1
|
Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 2017; 74:2761-2771. [PMID: 28331999 PMCID: PMC11107711 DOI: 10.1007/s00018-017-2496-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called "minimal residual disease". Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as "cancer dormancy". Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for "dormancy" of tumor cells.
Collapse
MESH Headings
- Acidosis/complications
- Acidosis/immunology
- Acidosis/pathology
- Animals
- Apoptosis
- Cell Proliferation
- Humans
- Hydrogen-Ion Concentration
- Immunologic Surveillance
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasm Recurrence, Local/etiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual/complications
- Neoplasm, Residual/immunology
- Neoplasm, Residual/pathology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Silvia Peppicelli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Elena Andreucci
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Jessica Ruzzolini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Margheri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Gabriella Fibbi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Mario Del Rosso
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| | - Lido Calorini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| |
Collapse
|
2
|
Kim SR, Kim EH. Effects of chronic exposure to acidic environment on the response of tumor cells to radiation. Int J Radiat Biol 2016; 92:502-7. [PMID: 27415583 DOI: 10.1080/09553002.2016.1206222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The influence of short-term exposure to an acidic environment on the radiosensitivity of tumor cells has been extensively explored, but the implication of chronic exposure to an acidic environment for the response of tumor cells to radiation has not been fully elucidated. This study aimed to investigate the effects of chronic pre- and post-irradiation exposure of tumor cells to an acidic environment on the radiation-induced clonogenic death. MATERIALS AND METHODS Rat gliosarcoma cells were used throughout the in vitro study. Cells were exposed to pH 6.6 medium for varying durations of up to 4 days before and after X-irradiation. Cell viability, apoptosis, clonogenic cell death and cell cycle distribution were observed. RESULTS Incubation of tumor cells in pH 6.6 medium for 2 or 4 days extended cell cycle, decreased cell viability, and induced apoptotic and clonogenic cell death. The radiation-induced clonogenic death was increased by 2- or 4-day pre-irradiation exposure of tumor cells to pH 6.6 medium, whereas it was reduced by 4-day post-irradiation exposure to an acidic medium. CONCLUSION Prolonged exposure to an acidic environment enhanced the sensitivity of tumor cells to subsequent X-irradiation. However, the radiosensitization by pre-irradiation exposure was almost completely nullified by prolonged post-irradiation exposure to an acidic environment.
Collapse
Affiliation(s)
- So-Ra Kim
- a Radiation Bioengineering Laboratory, Department of Nuclear Engineering , Seoul National University , Seoul , Republic of Korea
| | - Eun-Hee Kim
- a Radiation Bioengineering Laboratory, Department of Nuclear Engineering , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
3
|
Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev 2015; 33:823-32. [PMID: 24984804 DOI: 10.1007/s10555-014-9506-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumors are ecosystems which develop from stem cells endowed with unlimited self-renewal capability and genetic instability, under the effects of mutagenesis and natural selection imposed by environmental changes. Abnormal vascularization, reduced lymphatic network, uncontrolled cell growth frequently associated with hypoxia, and extracellular accumulation of glucose metabolites even in the presence of an adequate oxygen level are all factors contributing to reduce pH in the extracellular space of tumors. Evidence is accumulating that acidity is associated with a poor prognosis and participates actively to tumor progression. This review addresses some of the most experimental evidences providing that acidity of tumor environment facilitates local invasiveness and metastatic dissemination, independently from hypoxia, with which acidity is often but not always associated. Clinical investigations have also shown that tumors with acidic environment are associated with resistance to chemotherapy and radiation-induced apoptosis, suppression of cytotoxic lymphocytes, and natural killer cells tumoricidal activity. Therefore, new technologies for functional and molecular imaging as well as strategies directed to target low extracellular pH and low pH-adapted tumor cells might represent important issues in oncology.
Collapse
|
4
|
Park MT, Oh ET, Song MJ, Kim WJ, Cho YU, Kim SJ, Han JY, Suh JK, Choi EK, Lim BU, Song CW, Park HJ. The radiosensitivity of endothelial cells isolated from human breast cancer and normal tissue in vitro. Microvasc Res 2012; 84:140-8. [PMID: 22705362 DOI: 10.1016/j.mvr.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/02/2012] [Accepted: 06/04/2012] [Indexed: 02/06/2023]
Abstract
We developed a novel method for harvesting endothelial cells from blood vessels of freshly obtained cancer and adjacent normal tissue of human breast, and compared the response of the cancer-derived endothelial cells (CECs) and normal tissue-derived endothelial cells (NECs) to ionizing radiation. In brief, when tissues were embedded in Matrigel and cultured in endothelial cell culture medium (ECM) containing growth factors, endothelial cells grew out of the tissues. The endothelial cells were harvested and cultured as monolayer cells in plates coated with gelatin, and the cells of 2nd-5th passages were used for experiments. Both CECs and NECs expressed almost the same levels of surface markers CD31, CD105 and TEM-8 (tumor endothelial marker-8), which are known to be expressed in angiogenic endothelial cells, i.e., mitotically active endothelial cells. Furthermore, both CECs and NECs were able to migrate into experimental wound in the monolayer culture, and also to form capillary-like tubes on Matrigel-coated plates. However, the radiation-induced suppressions of migration and capillary-like tube formations were greater for CECs than NECs from the same patients. In addition, in vitro clonogenic survival assays demonstrated that CECs were far more radiosensitive than NECs. In summary, we have developed a simple and efficient new method for isolating endothelial cells from cancer and normal tissue, and demonstrated for the first time that endothelial cells of human breast cancer are significantly more radiosensitive than their normal counterparts from the same patients.
Collapse
Affiliation(s)
- Moon-Taek Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon 400-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Soares MA, Mattos JL, Pujatti PB, Leal AS, dos Santos WG, dos Santos RG. Evaluation of the synergetic radio-chemotherapy effects of the radio labelled cisplatin for the treatment of glioma. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-011-1414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Soares DCF, de Oliveira MC, de Barros ALB, Cardoso VN, Ramaldes GA. Liposomes radiolabeled with 159Gd: In vitro antitumoral activity, biodistribution study and scintigraphic image in Ehrlich tumor bearing mice. Eur J Pharm Sci 2011; 43:290-6. [DOI: 10.1016/j.ejps.2011.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/18/2011] [Accepted: 05/07/2011] [Indexed: 12/01/2022]
|
7
|
Soares DCF, de Barros Correia Menezes MÂ, Santos RGD, Ramaldes GA. 159Gd: preparation and preliminary evaluation as a potential antitumoral radionuclide. J Radioanal Nucl Chem 2010. [DOI: 10.1007/s10967-010-0486-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Bom APDA, Freitas MS, Moreira FS, Ferraz D, Sanches D, Gomes AMO, Valente AP, Cordeiro Y, Silva JL. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure. J Biol Chem 2009; 285:2857-66. [PMID: 19933157 PMCID: PMC2807339 DOI: 10.1074/jbc.m109.075861] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. 1H-15N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.
Collapse
Affiliation(s)
- Ana Paula D Ano Bom
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization. J Control Release 2009; 139:239-45. [DOI: 10.1016/j.jconrel.2009.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/13/2009] [Accepted: 07/08/2009] [Indexed: 01/27/2023]
|
10
|
Youn H, Hee Kook Y, Oh ET, Jeong SY, Kim C, Kyung Choi E, Uk Lim B, Park HJ. 1-Methylxanthine enhances the radiosensitivity of tumor cells. Int J Radiat Biol 2009; 85:167-74. [PMID: 19280470 DOI: 10.1080/09553000902741190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the efficacy of a caffeine derivative 1-methylxanthine (1-MTX) in increasing radiosensitivity of cancer cells and elucidate the underlying mechanisms in vitro. MATERIALS AND METHODS RKO human colorectal cancer cells carrying wild type protein 53 kDa (p53) were incubated with 3 mM 1-MTX for 30 min, exposed to 4 Gy ionizing radiation, and further incubated with 1-MTX for three days. The clonogenic cell death was determined, and the cell cycle distribution and apoptosis were studied with flow cytometry at different times after irradiation. The DNA double strand break (DNA DSB) was examined using phosphorylated Histone2A (gamma-H2AX) foci formation, and the expression/activity of checkpoint 2 kinase (Chk2), cell division cycle 25 (Cdc25) phosphatase and cyclin B1/Cdc2 kinase were also investigated using western blotting and in vitro kinase assays. RESULTS The treatment with 3 mM 1-MTX increased the radiation-induced clonogenic and apoptotic cell death. The radiation-induced phosphorylation of Chk2 and Cdc25c and the radiation-induced increase in the cyclin B1/Cdc2 kinas activity were little affected by 1-MTX. The radiation-induced G2/M arrest was only slightly shortened and the expression of radiation-induced gamma-H2AX was markedly prolonged by 1-MTX. CONCLUSIONS 1-MTX significantly increased the radiosensitivity of RKO human colorectal cancer cells carrying wild type p53 mainly by inhibiting the repair of radiation-induced DNA DSB without causing significant alteration in radiation-induced G2/M arrest. Such a radiosensitization occurred at 1-MTX concentrations almost non-toxic to the target tumor cells.
Collapse
Affiliation(s)
- Hyewon Youn
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Inchon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Enhancement of radiotherapeutic effectiveness by temperature-sensitive liposomal 1-methylxanthine. Int J Pharm 2009; 372:132-9. [DOI: 10.1016/j.ijpharm.2008.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/22/2022]
|
12
|
Hunter A, Hendrikse A, Renan M, Abratt R. Does the tumor microenvironment influence radiation-induced apoptosis? Apoptosis 2006; 11:1727-35. [PMID: 16927015 DOI: 10.1007/s10495-006-9789-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Cytotoxic anti-cancer agents induce apoptosis in tumor and normal tissues. Therefore, it is important to investigate which factors determine these apoptotic processes and hence their likely impact on therapeutic gain. Radiation-induced apoptosis in tumors may be inhibited due to mutations of apoptotic elements or to tumor microenvironmental conditions arising from vascular insufficiency. Tumors typically contain regions of hypoxia, low glucose and acidosis. Hypoxic cells compromise treatment partly because of reduced fixation of damage during radiotherapy and partly because they promote a more malignant phenotype. There is also evidence that hypoxia may inhibit apoptosis. For some cell types, concurrent hypoxia may modulate radiation-induced apoptosis while, for others, post-irradiation hypoxia may be required. This may reflect the activity of different apoptotic pathways. Pathways involving mitochondrial components as well as regulation of SAPK and Fas have been implicated. In addition, several key stages in apoptosis are sensitive to depletion of cellular energy reserves, which results from hypoxia and low glucose conditions. There is also evidence that low pH in tumors can interfere with radiation-induced apoptosis, partly through cell cycle arrest and other undefined mechanisms. CONCLUSIONS Hypoxia, low glucose and acidosis influence radiation-induced apoptosis and thus may be detrimental to radiotherapy.
Collapse
Affiliation(s)
- Alistair Hunter
- Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, Cape Town, South Africa.
| | | | | | | |
Collapse
|
13
|
Choi EK, Ji IM, Lee SR, Kook YH, Griffin RJ, Lim BU, Kim JS, Lee DS, Song CW, Park HJ. Radiosensitization of tumor cells by modulation of ATM kinase. Int J Radiat Biol 2006; 82:277-83. [PMID: 16690595 DOI: 10.1080/09553000600702346] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To elucidate the relationship between the radiation-induced activation of ataxia telangiectasia mutated (ATM) kinase, G2 arrest and the caffeine-induced radiosensitization. METHOD RKO cells (human colorectal cancer cells) and ATM kinase over-expressing RKO/ATM cells were used. The cellular radiosensitivity was determined with clonogenic survival assay and the cell cycle progression, including G2 arrest, was studied with flow cytometry. The activity of ATM kinase, check point 2 (Chk2) kinase and cycline B1/cell division cycle 2 (Cdc2) kinase was investigated. The radiosensitivity of RKO xenografts grown in nude mice was studied. RESULTS RKO/ATM cells were radioresistant as compared with RKO cells. There was a greater increase in ATM kinase activity and G2 arrest in RKO/ATM cells than in RKO cells. Caffeine also sensitized both RKO cells and RKO/ATM cells to radiation. The caffeine treatment suppressed the radiation-induced activation of ATM kinase, suppressed the activation of Chk2 kinase and inhibited the accumulation of cells in G2 phase. The activity of cycline B1/Cdc2 kinase increased earlier but decayed rapidly in the presence of caffeine. Caffeine enhanced radiation-induced growth delay of RKO xenografts. CONCLUSIONS Caffeine inhibited the radiation-induced activation of ATM kinase, thereby preventing the accumulation of cells in G2 phase. Consequently, radiosensitivity of cells increased in the presence of caffeine both in vitro and in vivo.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Department of Therapeutic Radiology, College of Medicine, University of Ulsan, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|