Evidence for a wide geographical distribution and low host specificity among lemur species. Am J Primatol 2023; 85:e23458. [PMID: 36504317 DOI: 10.1002/ajp.23458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The relevance of emerging infectious diseases continues to grow worldwide as human activities increasingly extend into formerly remote natural areas. This is particularly noticeable on the island of Madagascar. As closest relatives to humans on the island, lemurs are of particular relevance as a potential origin of zoonotic pathogen spillover. Knowledge of pathogens circulating in lemur populations is, however, very poor. Particularly little is known about lemur hemoparasites. To infer host range, ecological and geographic spread of the recently described hemoparasitic nematode Lemurfilaria lemuris in northwestern Madagascar, a total of 942 individuals of two mouse lemur species (Microcebus murinus [n = 207] and Microcebus ravelobensis [n = 433]) and two rodent species (the endemic Eliurus myoxinus [n = 118] and the invasive Rattus rattus [n = 184]) were captured in two fragmented forest landscapes (Ankarafantsika National Park and Mariarano Classified Forest) in northwestern Madagascar for blood sample examination. No protozoan hemoparasites were detected by microscopic blood smear screening. Microfilaria were present in 1.0% (2/207) of M. murinus and 2.1% (9/433) of M. ravelobensis blood samples but not in rodent samples. Internal transcribed spacer 1 (ITS-1) sequences were identical to an unnamed Onchocercidae species previously described to infect a larger lemur species, Propithecus verreauxi, about 650 km further south. In contrast to expectations, L. lemuris was not detected. The finding of a pathogen in a distantly related host species, at a considerable geographic distance from the location of its original detection, instead of a microfilaria species previously described for one of the studied host species in the same region, illustrates our low level of knowledge of lemur hemoparasites, their host ranges, distribution, modes of transmission, and their zoonotic potential. Our findings shall stimulate new research that will be of relevance for both conservation medicine and human epidemiology.
Collapse
Affiliation(s)
- Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.,Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.,Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Springer
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bertrand Andriatsitohaina
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, Mahajanga, Madagascar.,Faculté des Sciences, de Technologies et de l'Environnement, University of Mahajanga, Mahajanga, Madagascar
| | - Malcolm S Ramsay
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany.,Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, Mahajanga, Madagascar.,Faculté des Sciences, de Technologies et de l'Environnement, University of Mahajanga, Mahajanga, Madagascar
| | - Christina Strube
- Centre for Infection Medicine, Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
2
|
Djokic V, Rocha SC, Parveen N. Lessons Learned for Pathogenesis, Immunology, and Disease of Erythrocytic Parasites: Plasmodium and Babesia. Front Cell Infect Microbiol 2021; 11:685239. [PMID: 34414129 PMCID: PMC8369351 DOI: 10.3389/fcimb.2021.685239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria caused by Plasmodium species and transmitted by Anopheles mosquitoes affects large human populations, while Ixodes ticks transmit Babesia species and cause babesiosis. Babesiosis in animals has been known as an economic drain, and human disease has also emerged as a serious healthcare problem in the last 20–30 years. There is limited literature available regarding pathogenesis, immunity, and disease caused by Babesia spp. with their genomes sequenced only in the last decade. Therefore, using previous studies on Plasmodium as the foundation, we have compared similarities and differences in the pathogenesis of Babesia and host immune responses. Sexual life cycles of these two hemoparasites in their respective vectors are quite similar. An adult Anopheles female can take blood meal several times in its life such that it can both acquire and transmit Plasmodia to hosts. Since each tick stage takes blood meal only once, transstadial horizontal transmission from larva to nymph or nymph to adult is essential for the release of Babesia into the host. The initiation of the asexual cycle of these parasites is different because Plasmodium sporozoites need to infect hepatocytes before egressed merozoites can infect erythrocytes, while Babesia sporozoites are known to enter the erythrocytic cycle directly. Plasmodium metabolism, as determined by its two- to threefold larger genome than different Babesia, is more complex. Plasmodium replication occurs in parasitophorous vacuole (PV) within the host cells, and a relatively large number of merozoites are released from each infected RBC after schizogony. The Babesia erythrocytic cycle lacks both PV and schizogony. Cytoadherence that allows the sequestration of Plasmodia, primarily P. falciparum in different organs facilitated by prominent adhesins, has not been documented for Babesia yet. Inflammatory immune responses contribute to the severity of malaria and babesiosis. Antibodies appear to play only a minor role in the resolution of these diseases; however, cellular and innate immunity are critical for the clearance of both pathogens. Inflammatory immune responses affect the severity of both diseases. Macrophages facilitate the resolution of both infections and also offer cross-protection against related protozoa. Although the immunosuppression of adaptive immune responses by these parasites does not seem to affect their own clearance, it significantly exacerbates diseases caused by coinfecting bacteria during coinfections.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department for Bacterial Zoonozes, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety, UPEC, University Paris-Est, Maisons-Alfort, France
| | - Sandra C Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
3
|
Carrillo-Bilbao G, Martin-Solano S, Saegerman C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021; 10:1009. [PMID: 34451473 PMCID: PMC8400055 DOI: 10.3390/pathogens10081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Understanding which non-human primates (NHPs) act as a wild reservoir for blood-borne pathogens will allow us to better understand the ecology of diseases and the role of NHPs in the emergence of human diseases in Ecuador, a small country in South America that lacks information on most of these pathogens. Methods and principal findings: A systematic review was carried out using PRISMA guidelines from 1927 until 2019 about blood-borne pathogens present in NHPs of the Neotropical region (i.e., South America and Middle America). Results: A total of 127 publications were found in several databases. We found in 25 genera (132 species) of NHPs a total of 56 blood-borne pathogens in 197 records where Protozoa has the highest number of records in neotropical NHPs (n = 128) compared to bacteria (n = 12) and viruses (n = 57). Plasmodium brasilianum and Trypanosoma cruzi are the most recorded protozoa in NHP. The neotropical primate genus with the highest number of blood-borne pathogens recorded is Alouatta sp. (n = 32). The use of non-invasive samples for neotropical NHPs remains poor in a group where several species are endangered or threatened. A combination of serological and molecular techniques is common when detecting blood-borne pathogens. Socioecological and ecological risk factors facilitate the transmission of these parasites. Finally, a large number of countries remain unsurveyed, such as Ecuador, which can be of public health importance. Conclusions and significance: NHPs are potential reservoirs of a large number of blood-borne pathogens. In Ecuador, research activities should be focused on bacteria and viruses, where there is a gap of information for neotropical NHPs, in order to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs.
Collapse
Affiliation(s)
- Gabriel Carrillo-Bilbao
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
- Facultad de Filosofía y Letras y Ciencias de la Educación, Universidad Central del Ecuador, 170521 Quito, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, 171103 Sangolquí, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
4
|
Carrillo Bilbao GA, Navarro JC, Garigliany MM, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021; 10:791. [PMID: 34206700 PMCID: PMC8308908 DOI: 10.3390/pathogens10070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Malaria is a disease caused by hemoparasites of the Plasmodium genus. Non-human primates (NHP) are hosts of Plasmodium sp. around the world. Several studies have demonstrated that Plasmodium sp. emerged from Africa. However, little information is currently available about Plasmodium falciparum in the neotropical NHP and even less in Ecuador. Indeed, the objective of our study was to identify by molecular phylogenetic analyses the Plasmodium species associated with NHP from the Western Amazon region of Ecuador, and to design a molecular taxonomy protocol to use in the NHP disease ecology. Methods: We extracted DNA from faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHP, collected from 2011 to 2019 in the Western Amazon region of Ecuador. Results: Using a pan-Plasmodium PCR, we obtained one positive sample from an adult female Leontocebus lagonotus. A maximum likelihood phylogenetic analysis showed that this sequence unequivocally clustered with Plasmodium falciparum. Conclusions: The identification of Plasmodium sp. in NHP of the Ecuadorian Amazon would be essential to identify their role as potential zoonotic reservoirs, and it is also important to identify their origin in wildlife and their transmission in captive NHP.
Collapse
Affiliation(s)
- Gabriel Alberto Carrillo Bilbao
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador;
| | - Mutien-Marie Garigliany
- Department of Pathology, Fundamental and Applied Research for Animal and Health (FARAH) Center, Liège University, B-4000 Liège, Belgium;
- Department of Animal Pathology, Liège University, B-4000 Liège, Belgium
| | - Sarah Martin-Solano
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Elizabeth Minda
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Washington Benítez-Ortiz
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
5
|
Efstratiou A, Galon EMS, Wang G, Umeda K, Kondoh D, Terkawi MA, Kume A, Liu M, Ringo AE, Guo H, Gao Y, Lee SH, Li J, Moumouni PFA, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Babesia microti Confers Macrophage-Based Cross-Protective Immunity Against Murine Malaria. Front Cell Infect Microbiol 2020; 10:193. [PMID: 32411624 PMCID: PMC7200999 DOI: 10.3389/fcimb.2020.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Malaria and babesiosis, the two primary intraerythrocytic protozoan diseases of humans, have been reported in multiple cases of co-infection in endemic regions. As the geographic range and incidence of arthropod-borne infectious diseases is being affected by climate change, co-infection cases with Plasmodium and Babesia are likely to increase. The two parasites have been used in experimental settings, where prior infection with Babesia microti has been shown to protect against fatal malarial infections in mice and primates. However, the immunological mechanisms behind such phenomena of cross-protection remain unknown. Here, we investigated the effect of a primary B. microti infection on the outcome of a lethal P. chabaudi challenge infection using a murine model. Simultaneous infection with both pathogens led to high mortality rates in immunocompetent BALB/c mice, similar to control mice infected with P. chabaudi alone. On the other hand, mice with various stages of B. microti primary infection were thoroughly immune to a subsequent P. chabaudi challenge. Protected mice exhibited decreased levels of serum antibodies and pro-inflammatory cytokines during early stages of challenge infection. Mice repeatedly immunized with dead B. microti quickly succumbed to P. chabaudi infection, despite induction of high antibody responses. Notably, cross-protection was observed in mice lacking functional B and T lymphocytes. When the role of other innate immune effector cells was examined, NK cell-depleted mice with chronic B. microti infection were also found to be protected against P. chabaudi. Conversely, in vivo macrophage depletion rendered the mice vulnerable to P. chabaudi. The above results show that the mechanism of cross-protection conferred by B. microti against P. chabaudi is innate immunity-based, and suggest that it relies predominantly upon the function of macrophages. Further research is needed for elucidating the malaria-suppressing effects of babesiosis, with a vision toward development of novel tools to control malaria.
Collapse
Affiliation(s)
- Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May S Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Orthopedic Surgery, Hokkaido University, Sapporo, Japan
| | - Aiko Kume
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
6
|
Charpentier MJE, Boundenga L, Beaulieu M, Dibakou SE, Arnathau C, Sidobre C, Willaume E, Mercier-Delarue S, Simon F, Rougeron V, Prugnolle F. A longitudinal molecular study of the ecology of malaria infections in free-ranging mandrills. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:241-251. [PMID: 31667087 PMCID: PMC6812016 DOI: 10.1016/j.ijppaw.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Unravelling the determinants of host variation in susceptibility and exposure to parasite infections, infection dynamics and the consequences of parasitism on host health is of paramount interest to understand the evolution of complex host-parasite interactions. In this study, we evaluated the determinants, temporal changes and physiological correlates of Plasmodium infections in a large natural population of mandrills (Mandrillus sphinx). Over six consecutive years, we obtained detailed parasitological and physiological data from 100 male and female mandrills of all ages. The probability of infection by Plasmodium gonderi and P. mandrilli was elevated (ca. 40%) but most infections were chronical and dynamic, with several cases of parasite switching and clearance. Positive co-infections also occurred between both parasites. Individual age and sex influenced the probability of infections with some differences between parasites: while P. mandrilli appeared to infect its hosts rather randomly, P. gonderi particularly infected middle-aged mandrills. Males were also more susceptible to P. gonderi than females and were more likely to be infected by this parasite at the beginning of an infection by the simian immunodeficiency virus. P. gonderi, and to a lesser extent P. mandrilli, influenced mandrills’ physiology: skin temperatures and neutrophil/lymphocyte ratio were both impacted, generally depending on individual age and sex. These results highlight the ecological complexity of Plasmodium infections in nonhuman primates and the efforts that need to be done to decipher the epidemiology of such parasites. Longitudinal epidemiological and physiological data on Plasmodium infection obtained from a wild primate population. Elevated chronical infections by two species of Plasmodium. Contrasted dynamics of infection and physiological effects of P. gonderi and P. mandrilli. Elevated parasitaemia (P. gonderi) in male mandrills in primo-infection by the simian immunodeficiency virus.
Collapse
Affiliation(s)
- M J E Charpentier
- Institut des Sciences de L'Evolution de Montpellier UMR 5554, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - L Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - M Beaulieu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,German Oceanographic Museum, Stralsund, Germany
| | - S E Dibakou
- Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - C Arnathau
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - C Sidobre
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - E Willaume
- Société D'Exploitation Du Parc de La Lékédi, Bakoumba, Gabon
| | - S Mercier-Delarue
- Département des Agents Infectieux, Hôpital Saint Louis, Faculté de Médecine Paris Diderot, Paris, France
| | - F Simon
- Département des Agents Infectieux, Hôpital Saint Louis, Faculté de Médecine Paris Diderot, Paris, France
| | - V Rougeron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - F Prugnolle
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| |
Collapse
|
7
|
Klein A, Strube C, Radespiel U, Springer A, Zimmermann E. Differences in infection patterns of vector-borne blood-stage parasites of sympatric Malagasy primate species ( Microcebus murinus, M. ravelobensis). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:59-70. [PMID: 31372336 PMCID: PMC6657000 DOI: 10.1016/j.ijppaw.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The dynamic relationship of vector-borne parasites, arthropod vectors and their hosts is prone to change under the influence of climate change, global integration, shifting demographics and deforestation. It is therefore essential to better understand parasitism in wildlife populations, including parasites transmitted by blood-feeding vectors, and explore host range and heterogeneity of parasitic infections. We investigated Giemsa stained blood smears of two sympatric Malagasy primate species (Microcebus murinus: 184 samples from 69 individuals and M. ravelobensis: 264 samples from 91 individuals) for blood-stage parasites and tested for a potential influence of host species, sex, body mass and sampling month on blood-stage parasite prevalence and infection intensity. No protozoan parasites were detected in either host species. A host-specific difference was observed in filarial nematode infections, with higher risk of infection in M. murinus (prevalence 30.43%), than in M. ravelobensis (prevalence 6.59%), which may be explained by differences in host behavior and/or immune competence, linked to the period of host-parasite coevolution. Neither sex nor sampling month influenced infection prevalence or intensity significantly. We did not observe a negative effect of microfilarial infections on host fitness when taking body mass as a proxy. Our results support the hypothesis of a long-term evolutionary adaptation of hosts and parasites, leading to persistent infection with low morbidity. Morphological and molecular analyses indicate the finding of a new species, “Lemurfilaria lemuris”. Genetic analysis furthermore showed >99% sequence identity with microfilariae described from a sympatric, larger-bodied lemur species of a different genus, suggesting low host-specificity of the detected filariae and pathogen transmission across genus boundaries. Findings contribute to a more comprehensive picture of vector-borne diseases of Malagasy lemurs. Small Malagasy primate species are hosts of the newly described Lemurfilaria lemuris. Risk of microfilarial infection and infection intensity differed between host species. This could be linked to differences in host socioecology and/or phylogeography. No influence of microfilarial infection on host body mass was observed. >99% sequence identity of filariae from lemur hosts of different genera.
Collapse
Affiliation(s)
- Annette Klein
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany.,Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hanover, Germany
| |
Collapse
|
8
|
Zohdy S, Valenta K, Rabaoarivola B, Karanewsky CJ, Zaky W, Pilotte N, Williams SA, Chapman CA, Farris ZJ. Causative agent of canine heartworm ( Dirofilaria immitis) detected in wild lemurs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:119-121. [PMID: 31061793 PMCID: PMC6487360 DOI: 10.1016/j.ijppaw.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
The lemurs of Madagascar are threatened by human activities. We present the first molecular detection of canine heartworm (Dirofilaria immitis) in a wild non-human primate, the mouse lemur (Microcebus rufus). Zoonotic D. immitis infection has been associated with clinical pathology that includes serious and often fatal cardiac and pulmonary reactions. With human encroachment and associated increases in free-roaming dog populations in Madagascar, we examined lemurs for zoonotic canid pathogens. D. immitis presents a new potential conservation threat to lemurs. We highlight the need for wide-ranging and effective interventions, particularly near protected areas, to address this growing conservation issue. Molecular evidence of canine heartworm (Dirofilaria immitis) in lemurs. The first detection of D. immitis, in a wild non-human primate. Free-roaming dogs spatially overlap with lemurs.
Collapse
Affiliation(s)
- Sarah Zohdy
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA.,College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kim Valenta
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | | | - Caitlin J Karanewsky
- Department of Biochemistry, Stanford University School of Medicine, California, USA
| | - Weam Zaky
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Steven A Williams
- Department of Biological Sciences, Smith College, Northampton, MA, USA.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Colin A Chapman
- Department of Anthropology, McGill University, Montreal, Quebec, Canada.,Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY, USA.,Section of Social Systems Evolution, Primate Research Institute, Kyoto University, Japan
| | - Zach J Farris
- Department of Health & Exercise Science, Appalachian State University, North Carolina, USA
| |
Collapse
|
9
|
Ranaivoson HC, Héraud JM, Goethert HK, Telford SR, Rabetafika L, Brook CE. Babesial infection in the Madagascan flying fox, Pteropus rufus É. Geoffroy, 1803. Parasit Vectors 2019; 12:51. [PMID: 30674343 PMCID: PMC6343336 DOI: 10.1186/s13071-019-3300-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Background Babesiae are erythrocytic protozoans, which infect the red blood cells of vertebrate hosts to cause disease. Previous studies have described potentially pathogenic infections of Babesia vesperuginis in insectivorous bats in Europe, the Americas and Asia. To date, no babesial infections have been documented in the bats of Madagascar, or in any frugivorous bat species worldwide. Results We used standard microscopy and conventional PCR to identify babesiae in blood from the endemic Madagascan flying fox (Pteropus rufus). Out of 203 P. rufus individuals captured between November 2013 and January 2016 and screened for erythrocytic parasites, nine adult males (4.43%) were infected with babesiae. Phylogenetic analysis of sequences obtained from positive samples indicates that they cluster in the Babesia microti clade, which typically infect felids, rodents, primates, and canids, but are distinct from B. vesperuginis previously described in bats. Statistical analysis of ecological trends in the data suggests that infections were most commonly observed in the rainy season and in older-age individuals. No pathological effects of infection on the host were documented; age-prevalence patterns indicated susceptible-infectious (SI) transmission dynamics characteristic of a non-immunizing persistent infection. Conclusions To our knowledge, this study is the first report of any erythrocytic protozoan infecting Madagascan fruit bats and the first record of a babesial infection in a pteropodid fruit bat globally. Given the extent to which fruit bats have been implicated as reservoirs for emerging human pathogens, any new record of their parasite repertoire and transmission dynamics offers notable insights into our understanding of the ecology of emerging pathogens. Electronic supplementary material The online version of this article (10.1186/s13071-019-3300-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hafaliana C Ranaivoson
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar.,Zoology and Animal Biodiversity, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | | | - Heidi K Goethert
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Sam R Telford
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Lydia Rabetafika
- Zoology and Animal Biodiversity, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | - Cara E Brook
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. .,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
The microbiome of Haemaphysalis lemuris (Acari: Ixodidae), a possible vector of pathogens of endangered lemur species in Madagascar. Ticks Tick Borne Dis 2018; 9:1252-1260. [DOI: 10.1016/j.ttbdis.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
|
11
|
Qurollo BA, Larsen PA, Rakotondrainibe HH, Mahefarisoa K, Rajaonarivelo T, Razafindramanana J, Breitschwerdt EB, Junge RE, Williams CV. Molecular surveillance of novel tick-borne organisms in Madagascar's lemurs. Ticks Tick Borne Dis 2018; 9:672-677. [PMID: 29477959 DOI: 10.1016/j.ttbdis.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/01/2022]
Abstract
The discovery and characterization of emerging tick-borne organisms are critical for global health initiatives to improve animal and human welfare (One Health). It is possible that unknown tick-borne organisms underlie a subset of undiagnosed illness in wildlife, domesticated species, and humans. Our study lends support to the One Health concept by highlighting the prevalence of three blood-borne organisms in wild lemurs living in close proximity to domesticated species and humans. Previously, our team identified three novel, presumably tick-borne, intravascular organisms, belonging to the genera Babesia, Borrelia, and Neoehrlichia, circulating in two of Madagascar's lemur species. Here, we extend our previous observation by developing a targeted molecular surveillance approach aimed at determining the prevalence of these organisms in lemurs. Using quantitative PCR, we provide Babesia, Borrelia, and Neoehrlichia prevalence data for 76 individuals comprising four lemur species located in eastern Madagascar. Our results indicate a high prevalence (96%) of Babesia across sampled individuals with lower prevalences for Neoehrlichia (36%) and Borrelia (14.5%). In light of our results, we recommend additional studies of these tick-borne organisms to determine pathogenicity and assess zoonotic potency to other animals and humans in Madagascar.
Collapse
Affiliation(s)
- Barbara A Qurollo
- Dept. Clinical Sciences-College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Peter A Larsen
- Dept. of Biology, Duke University, Durham, NC, United States; Duke Lemur Center, Duke University, Durham, NC, United States
| | | | | | | | | | - Edward B Breitschwerdt
- Dept. Clinical Sciences-College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Randall E Junge
- Department of Animal Health, Columbus Zoo and Aquarium, Columbus, OH, United States
| | | |
Collapse
|
12
|
Liu W, Sherrill-Mix S, Learn GH, Scully EJ, Li Y, Avitto AN, Loy DE, Lauder AP, Sundararaman SA, Plenderleith LJ, Ndjango JBN, Georgiev AV, Ahuka-Mundeke S, Peeters M, Bertolani P, Dupain J, Garai C, Hart JA, Hart TB, Shaw GM, Sharp PM, Hahn BH. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat Commun 2017; 8:1635. [PMID: 29158512 PMCID: PMC5696340 DOI: 10.1038/s41467-017-01798-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023] Open
Abstract
Malaria parasites, though widespread among wild chimpanzees and gorillas, have not been detected in bonobos. Here, we show that wild-living bonobos are endemically Plasmodium infected in the eastern-most part of their range. Testing 1556 faecal samples from 11 field sites, we identify high prevalence Laverania infections in the Tshuapa-Lomami-Lualaba (TL2) area, but not at other locations across the Congo. TL2 bonobos harbour P. gaboni, formerly only found in chimpanzees, as well as a potential new species, Plasmodium lomamiensis sp. nov. Rare co-infections with non-Laverania parasites were also observed. Phylogenetic relationships among Laverania species are consistent with co-divergence with their gorilla, chimpanzee and bonobo hosts, suggesting a timescale for their evolution. The absence of Plasmodium from most field sites could not be explained by parasite seasonality, nor by bonobo population structure, diet or gut microbiota. Thus, the geographic restriction of bonobo Plasmodium reflects still unidentified factors that likely influence parasite transmission.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik J Scully
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Abigail P Lauder
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sesh A Sundararaman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,School of Biological Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Steve Ahuka-Mundeke
- Institut National de Recherche Biomedicale, University of Kinshasa, BP 1197, Kinshasa, Democratic Republic of the Congo
| | - Martine Peeters
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier 1, BP 5045, Montpellier, 34394, France
| | - Paco Bertolani
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, CB2 1QH, UK
| | - Jef Dupain
- African Wildlife Foundation Conservation Centre, P.O. Box 310, 00502, Nairobi, Kenya
| | - Cintia Garai
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Hokan M, Strube C, Radespiel U, Zimmermann E. Sleeping site ecology, but not sex, affect ecto- and hemoparasite risk, in sympatric, arboreal primates ( Avahi occidentalis and Lepilemur edwardsi). Front Zool 2017; 14:44. [PMID: 28943886 PMCID: PMC5607495 DOI: 10.1186/s12983-017-0228-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023] Open
Abstract
Background A central question in evolutionary parasitology is to what extent ecology impacts patterns of parasitism in wild host populations. In this study, we aim to disentangle factors influencing the risk of parasite exposure by exploring the impact of sleeping site ecology on infection with ectoparasites and vector-borne hemoparasites in two sympatric primates endemic to Madagascar. Both species live in the same dry deciduous forest of northwestern Madagascar and cope with the same climatic constraints, they are arboreal, nocturnal, cat-sized and pair-living but differ prominently in sleeping site ecology. The Western woolly lemur (Avahi occidentalis) sleeps on open branches and frequently changes sleeping sites, whereas the Milne-Edward’s sportive lemur (Lepilemur edwardsi) uses tree holes, displaying strong sleeping site fidelity. Sleeping in tree holes should confer protection from mosquito-borne hemoparasites, but should enhance the risk for ectoparasite infestation with mites and nest-adapted ticks. Sex may affect parasite risk in both species comparably, with males bearing a higher risk than females due to an immunosuppressive effect of higher testosterone levels in males or to sex-specific behavior. To explore these hypotheses, ectoparasites and blood samples were collected from 22 individuals of A. occidentalis and 26 individuals of L. edwardsi during the dry and rainy season. Results L. edwardsi, but not A. occidentalis, harbored ectoparasites, namely ticks (Haemaphysalis lemuris [Ixodidae], Ornithodoros sp. [Argasidae]) and mites (Aetholaelaps trilyssa, [Laelapidae]), suggesting that sleeping in tree holes promotes infestation with ectoparasites. Interestingly, ectoparasites were found solely in the hot, rainy season with a prevalence of 75% (N = 16 animals). Blood smears were screened for the presence and infection intensity of hemoparasites. Microfilariae were detected in both species. Morphological characteristics suggested that each lemur species harbored two different filarial species. Prevalence of microfilarial infection was significantly lower in L. edwardsi than in A. occidentalis. No significant difference in infection intensity between the two host species, and no effect of season, daytime of sampling or sex on prevalence or infection intensity was found. In neither host species, parasite infection showed an influence on body weight as an indicator for body condition. Conclusions Our findings support that sleeping site ecology affects ectoparasite infestation in nocturnal, arboreal mammalian hosts in the tropics, whereas there is no significant effect of host sex. The influence of sleeping site ecology to vector-borne hemoparasite risk is less pronounced. The observed parasite infections did not affect body condition and thus may be of minor importance for shaping reproductive fitness. Findings provide first evidence for the specific relevance of sleeping site ecology on parasitism in arboreal and social mammals. Further, our results increase the sparse knowledge on ecological drivers of primate host-parasite interactions and transmission pathways in natural tropical environments. Electronic supplementary material The online version of this article (10.1186/s12983-017-0228-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- May Hokan
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany.,Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
14
|
De Nys H, Löhrich T, Wu D, Calvignac-Spencer S, Leendertz F. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol 2017; 4:47-59. [PMID: 32110692 PMCID: PMC7041518 DOI: 10.5194/pb-4-47-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
Humans and African great apes (AGAs) are naturally infected with several species of closely related malaria parasites. The need to understand the origins of human malaria as well as the risk of zoonotic transmissions and emergence of new malaria strains in human populations has markedly encouraged research on great ape Plasmodium parasites. Progress in the use of non-invasive methods has rendered investigations into wild ape populations possible. Present knowledge is mainly focused on parasite diversity and phylogeny, with still large gaps to fill on malaria parasite ecology. Understanding what malaria infection means in terms of great ape health is also an important, but challenging avenue of research and has been subject to relatively few research efforts so far. This paper reviews current knowledge on African great ape malaria and identifies gaps and future research perspectives.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- current address: UMI 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, and University of Montpellier, Montpellier, France
| | - Therese Löhrich
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Doris Wu
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | | | - Fabian Hubertus Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
15
|
Larsen PA, Hayes CE, Williams CV, Junge RE, Razafindramanana J, Mass V, Rakotondrainibe H, Yoder AD. Blood transcriptomes reveal novel parasitic zoonoses circulating in Madagascar's lemurs. Biol Lett 2017; 12:20150829. [PMID: 26814226 DOI: 10.1098/rsbl.2015.0829] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Zoonotic diseases are a looming threat to global populations, and nearly 75% of emerging infectious diseases can spread among wildlife, domestic animals and humans. A 'One World, One Health' perspective offers us an ideal framework for understanding and potentially mitigating the spread of zoonoses, and the island of Madagascar serves as a natural laboratory for conducting these studies. Rapid habitat degradation and climate change on the island are contributing to more frequent contact among humans, livestock and wildlife, increasing the potential for pathogen spillover events. Given Madagascar's long geographical isolation, coupled with recent and repeated introduction of agricultural and invasive species, it is likely that a number of circulating pathogens remain uncharacterized in lemur populations. Thus, it is imperative that new approaches be implemented for de novo pathogen discovery. To this end, we used non-targeted deep sequencing of blood transcriptomes from two species of critically endangered wild lemurs (Indri indri and Propithecus diadema) to characterize blood-borne pathogens. Our results show several undescribed vector-borne parasites circulating within lemurs, some of which may cause disease in wildlife, livestock and humans. We anticipate that advanced methods for de novo identification of unknown pathogens will have broad utility for characterizing other complex disease transmission systems.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Corinne E Hayes
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Randall E Junge
- Department of Animal Health, Columbus Zoo and Aquarium, Columbus, OH 43065, USA
| | - Josia Razafindramanana
- Groupe d'Etude et de Recherche sur les Primates de Madagascar, Antananarivo 101, Madagascar
| | - Vanessa Mass
- VMC Environment Inc., Toronto, Ontario, M6B 1L9, Canada
| | | | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA Duke Lemur Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|