1
|
Mizuhara K, Li L, Nittono H. Auditory mismatch negativity is larger during exhalation than inhalation. Medicine (Baltimore) 2024; 103:e40683. [PMID: 39612395 DOI: 10.1097/md.0000000000040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Previous research has shown that internal signals from the body can modulate the processing of external stimuli. This study investigated whether respiratory phases influence auditory deviance detection by recording mismatch negativity (MMN) responses of event-related brain potentials. METHODS By reanalyzing the data from a previous study examining the effect of cardiac phases on MMN (Li et al, 2024), we calculated the amplitude of MMN elicited by intensity-deviant stimuli separately for inhalation and exhalation phases in the participants (N = 37). RESULTS Results showed that the MMN amplitude was significantly larger during exhalation than inhalation. One possible explanation for this amplitude difference is a greater focus on internal bodily processes during exhalation than inhalation. CONCLUSION This study provides further evidence that respiratory phases influence the auditory processing of external events.
Collapse
Affiliation(s)
- Keita Mizuhara
- Graduate School of Psychology, Kansai University, Osaka, Japan
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Lingjun Li
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Klotzsche F, Motyka P, Molak A, Sahula V, Darmová B, Byrnes C, Fajnerová I, Gaebler M. No cardiac phase bias for threat-related distance perception under naturalistic conditions in immersive virtual reality. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241072. [PMID: 39479236 PMCID: PMC11521594 DOI: 10.1098/rsos.241072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Previous studies have found that threatening stimuli are more readily perceived and more intensely experienced when presented during cardiac systole compared with diastole. Also, threatening stimuli are judged as physically closer than neutral ones. In a pre-registered study, we tested these effects and their interaction using a naturalistic (interactive and three-dimensional) experimental design in immersive virtual reality: we briefly displayed threatening and non-threatening animals (four each) at varying distances (1.5-5.5 m) to a group of young, healthy participants (n = 41) while recording their electrocardiograms (ECGs). Participants then pointed to the location where they had seen the animal (approx. 29 000 trials in total). Our pre-registered analyses indicated that perceived distances to both threatening and non-threatening animals did not differ significantly between cardiac phases-with Bayesian analysis supporting the null hypothesis. There was also no evidence for an association between subjective fear and perceived proximity to threatening animals. These results contrast with previous findings that used verbal or declarative distance measures in less naturalistic experimental conditions. Furthermore, our findings suggest that the cardiac phase-related variation in threat processing may not generalize across different paradigms and may be less relevant in naturalistic scenarios than under more abstract experimental conditions.
Collapse
Affiliation(s)
- Felix Klotzsche
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Paweł Motyka
- Polish Academy of Sciences, Institute of Psychology, Warsaw, Poland
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Aleksander Molak
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
- CausalPython.io, Warsaw, Poland
| | - Václav Sahula
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
| | - Barbora Darmová
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Conor Byrnes
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| | - Iveta Fajnerová
- National Institute of Mental Health, Center for Virtual Reality Research in Mental Health and Neuroscience, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany
| |
Collapse
|
3
|
Li L, Ishida K, Mizuhara K, Barry RJ, Nittono H. Effects of the cardiac cycle on auditory processing: A preregistered study on mismatch negativity. Psychophysiology 2024; 61:e14506. [PMID: 38149745 DOI: 10.1111/psyp.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
The systolic and diastolic phases of the cardiac cycle are known to affect perception and cognition differently. Higher order processing tends to be facilitated at systole, whereas sensory processing of external stimuli tends to be impaired at systole compared to diastole. The current study aims to examine whether the cardiac cycle affects auditory deviance detection, as reflected in the mismatch negativity (MMN) of the event-related brain potential (ERP). We recorded the intensity deviance response to deviant tones (70 dB) presented among standard tones (60 or 80 dB, depending on blocks) and calculated the MMN by subtracting standard ERP waveforms from deviant ERP waveforms. We also assessed intensity-dependent N1 and P2 amplitude changes by subtracting ERPs elicited by soft standard tones (60 dB) from ERPs elicited by loud standard tones (80 dB). These subtraction methods were used to eliminate phase-locked cardiac-related electric artifacts that overlap auditory ERPs. The endogenous MMN was expected to be larger at systole, reflecting the facilitation of memory-based auditory deviance detection, whereas the exogenous N1 and P2 would be smaller at systole, reflecting impaired exteroceptive sensory processing. However, after the elimination of cardiac-related artifacts, there were no significant differences between systole and diastole in any ERP components. The intensity-dependent N1 and P2 amplitude changes were not obvious in either cardiac phase, probably because of the short interstimulus intervals. The lack of a cardiac phase effect on MMN amplitude suggests that preattentive auditory processing may not be affected by bodily signals from the heart.
Collapse
Affiliation(s)
- Lingjun Li
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Kai Ishida
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Keita Mizuhara
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Robert J Barry
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
5
|
Tanaka Y, Ito Y, Terasawa Y, Umeda S. Modulation of heartbeat-evoked potential and cardiac cycle effect by auditory stimuli. Biol Psychol 2023; 182:108637. [PMID: 37490801 DOI: 10.1016/j.biopsycho.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Interoception has been proposed as a factor that influences various psychological processes (Khalsa et al., 2018). Afferent signals from the cardiovascular system vary across cardiac cycle phases. Heartbeat-evoked potentials (HEP) and event-related potentials (ERP) were measured to examine whether interoceptive signals differed between cardiac cycle phases. Simultaneously, participants performed an auditory oddball task in which the timing of the presenting stimulus was synchronized with the heartbeat. Pure tones were presented at 10 ms (late diastole condition), 200 ms (systole condition), or 500 ms after the R wave (diastole condition). Greater HEP amplitudes were observed when the tone was presented during diastole than during systole or late diastole. ERP showed the same tendency: a greater amplitude was observed during diastole than systole or late diastole. These results suggest that the processing of interoception reflected by HEP and exteroception reflected by ERP share attentional resources when both stimuli coincide. When the tone was presented during systole, attention to the internal state decreased compared with when the tone was presented during diastole, and attention was distributed to both exteroception and interoception. Our study suggests that HEP may be considered an indication of a relative amount of resources to process the interoception.
Collapse
Affiliation(s)
- Yuto Tanaka
- Global Research Institute, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Yuichi Ito
- Department of Psychological Sciences, Kwansei Gakuin University, 1-155 Uegahara Ichibancho, Nishinomiya, Hyogo 662-8501, Japan
| | - Yuri Terasawa
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Satoshi Umeda
- Department of Psychology, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| |
Collapse
|
6
|
Arslanova I, Kotsaris V, Tsakiris M. Perceived time expands and contracts within each heartbeat. Curr Biol 2023; 33:1389-1395.e4. [PMID: 36905931 DOI: 10.1016/j.cub.2023.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Perception of passing time can be distorted.1 Emotional experiences, particularly arousal, can contract or expand experienced duration via their interactions with attentional and sensory processing mechanisms.2,3 Current models suggest that perceived duration can be encoded from accumulation processes4,5 and from temporally evolving neural dynamics.6,7 Yet all neural dynamics and information processing ensue at the backdrop of continuous interoceptive signals originating from within the body. Indeed, phasic fluctuations within the cardiac cycle impact neural and information processing.8,9,10,11,12,13,14,15 Here, we show that these momentary cardiac fluctuations distort experienced time and that their effect interacts with subjectively experienced arousal. In a temporal bisection task, durations (200-400 ms) of an emotionally neutral visual shape or auditory tone (experiment 1) or of an image displaying happy or fearful facial expressions (experiment 2) were categorized as short or long.16 Across both experiments, stimulus presentation was time-locked to systole, when the heart contracts and baroreceptors fire signals to the brain, and to diastole, when the heart relaxes, and baroreceptors are quiescent. When participants judged the duration of emotionally neural stimuli (experiment 1), systole led to temporal contraction, whereas diastole led to temporal expansion. Such cardiac-led distortions were further modulated by the arousal ratings of the perceived facial expressions (experiment 2). At low arousal, systole contracted while diastole expanded time, but as arousal increased, this cardiac-led time distortion disappeared, shifting duration perception toward contraction. Thus, experienced time contracts and expands within each heartbeat-a balance that is disrupted under heightened arousal.
Collapse
Affiliation(s)
- Irena Arslanova
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK.
| | | | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK; Centre for the Politics of Feeling, School of Advanced Study, University of London, London WC1E 7HU, UK
| |
Collapse
|
7
|
Parviainen T, Lyyra P, Nokia MS. Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neurosci Biobehav Rev 2022; 142:104908. [DOI: 10.1016/j.neubiorev.2022.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
|
8
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Skora LI, Livermore JJA, Roelofs K. The functional role of cardiac activity in perception and action. Neurosci Biobehav Rev 2022; 137:104655. [PMID: 35395334 DOI: 10.1016/j.neubiorev.2022.104655] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 01/12/2023]
Abstract
SKORA, L.I., J.J.A. LIVERMORE and K. Roelofs. The functional role of cardiac activity in perception and action. NEUROSCI BIOBEHAV REV X(X) XXX-XXX, 2022. Patterns of cardiac activity continuously vary with environmental demands, accelerating or decelerating depending on circumstances. Simultaneously, cardiac cycle affects a host of higher-order processes, where systolic baroreceptor activation largely impairs processing. However, a unified functional perspective on the role of cardiac signal in perception and action has been lacking. Here, we combine the existing strands of literature and use threat-, anticipation-, and error-related cardiac deceleration to show that deceleration is an adaptive mechanism dynamically attenuating the baroreceptor signal associated with each heartbeat to minimise its impact on exteroceptive processing. This mechanism allows to enhance attention afforded to external signal and prepare an appropriate course of action. Conversely, acceleration is associated with a reduced need to attend externally, enhanced action tendencies and behavioural readjustment. This novel account demonstrates that dynamic adjustments in heart rate serve the purpose of regulating the level of precision afforded to internal versus external evidence in order to optimise perception and action. This highlights that the importance of cardiac signal in adaptive behaviour lies in its dynamic regulation.
Collapse
Affiliation(s)
- L I Skora
- Institute for Biological Psychology of Decision Making, Experimental Psychology, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; School of Psychology, University of Sussex, Brighton BN1 9RH, UK; Sackler Centre for Consciousness Science, University of Sussex, Brighton BN1 9RH, UK.
| | - J J A Livermore
- School of Psychology, University of Sussex, Brighton BN1 9RH, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525EN Nijmegen, The Netherlands
| | - K Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525EN Nijmegen, The Netherlands; Behavioural Science Institute, Radboud University, 6525HE Nijmegen, The Netherlands
| |
Collapse
|
10
|
Waselius T, Xu W, Sparre JI, Penttonen M, Nokia MS. -Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning. J Neurophysiol 2022; 127:767-775. [PMID: 35138956 DOI: 10.1152/jn.00298.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhythms of breathing and heartbeat are linked to each other as well as to rhythms of the brain. Our recent studies suggest that presenting the conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning an eyeblink classical conditioning task. To date, it has not been examined whether utilizing information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning trace eyeblink conditioning in healthy young adults. The results were consistent with previous reports: Timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that non-invasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.
Collapse
Affiliation(s)
- Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Julia Isabella Sparre
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
11
|
Schulz A, Schultchen D, Vögele C. Interoception, Stress, and Physical Symptoms in Stress-Associated Diseases. EUROPEAN JOURNAL OF HEALTH PSYCHOLOGY 2020. [DOI: 10.1027/2512-8442/a000063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The brain and peripheral bodily organs continuously exchange information. Exemplary, interoception refers to the processing and perception of ascending information from the body to the brain. Stress responses involve a neurobehavioral cascade, which includes the activation of peripheral organs via neural and endocrine pathways and can thus be seen as an example for descending information on the brain-body axis. Hence, the interaction of interoception and stress represents bi-directional communication on the brain-body axis. The main hypothesis underlying this review is that the dysregulation of brain-body communication represents an important mechanism for the generation of physical symptoms in stress-related disorders. The aims of this review are, therefore, (1) to summarize current knowledge on acute stress effects on different stages of interoceptive signal processing, (2) to discuss possible patterns of abnormal brain-body communication (i.e., alterations in interoception and physiological stress axes activation) in mental disorders and chronic physical conditions, and (3) to consider possible approaches to modify interoception. Due to the regulatory feedback loops underlying brain-body communication, the modification of interoceptive processes (ascending signals) may, in turn, affect physiological stress axes activity (descending signals), and, ultimately, also physical symptoms.
Collapse
Affiliation(s)
- André Schulz
- Research Group Self-Regulation and Health, Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dana Schultchen
- Department of Clinical and Health Psychology, Ulm University, Germany
| | - Claus Vögele
- Research Group Self-Regulation and Health, Institute for Health and Behaviour, Department of Behavioural and Cognitive Sciences Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|