1
|
Zhao X, Sakamoto S, Ishikawa H, Yamada Y, Aoki S, Nakajima M, Sato K, Kobayashi K, Saito S, Wakatsuki M, Ichikawa T. Significant Effect of Carbon-Ion Radiation Therapy Combined With Androgen Deprivation on Biochemical Recurrence Rates in High-Risk Prostate Cancer Patients: A Two-Center Controlled Trial Compare With X-Ray External Beam Radiation Therapy. Prostate 2024. [PMID: 39488848 DOI: 10.1002/pros.24818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE To compare the effects of carbon-ion radiation therapy (CIRT) and external beam radiotherapy (EBRT) on the prognosis of patients with prostate cancer. METHODS The effects of initial prostate-specific antigen (iPSA), clinical Tumor (cT) stage, radiotherapy method, and other clinical factors on the prognosis of 577 patients with radiotherapy were analyzed. RESULTS Cox regression analysis showed that CIRT (RR: 0.49, p = 0.0215), cT stage ≥ 3 (RR: 2.72, p = 0.0003), and iPSA ≥ 16 ng/mL (RR: 1.74, p = 0.0347) were independent predictors of biochemical recurrence (BCR). After propensity score matching (PSM), CIRT (RR: 0.42, p = 0.0147), cT stage ≥ 3 (RR: 2.55, p = 0.0092), and iPSA ≥ 16 ng/mL (RR: 2.12, p = 0.0366) were still the predictors of univariate analysis. In multivariate analysis, CIRT (RR: 0.42, p = 0.015) and cT stage≥ 3 (RR:2.21, p = 0.0332) were independent predictors of BCR. Among them, we used iPSA and cT stages to establish a new radiotherapy selection model based on BCR risk. Patients who met more than one factor (score ≥ 1) and underwent CIRT had significantly better BCR progression-free survival (PFS) than those who received EBRT (p ≤ 0.01). This was also confirmed by Kaplan-Meier analysis after PSM. CONCLUSION CIRT patients exhibited lower 5-year BCR rates compared to the EBRT group. Patients with a risk score of our model ≥ 1 undergoing CIRT were more likely to experience BCR benefits compared to those receiving EBRT.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hitoshi Ishikawa
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shuri Aoki
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mio Nakajima
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kodai Sato
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kana Kobayashi
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shinpei Saito
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaru Wakatsuki
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
2
|
Tsubouchi T, Shiomi H, Suzuki O, Hamatani N, Takashina M, Yagi M, Wakisaka Y, Ogawa A, Terasawa A, Akino Y, Ogawa K, Kanai T. Assessing the robustness of dose distributions in carbon ion prostate radiotherapy using a fast dose evaluation system. J Appl Clin Med Phys 2024:e14528. [PMID: 39436775 DOI: 10.1002/acm2.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE We developed a software program for swiftly calculating dose distributions for carbon ion beams. This study aims to evaluate the accuracy of dose calculations using this software and assess the robustness of dose distribution in treating prostate cancer. METHODS At the Osaka Heavy Ion Therapy Center, markers are inserted into the prostate gland and used for position verification. To account for geometric changes along the beam path due to marker translation, a beam-specific planning target volume (bsPTV) is set for each beam. To validate the accuracy of the dose calculations using the developed software, dose distributions for prostate and sarcoma cases were calculated and compared with the treatment planning system. To assess the robustness of the dose distribution, position verification data from 346 cases were utilized to reproduce dose distributions for three matching methods: bone matching, widely adopted in most particle therapy centers; marker translation, which involves direct translation to markers without bone matching; and marker translation after bone matching. The coverage of the target (D99 of clinical target volume (CTV)) was assessed to evaluate the robustness of the dose distribution. Additionally, statistical analyses were conducted for the dose distributions of each matching method. RESULTS The dose calculation for a single condition can be completed very quickly. Statistical analysis revealed significant differences among dose distributions considering the three matching methods. When irradiation was performed with bone matching only, the D99 was reduced by more than 10% in approximately 7.5% of cases, making it as the poorest among the three matching methods. However, there was no significant reduction in target coverage with the other two methods. CONCLUSION We have demonstrated the accuracy of the developed software for rapidly calculating dose distributions for carbon ion beams and confirmed the robustness of the dose distributions based on the bsPTV.
Collapse
Affiliation(s)
- Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Hiroya Shiomi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
- RADLab Inc., Osaka, Japan
| | - Osamu Suzuki
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masashi Yagi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yushi Wakisaka
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Atsuhiro Ogawa
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Ayumi Terasawa
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Yuichi Akino
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| |
Collapse
|
3
|
Isozaki T, Ishikawa H, Yamada S, Nabeya Y, Minashi K, Murakami K, Matsubara H. Outcomes of definitive carbon-ion radiotherapy for cT1bN0M0 esophageal squamous cell carcinoma. Esophagus 2024; 21:523-529. [PMID: 38814482 DOI: 10.1007/s10388-024-01067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND A recent phase I/II study determined the optimal dose of definitive carbon-ion radiotherapy (CIRT) for cT1bN0M0 esophageal cancer. This study aimed to further confirm the efficacy and feasibility of the recommended dose fractionation of CIRT with long-term follow-up results in a larger sample size. METHODS This single center retrospective study evaluated patients with cT1bN0M0 esophageal squamous cell carcinoma treated with the recommended dose fractionation of 50.4 Gy relative biological effectiveness in 12 fractions, between 2012 and 2022. RESULTS Thirty-eight patients underwent CIRT at our hospital. Although eight (21.1%) patients were older than 80 years, 15 (39.5%) had high surgical risk, and seven (18.4%) were at high risk for chemotherapy, all patients underwent CIRT as scheduled. Grade 3 esophagitis occurred in eight (21.1%) patients and grade 3 pneumonia in one (2.6%) patient in this study, but no grade 4 adverse events occurred. The only grade 3 late adverse event was pneumonia in one patient (2.6%). The 5-year overall survival rate, local control rate, and disease-free survival rates were 76.6% (95% CI, 90.9-62.4), 74.9% (95% CI, 90.7-59.0), and 66.4% (95% CI, 83.3-49.5), respectively. Additionally, post CIRT recurrence was as follows: seven (18.4%) patients had recurrence in another part of the esophagus, three (7.9%) in the primary site, three (7.9%) in lymph nodes outside the irradiated area, and one (2.6%) patient had liver metastasis. CONCLUSIONS Our study demonstrates that CIRT using the recommended dose fractionation is feasible and effective for cT1bN0M0 esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Tetsuro Isozaki
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan.
- Department of Radiology, QST Hospital, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Hitoshi Ishikawa
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan
| | - Shigeru Yamada
- National Institutes for Quantum Science and Technology, QST Hospital, Chiba, Japan
| | - Yoshihiro Nabeya
- Division of Esophago-Gastrointestinal Surgery, Chiba Cancer Center, Chiba, Japan
| | - Keiko Minashi
- Clinical Trial Promotion Department, Chiba Cancer Center, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Howell N, Middleton RJ, Sierro F, Fraser BH, Wyatt NA, Chacon A, Bambery KR, Livio E, Dobie C, Bevitt JJ, Davies J, Dosseto A, Franklin DR, Garbe U, Guatelli S, Hirayama R, Matsufuji N, Mohammadi A, Mutimer K, Rendina LM, Rosenfeld AB, Safavi-Naeini M. Neutron Capture Enhances Dose and Reduces Cancer Cell Viability in and out of Beam During Helium and Carbon Ion Therapy. Int J Radiat Oncol Biol Phys 2024; 120:229-242. [PMID: 38479560 DOI: 10.1016/j.ijrobp.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemically targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs). METHODS AND MATERIALS Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence of NCAs [10B]-BPA and [157Gd]-DOTA-TPP. Cells were positioned within a polymethyl methacrylate phantom either laterally adjacent to or within a 100 × 100 × 60 mm spread out Bragg peak (SOBP). The effect of NCAs and location relative to the SOBP on the cells was measured by cell growth and survival assays in 6 independent experiments. Neutron fluence within the phantom was characterized by quantifying the neutron activation of gold foil. RESULTS Cells placed inside the treatment volume reached 10% survival by 2 Gy of carbon or 2 to 3 Gy of helium in the presence of NCAs compared with 5 Gy of carbon and 7 Gy of helium with no NCA. Cells placed adjacent to the treatment volume showed a dose-dependent decrease in cell growth when treated with NCAs, reaching 10% survival by 6 Gy of carbon or helium (to the treatment volume), compared with no detectable effect on cells without NCA. The mean thermal neutron fluence at the center of the SOBP was approximately 2.2 × 109 n/cm2/Gy (relative biological effectiveness) for the carbon beam and 5.8 × 109 n/cm2/Gy (relative biological effectiveness) for the helium beam and gradually decreased in all directions. CONCLUSIONS The addition of NCAs to cancer cells during carbon and helium beam irradiation has a measurable effect on cell survival and growth in vitro. Through the capture of internally generated neutrons, NCEPT introduces the concept of a biochemically targeted radiation dose to charged particle therapy. NCEPT enables the established pharmaceuticals and concepts of neutron capture therapy to be applied to a wider range of deeply situated and diffuse tumors, by targeting this dose to microinfiltrates and cells outside of defined treatment regions. These results also demonstrate the potential for NCEPT to provide an increased dose to tumor tissue within the treatment volume, with a reduction in radiation doses to off-target tissue.
Collapse
Affiliation(s)
- Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Frederic Sierro
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Benjamin H Fraser
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Naomi A Wyatt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Keith R Bambery
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Elle Livio
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Christopher Dobie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Joseph J Bevitt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Daniel R Franklin
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, Australia
| | - Ulf Garbe
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Ryoichi Hirayama
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | | | - Akram Mohammadi
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | - Karl Mutimer
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, Sydney, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
5
|
Marignol L, McMahon SJ. Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study. Radiat Res 2024; 202:177-184. [PMID: 38918000 DOI: 10.1667/rade-24-00023.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
Collapse
Affiliation(s)
- L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
6
|
Tsuchida K, Yoshida D, Shima S, Kusunoki T, Takayama Y, Koge H, Kano K, Takakusagi Y, Mizoguchi N, Kamada T, Kusano Y, Kato H, Katoh H. Preliminary result of combined treatment with scanning carbon-ion radiotherapy and image-guided brachytherapy for locally advanced cervical adenocarcinoma. JOURNAL OF RADIATION RESEARCH 2024; 65:512-522. [PMID: 38842119 PMCID: PMC11262861 DOI: 10.1093/jrr/rrae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Indexed: 06/07/2024]
Abstract
Although there is growing evidence of the efficacy of carbon-ion radiotherapy (CIRT) for locally advanced cervical adenocarcinoma, reports on combined treatment with CIRT and image-guided brachytherapy (IGBT) are scarce. We retrospectively analyzed patients with International Federation of Gynecology and Obstetrics (2008) stage II-IVA locally advanced cervical adenocarcinoma who received combined scanning CIRT (sCIRT) and IGBT between April 2019 and March 2022. sCIRT consisted of whole-pelvic irradiation with 36 Gy (relative biological effectiveness [RBE]) in 12 fractions and subsequent local boost irradiation with 19.2 Gy (RBE) in 4 fractions. Three sessions of IGBT were administered after completion of sCIRT. Concurrent chemotherapy using weekly cisplatin (40 mg/m2/week) was also administered. Efficacy, toxicity and dose-volume parameters were analyzed. Fifteen patients were included in the analysis. The median follow-up period was 25 months. The 2-year overall survival, progression-free survival and local control rates were 92.3% (95% confidence interval [CI] = 77.8-100%), 52.5% (95% CI = 26.9-78.1%) and 84.8% (95% CI = 65.2-100%), respectively. Neither severe acute toxicity necessitating treatment cessation nor grade 3 or higher late toxicity were observed. The sigmoid D2cm3 of the patient who developed grade 2 late sigmoid hemorrhage was 65.6 Gy, which exceeded the standard deviation and target dose. The combination of sCIRT and IGBT for locally advanced cervical adenocarcinoma showed acceptable efficacy and safety. Further large-scale and long-term studies are warranted to confirm the efficacy and safety of this treatment.
Collapse
Affiliation(s)
- Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Terufumi Kusunoki
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yoshiki Takayama
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hiroaki Koge
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, 2-3-2, Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
7
|
Yang J, Liu X, Zhang H, Dai Z, He P, Ma Y, Shen G, Chen W, Li Q. Nanodosimetric quantity-weighted dose optimization for carbon-ion treatment planning. Phys Eng Sci Med 2024; 47:703-715. [PMID: 38416372 DOI: 10.1007/s13246-024-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
Dose verification of treatment plans is an essential step in radiotherapy workflows. In this work, we propose a novel method of treatment planning based on nanodosimetric quantity-weighted dose (NQWD), which could realize biological representation using pure physical quantities for biological-oriented carbon ion-beam treatment plans and their direct verification. The relationship between nanodosimetric quantities and relative biological effectiveness (RBE) was studied with the linear least-squares method for carbon-ion radiation fields. Next, under the framework of the matRad treatment planning platform, NQWD was optimized using the existing RBE-weighted dose (RWD) optimization algorithm. The schemes of NQWD-based treatment planning were compared with the RWD treatment plans in term of the microdosimetric kinetic model (MKM). The results showed that the nanodosimetric quantity F3 - 10 had a good correlation with the radiobiological effect reflected by the relationship between RBE and F3 - 10. Moreover, the NQWD-based treatment plans reproduced the RWD plans generally. Therefore, F3 - 10 could be adopted as a radiation quality descriptor for carbon-ion treatment planning. The novel method proposed herein not only might be helpful for rapid physical verification of biological-oriented ion-beam treatment plans with the development of experimental nanodosimetry, but also makes the direct comparison of ion-beam treatment plans in different institutions possible. Thus, our proposed method might be potentially developed to be a new strategy for carbon-ion treatment planning and improve patient safety for carbon-ion radiotherapy.
Collapse
Affiliation(s)
- Jingfen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Pengbo He
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanyuan Ma
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guosheng Shen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Science, 730000, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, 730000, Lanzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Inaniwa T, Kanematsu N, Koto M. Biological dose optimization incorporating intra-tumoural cellular radiosensitivity heterogeneity in ion-beam therapy treatment planning. Phys Med Biol 2024; 69:115017. [PMID: 38636504 DOI: 10.1088/1361-6560/ad4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Objective.Treatment plans of ion-beam therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation dose. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study is to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for ion-beam therapy treatment planning.Approach.The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case, assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned for a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account.Main results. The cell survival fraction and corresponding RBE-weighted dose were formulated based on the HMK model. The first derivative of the RBE-weighted dose distribution was also derived, which is needed for fast biological optimization. For the patient plan, the biological optimization increased the dose to the radiosensitivity heterogeneous region to compensate for the heterogeneity-induced reduction in biological effectiveness of the H-ion beams. The reduction in biological effectiveness due to the heterogeneity was pronounced for low linear energy transfer (LET) beams but moderate for high-LET beams. The RBE-weighted dose in the cuboid target decreased by 7.6% for the H-ion beam, while it decreased by just 1.4% for the Ne-ion beam.Significance.Optimal treatment plans that consider intra-tumoural cellular radiosensitivity heterogeneity can be devised using the HMK model.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Inaniwa T, Kanematsu N, Nakajima M. Modeling of the resensitization effect on carbon-ion radiotherapy for stage I non-small cell lung cancer. Phys Med Biol 2024; 69:105015. [PMID: 38604184 DOI: 10.1088/1361-6560/ad3dbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy.Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed 'resensitization' in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters.Main results.The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment.Significance.The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mio Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
10
|
Takakusagi Y, Koge H, Kano K, Shima S, Tsuchida K, Mizoguchi N, Yoshida D, Kamada T, Katoh H. Five-year clinical outcomes of scanning carbon-ion radiotherapy for prostate cancer. PLoS One 2024; 19:e0290617. [PMID: 38457424 PMCID: PMC10923478 DOI: 10.1371/journal.pone.0290617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/12/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) has been associated with favorable clinical outcomes in patients with prostate cancer. At our facility, all patients are treated using scanning CIRT (sCIRT). We retrospectively analyzed five-year clinical outcomes of prostate cancer treated with sCIRT to investigate treatment efficacy and toxicity. METHODS In this study, we included 253 consecutive prostate cancer patients treated with sCIRT at the Kanagawa Cancer Center from December 2015 to December 2017. The total dose of sCIRT was set at 51.6 Gy (relative biological effect) in 12 fractions over three weeks. We employed the Phoenix definition for biochemical relapse. The overall survival (OS), biochemical relapse-free (bRF) rate, and cumulative incidence of late toxicity were estimated using the Kaplan-Meier method. Toxicity was assessed using the Common Terminology Criteria for Adverse Events version 4.0. RESULTS The median age of the patients was 70 years (range: 47-86 years). The median follow-up duration was 61.1 months (range: 4.1-80.3 months). Eight (3.2%), 88 (34.8%), and 157 (62.1%) patients were in the low-risk, intermediate-risk, and high-risk groups, respectively, according to the D'Amico classification system. The five-year OS and bRF were 97.5% and 93.3%, respectively. The five-year bRF rates for the low-risk, intermediate-risk, and high-risk groups were 87.5%, 93.7%, and 93.4%, respectively (p = 0.7215). The five-year cumulative incidence of Grade 2 or more late genitourinary and gastrointestinal toxicity was 7.4% and 1.2%, respectively. CONCLUSION The results of this study show that sCIRT has a favorable therapeutic effect and low toxicity in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
- Department of Radiation Oncology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Hiroaki Koge
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| |
Collapse
|
11
|
Masuda T, Inaniwa T. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Phys Med Biol 2024; 69:045003. [PMID: 38232394 DOI: 10.1088/1361-6560/ad1f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
12
|
Jang JY, Kim K, Chen M, Akimoto T, Wang MLC, Kim M, Kim K, Lee TH, Yoo GS, Park HC. A meta-analysis comparing efficacy and safety between proton beam therapy versus carbon ion radiotherapy. Cancer Med 2024; 13:e7023. [PMID: 38396380 PMCID: PMC10891363 DOI: 10.1002/cam4.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND This study aimed to compare the outcomes of proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) by a systematic review and meta-analysis of the existing clinical evidence. METHODS A systematic literature search was performed to identify studies comparing the clinical outcomes of PBT and CIRT. The included studies were required to report oncological outcomes (local control [LC], progression-free survival [PFS], or overall survival [OS]) or adverse events. RESULTS Eighteen articles comprising 1857 patients (947 treated with PBT and 910 treated with CIRT) were included in the analysis. The pooled analysis conducted for the overall population yielded average hazard ratios of 0.690 (95% confidence interval (CI), 0.493-0.967, p = 0.031) for LC, 0.952 (95% CI, 0.604-1.500, p = 0.590) for PFS, and 1.183 (0.872-1.607, p = 0.281) for OS with reference to CIRT. The subgroup analyses included patients treated in the head and neck, areas other than the head and neck, and patients with chordomas and chondrosarcomas. These analyses revealed no significant differences in most outcomes, except for LC in the subgroup of patients treated in areas other than the head and neck. Adverse event rates were comparable in both groups, with an odds ratio (OR) of 1.097 (95% CI, 0.744-1.616, p = 0.641). Meta-regression analysis for possible heterogeneity did not demonstrate a significant association between treatment outcomes and the ratio of biologically effective doses between modalities. CONCLUSION This study highlighted the comparability of PBT and CIRT in terms of oncological outcomes and adverse events.
Collapse
Affiliation(s)
- Jeong Yun Jang
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kangpyo Kim
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Miao‐Fen Chen
- Department of Radiation OncologyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle TherapyNational Cancer Center Hospital EastChibaJapan
- Department of Radiation OncologyNational Cancer Center Hospital EastChibaJapan
| | | | - Min‐Ji Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Tae Hoon Lee
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Radiation OncologyChungbuk National University HospitalCheongjuRepublic of Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
13
|
Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 2). Chapter 2. Biophysical model, treatment planning system and image guided radiotherapy. Radiol Phys Technol 2023; 16:137-159. [PMID: 37129777 DOI: 10.1007/s12194-023-00722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
When an ion beam penetrates deeply into the body, its kinetic energy decreases, and its biological effect increases due to the change of the beam quality. To give a uniform biological effect to the target, it is necessary to reduce the absorbed dose with the depth. A bio-physical model estimating the relationship between ion beam quality and biological effect is necessary to determine the relative biological effectiveness (RBE) of the ion beam that changes with depth. For this reason, Lawrence Berkeley Laboratory, National Institute of Radiological Sciences (NIRS) and GSI have each developed their own model at the starting of the ion beam therapy. Also, NIRS developed a new model at the starting of the scanning irradiation. Although the Local Effect Model (LEM) at the GSI and the modified Microdosimetric Kinetic Model (MKM) at the NIRS, the both are currently used, can similarly predict radiation quality-induced changes in surviving fraction of cultured cell, the clinical RBE-weighted doses for the same absorbed dose are different. This is because the LEM uses X-rays as a reference for clinical RBE, whereas the modified MKM uses carbon ion beam as a reference and multiplies it by a clinical factor of 2.41. Therefore, both are converted through the absorbed dose. In PART 2, I will describe the development of such a bio-physical model, as well as the birth and evolution of a treatment planning system and image guided radiotherapy.
Collapse
Affiliation(s)
- Masahiro Endo
- Association for Nuclear Technology in Medicine, Nikkei Bldg., 7-16 Nihombashi-Kodemmacho, Chuo-Ku, Tokyo, Tokyo, 103-0001, Japan.
| |
Collapse
|
14
|
Saga R, Matsuya Y, Sato H, Hasegawa K, Obara H, Komai F, Yoshino H, Aoki M, Hosokawa Y. Translational study for stereotactic body radiotherapy against non-small cell lung cancer, including oligometastases, considering cancer stem-like cells enable predicting clinical outcome from in vitro data. Radiother Oncol 2023; 181:109444. [PMID: 37011969 DOI: 10.1016/j.radonc.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Curative effects of stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) have been evaluated using various biophysical models. Because such model parameters are empirically determined based on clinical experience, there is a large gap between in vitro and clinical studies. In this study, considering the heterogeneous cell population, we performed a translational study to realize the possible linkage based on a modeling approach. METHODS We modeled cell-killing and tumor control probability (TCP) considering two populations: progeny and cancer stem-like cells. The model parameters were determined from in vitro survival data of A549 and EBC-1 cells. Based on the cellular parameters, we predicted TCP and compared it with the corresponding clinical data from 553 patients collected at Hirosaki University Hospital. RESULTS Using an all-in-one developed model, the so-called integrated microdosimetric-kinetic (IMK) model, we successfully reproduced both in vitro survival after acute irradiation and the 3-year TCP with various fractionation schemes (6-10 Gy per fraction). From the conventional prediction without considering cancer stem cells (CSCs), this study revealed that radioresistant CSCs play a key role in the linkage between in vitro and clinical outcomes. CONCLUSIONS This modeling study provides a possible generalized biophysical model that enables precise estimation of SBRT worldwide.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan; Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - Hikari Sato
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hideki Obara
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori 036-8563, Japan
| | - Fumio Komai
- Division of Radiology, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori 036-8563, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
15
|
Nakaji T, Kanai T, Takashina M, Matsumura A, Osaki K, Yagi M, Tsubouchi T, Hamatani N, Ogawa K. Clinical dose assessment for scanned carbon-ion radiotherapy using linear energy transfer measurements and Monte Carlo simulations. Phys Med Biol 2022; 67. [PMID: 36327456 DOI: 10.1088/1361-6560/aca003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Objective. Dosimetric commissioning of treatment planning systems (TPS) focuses on validating the agreement of the physical dose with experimental data. For carbon-ion radiotherapy, the commissioning of the relative biological effectiveness (RBE) is necessary to predict the clinical outcome based on the radiation quality of the mixed radiation field. In this study, we proposed a approach for RBE commissioning using Monte Carlo (MC) simulations, which was further strengthen by RBE validation based on linear energy transfer (LET) measurements.Approach. First, we tuned the MC simulation based on the results of dosimetric experiments including the beam ranges, beam sizes, and MU calibrations. Furthermore, we compared simulated results to measured depth- and radial-LET distributions of the 430 MeV u-1carbon-ion spot beam with a 1.5 mm2, 36μm thick silicon detector. The measured dose-averaged LET (LETd) and RBE were compared with the simulated results. The RBE was calculated based on the mixed beam model with linear-quadratic parameters depending on the LET. Finally, TPS-calculated clinical dose profiles were validated through the tuned MC-based calculations.Main results. A 10 keVμm-1and 0.15 agreement for LETdand RBE, respectively, were found between simulation and measurement results obtained for a 2σlateral size of 430 MeV u-1carbon-ion spot beam in water. These results suggested that the tuned MC simulation can be used with acceptable precision for the RBE and LET calculations of carbon-ion spot beam within the clinical energy range. For physical and clinical doses, the TPS- and MC-based calculations showed good agreements within 1.0% at the centre of the spread-out Bragg peaks.Significance. The tuned MC simulation can accurately reproduce the actual carbon-ion beams, and it can be used to validate the physical and clinical dose distributions calculated by TPS. Moreover, the MC simulation can be used for dosimetric commissioning, including clinical doses, without LET measurements.
Collapse
Affiliation(s)
- Taku Nakaji
- QST Hospital, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tatsuaki Kanai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Division of Medical Physics, Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan
| | - Masaaki Takashina
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Division of Medical Physics, Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan
| | - Akihiko Matsumura
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Kohei Osaki
- Graduate School of Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Masashi Yagi
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Division of Medical Physics, Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan
| | - Toshiro Tsubouchi
- Division of Medical Physics, Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan
| | - Noriaki Hamatani
- Division of Medical Physics, Osaka Heavy Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka City, Osaka 540-0008, Japan
| | - Kazuhiko Ogawa
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Kang Y, Ishikawa H, Inaniwa T, Iwai Y, Matsufuji N, Kasuya G, Okonogi N, Liu Y, Chao Y, Wakatsuki M, Tsujii H, Tsuji H. The clinical relative biological effectiveness and prostate-specific antigen kinetics of carbon-ion radiotherapy in low-risk prostate cancer. Cancer Med 2022; 12:1540-1551. [PMID: 35852142 PMCID: PMC9883571 DOI: 10.1002/cam4.5045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND To evaluate the clinical relative biological effectiveness (RBE) of carbon-ion radiotherapy (C-ion RT) for prostate cancer. METHODS The records of 262 patients with low-risk prostate cancer (median age, 65 [47-80] years) treated with C-ion RT at QST Hospital, National Institutes for Quantum Science and Technology in Japan during 2000-2018 were reviewed retrospectively. Four different protocol outcomes and prostate-specific antigen (PSA) responses were evaluated. The median follow-up was 8.4 years. The Kaplan-Meier method was used to estimate the biochemical or clinical failure-free rate (BCFFR). Clinical RBE was calculated using the tumor control probability model. RESULTS The 5-, 7-, and 10-year BCFFRs were 91.7%, 83.8%, and 73.2%, respectively. The 10-year BCFFRs of patients who received C-ion RT at 66 Gy (RBE) in 20 fractions, 63 Gy (RBE) in 20 fractions, and 57.6 Gy (RBE) in 16 fractions were 81.4%, 70.9%, and 68.9%, respectively. The PSA level and density during follow-up were better in the patients treated with the lower fraction size. A higher PSA nadir and shorter time to PSA nadir were risk factors for biochemical or clinical failure by multivariate Cox regression. The tumor control probability analysis showed that the estimated clinical RBE values to achieve an 80% BCFFR at 10 years for 20, 16, and 12 fractions were 2.19 (2.18-2.24), 2.16 (2.14-2.23), and 2.12 (2.09-2.21), respectively. CONCLUSIONS Using clinical data from low-risk prostate cancer patients, we showed the clinical RBE of C-ion RT decreased with increasing dose per fraction.
Collapse
Affiliation(s)
- Yu‐Mei Kang
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan,Division of Radiation Oncology, Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,Faculty of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Taku Inaniwa
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan,Department of Accelerator and Medical PhysicsNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yuma Iwai
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Naruhiro Matsufuji
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan,Department of Accelerator and Medical PhysicsNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Goro Kasuya
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Yu‐Ming Liu
- Division of Radiation Oncology, Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,Faculty of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yee Chao
- Faculty of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Hirohiko Tsujii
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
17
|
Takakusagi Y, Suga M, Kusano Y, Kano K, Shima S, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T, Minohara S, Katoh H. Evaluation of Safety for Scanning Carbon-Ion Radiotherapy in Hemodialysis Patients With Prostate Cancer. Cureus 2022; 14:e22214. [PMID: 35308759 PMCID: PMC8925932 DOI: 10.7759/cureus.22214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
|
18
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
19
|
Inaniwa T, Kanematsu N, Shinoto M, Koto M, Yamada S. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Phys Med Biol 2021; 66. [PMID: 34560678 DOI: 10.1088/1361-6560/ac29cc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keVμm-1. The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
20
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
21
|
Fujitaka S, Fujii Y, Nihongi H, Nakayama S, Takashina M, Hamatani N, Tsubouchi T, Yagi M, Minami K, Ogawa K, Mizoe J, Kanai T. Physical and biological beam modeling for carbon beam scanning at Osaka Heavy Ion Therapy Center. J Appl Clin Med Phys 2021; 22:77-92. [PMID: 33998157 PMCID: PMC8292693 DOI: 10.1002/acm2.13262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 11/06/2022] Open
Abstract
We have developed physical and biological beam modeling for carbon scanning therapy at the Osaka Heavy Ion Therapy Center (Osaka HIMAK). Carbon beam scanning irradiation is based on continuous carbon beam scanning, which adopts hybrid energy changes using both accelerator energy changes and binary range shifters in the nozzles. The physical dose calculation is based on a triple Gaussian pencil-beam algorithm, and we thus developed a beam modeling method using dose measurements and Monte Carlo simulation for the triple Gaussian. We exploited a biological model based on a conventional linear-quadratic (LQ) model and the photon equivalent dose, without considering the dose dependency of the relative biological effectiveness (RBE), to fully comply with the carbon passive dose distribution using a ridge filter. We extended a passive ridge-filter design method, in which carbon and helium LQ parameters are applied to carbon and fragment isotopes, respectively, to carbon scanning treatment. We then obtained radiation quality data, such as the linear energy transfer (LET) and LQ parameters, by Monte Carlo simulation. The physical dose was verified to agree with measurements to within ±2% for various patterns of volume irradiation. Furthermore, the RBE in the middle of a spread-out Bragg peak (SOBP) reproduced that from passive dose distribution results to within ±1.5%. The developed carbon beam modeling and dose calculation program was successfully applied in clinical use at Osaka HIMAK.
Collapse
Affiliation(s)
| | - Yusuke Fujii
- Hitachi, Ltd. Research & Development GroupHitachi‐shiIbarakiJapan
| | - Hideaki Nihongi
- Hitachi, Ltd. Smart Life Business Management DivisionKashiwa‐shiChibaJapan
| | - Satoshi Nakayama
- Hitachi, Ltd. Smart Life Business Management DivisionKashiwa‐shiChibaJapan
| | | | | | | | - Masashi Yagi
- Department of Carbon Ion RadiotherapyOsaka University Graduate School of MedicineSuita‐shiOsakaJapan
| | - Kazumasa Minami
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuita‐shiOsakaJapan
| | - Kazuhiko Ogawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuita‐shiOsakaJapan
| | | | | |
Collapse
|
22
|
Fossati P, Perpar A, Stock M, Georg P, Carlino A, Gora J, Martino G, Hug EB. Carbon Ion Dose Constraints in the Head and Neck and Skull Base: Review of MedAustron Institutional Protocols. Int J Part Ther 2021; 8:25-35. [PMID: 34285933 PMCID: PMC8270085 DOI: 10.14338/ijpt-20-00093.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dose constraints are of paramount importance for the outcome of any radiotherapy treatment. In this article, we report dose-volume constraints as well as currently used fractionation schedules for carbon ion radiotherapy as applied in MedAustron (Wiener Neustadt, Austria). MATERIALS AND METHODS For fractionation schedules, both German and Japanese regimes were used. From the clinical experience of National Institute of Radiological Sciences (Chiba, Japan) and Heidelberg Ion Therapy (Heidelberg, Germany; formerly GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) and the work by colleagues in Centro Nazionale Adroterapia Oncologica (Pavia, Italy) recalculating the dose from the microdosimetric kinetic model to the local effect model, we have set the dose constraints for critical organs of the head and neck area. Where no clinical data was available, an educated guess was made, based on data available from photon and proton series. RESULTS We report the constraints for the optic nerve and chiasm, brainstem, spinal cord, cochlea, brain parenchyma, salivary gland, eye and adnexa, and mandibular/maxillary bone; constraints are grouped based on a fractionation scheme (German versus Japanese) and the risk of toxicity (safe, low to middle, and middle to high). CONCLUSION We think validation of dose constraints should present a relevant part of the activity of any carbon ion radiotherapy facility, and we anticipate future multicentric, joint evaluations.
Collapse
Affiliation(s)
- Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Ana Perpar
- Oncology Institute Ljubljana, Ljubljana, Slovenia
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Petra Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Eugen B. Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
23
|
Takakusagi Y, Yoshida D, Kusano Y, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Katoh H, Imura K, Takayama Y, Minohara S, Kamada T. Dosimetric Comparison Between Carbon-ion Radiotherapy and Photon Radiotherapy for Stage I Esophageal Cancer. In Vivo 2021; 35:447-452. [PMID: 33402495 DOI: 10.21873/invivo.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM The present study aimed to compare the radiation dose distribution of carbon-ion radiotherapy (CIRT) for stage I esophageal cancer with three-dimensional conformal radiotherapy (3DCRT) and volumetric modulated arc therapy (VMAT). PATIENTS AND METHODS Fifteen patients with cT1bN0M0 esophageal cancer who received 3DCRT at Kanagawa Cancer Center between January 2014 and April 2019 were enrolled. The dose-volume histogram parameters of the target volume and normal organs planned with CIRT, 3DCRT, and VMAT were evaluated. RESULTS The homogeneity index for the target volume of CIRT was significantly lower than that of 3DCRT and VMAT. In addition, the radiation dose of CIRT to the heart, lungs, spinal cord, and skin was significantly lower than that of 3DCRT and VMAT. CONCLUSION Favorable dose distributions with CIRT were demonstrated compared with 3DCRT and VMAT for esophageal cancer.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan;
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Koh Imura
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Yoshiki Takayama
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Shinichi Minohara
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
24
|
Tsuchida K, Minohara S, Kusano Y, Kano K, Anno W, Takakusagi Y, Mizoguchi N, Serizawa I, Yoshida D, Imura K, Takayama Y, Kamada T, Katoh H, Ohno T. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: An analysis based on dose distribution from daily in-room CT images. J Appl Clin Med Phys 2021; 22:130-138. [PMID: 34046997 PMCID: PMC8200452 DOI: 10.1002/acm2.13275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose We analyzed interfractional robustness of scanning carbon ion radiotherapy (CIRT) for prostate cancer based on the dose distribution using daily in‐room computed tomography (CT) images. Materials and Methods We analyzed 11 consecutive patients treated with scanning CIRT for localized prostate cancer in our hospital between December 2015 and January 2016. In‐room CT images were taken under treatment conditions in every treatment session. The dose distribution on each in‐room CT image was recalculated, while retaining the pencil beam arrangement of the initial treatment plan. Then, the dose–volume histogram (DVH) parameters including the percentage of the clinical target volume (CTV) with 95% and 90% of the prescribed dose area (V95% of CTV, V90% of CTV) and V80% of rectum were calculated. The acceptance criteria for the CTV and rectum were set at V95% of CTV ≥95%, V90% of CTV ≥98%, and V80% of rectum < 10 ml. Results V95% of CTV, V90% of CTV, and V80% of rectum for the reproduced plans were 98.8 ± 3.49%, 99.5 ± 2.15%, and 4.39 ± 3.96 ml, respectively. Acceptance of V95% of CTV, V90% of CTV, and V80% of rectum was obtained in 123 (94%), 125 (95%) and 117 sessions (89%), respectively. Acceptance of the mean dose of V95% of CTV, V90% of CTV, and V80% of rectum for each patient was obtained in 10 (91%), 10 (91%), and 11 patients (100%), respectively. Conclusions We demonstrated acceptable interfractional robustness based on the dose distribution in scanning CIRT for prostate cancer.
Collapse
Affiliation(s)
- Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shinichi Minohara
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Koh Imura
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yoshiki Takayama
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
25
|
Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021; 161:211-221. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Linear Energy Transfer (LET) is widely used to express the radiation quality of ion beams, when characterizing the biological effectiveness. However, averaged LET may be defined in multiple ways, and the chosen definition may impact the resulting reported value. We review averaged LET definitions found in the literature, and quantify which impact using these various definitions have for different reference setups. We recorded the averaged LET definitions used in 354 publications quantifying the relative biological effectiveness (RBE) of hadronic beams, and investigated how these various definitions impact the reported averaged LET using a Monte Carlo particle transport code. We find that the kind of averaged LET being applied is, generally, poorly defined. Some definitions of averaged LET may influence the reported averaged LET values up to an order of magnitude. For publications involving protons, most applied dose averaged LET when reporting RBE. The absence of what target medium is used and what secondary particles are included further contributes to an ill-defined averaged LET. We also found evidence of inconsistent usage of averaged LET definitions when deriving LET-based RBE models. To conclude, due to commonly ill-defined averaged LET and to the inherent problems of LET-based RBE models, averaged LET may only be used as a coarse indicator of radiation quality. We propose a more rigorous way of reporting LET values, and suggest that ideally the entire particle fluence spectra should be recorded and provided for future RBE studies, from which any type of averaged LET (or other quantities) may be inferred.
Collapse
Affiliation(s)
- Fredrik Kalholm
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Niels Bassler
- Medical Radiation Physics, Dept. of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Takakusagi Y, Oike T, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Katoh H, Kamada T. Prostate-specific antigen dynamics after neoadjuvant androgen-deprivation therapy and carbon ion radiotherapy for prostate cancer. PLoS One 2020; 15:e0241636. [PMID: 33156884 PMCID: PMC7647067 DOI: 10.1371/journal.pone.0241636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to explain the dynamics of prostate-specific antigen (PSA) levels in patients with prostate cancer who were treated with carbon ion radiotherapy (CIRT) and neoadjuvant androgen-deprivation therapy (ADT). Methods Eighty-five patients with intermediate-risk prostate cancer who received CIRT and neoadjuvant ADT from December 2015 to December 2017 were analyzed in the present study. The total dose of CIRT was set at 51.6 Gy (relative biological effectiveness) delivered in 12 fractions over 3 weeks. The PSA bounce was defined as a ≥0.4 ng/ml increase of PSA levels from the nadir, followed by any decrease. PSA failure was defined using the Phoenix criteria. Results The median patient age was 68 (range, 48–81) years. The median follow-up duration was 33 (range, 20–48) months. The clinical T stage was T1c, T2a, and T2b in 27, 44, and 14 patients, respectively. The Gleason score was 6 in 3 patients and 7 in 82 patients. The median pretreatment PSA level was 7.37 (range, 3.33–19.0) ng/ml. All patients received neoadjuvant ADT for a median of 6 (range, 2–117) months. PSA bounces were observed in 39 patients (45.9%), occurring a median of 12 (range, 6–30) months after CIRT. PSA failure was observed in eight patients (9.4%), occurring a median of 21 (range, 15–33) months after CIRT. The 3-year PSA failure-free survival rate was 88.5%. No clinical recurrence was observed during the follow-up period. Younger age and lower T stage were significant predictors of PSA bounce. Younger age was a significant predictor of PSA failure. Conclusions In this study, we identified the significant predictors of the occurrence of PSA bounce and failure. Further follow-up is needed to reveal the clinical significance of PSA dynamics.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
27
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
28
|
Jeong J, Taasti VT, Jackson A, Deasy JO. The relative biological effectiveness of carbon ion radiation therapy for early stage lung cancer. Radiother Oncol 2020; 153:265-271. [PMID: 32976878 DOI: 10.1016/j.radonc.2020.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Carbon ion radiation therapy (CIRT) is recognized as an effective alternative treatment modality for early stage lung cancer, but a quantitative understanding of relative biological effectiveness (RBE) compared to photon therapy is lacking. In this work, a mechanistic tumor response model previously validated for lung photon radiotherapy was used to estimate the RBE of CIRT compared to photon radiotherapy, as a function of dose and the fractionation schedule. MATERIALS AND METHODS Clinical outcome data of 9 patient cohorts (394 patients) treated with CIRT for early stage lung cancer, representing all published data, were included. Fractional dose, number of fractions, treatment schedule, and local control rates were used for model simulations relative to standard photon outcomes. Four parameters were fitted: α, α/β, and the oxygen enhancement ratios of cells either accessing only glucose, not oxygen (OERI), or cells dying from starvation (OERH). The resulting dose-response relationship of CIRT was compared with the previously determined dose-response relationship of photon radiotherapy for lung cancer, and an RBE of CIRT was derived. RESULTS Best-fit CIRT parameters were: α = 1.12 Gy-1 [95%-CI: 0.97-1.26], α/β = 23.9 Gy [95%-CI: 8.9-38.9], and the oxygen induced radioresistance of hypoxic cell populations were characterized by OERI = 1.08 [95%-CI: 1.00-1.41] (cells lacking oxygen but not glucose), and OERH = 1.01 [95%-CI: 1.00-1.44] (cells lacking oxygen and glucose). Depending on dose and fractionation, the derived RBE ranges from 2.1 to 1.5, with decreasing values for larger fractional dose and fewer number of fractions. CONCLUSION Fitted radiobiological parameters were consistent with known carbon in vitro radiobiology, and the resulting dose-response curve well-fitted the reported data over a wide range of dose-fractionation schemes. The same model, with only a few fitted parameters of clear mechanistic meaning, thus synthesizes both photon radiotherapy and CIRT clinical experience with early stage lung tumors.
Collapse
Affiliation(s)
- Jeho Jeong
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Vicki T Taasti
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
29
|
Takakusagi Y, Katoh H, Kano K, Anno W, Tsuchida K, Mizoguchi N, Serizawa I, Yoshida D, Kamada T. Preliminary result of carbon-ion radiotherapy using the spot scanning method for prostate cancer. Radiat Oncol 2020; 15:127. [PMID: 32460889 PMCID: PMC7254700 DOI: 10.1186/s13014-020-01575-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbon-ion radiotherapy (CIRT) for prostate cancer was initiated at Kanagawa Cancer Center in 2015. The present study analyzed the preliminary clinical outcomes of CIRT for prostate cancer. METHODS The clinical outcomes of 253 patients with prostate cancer who were treated with CIRT delivered using the spot scanning method between December 2015 and December 2017 were retrospectively analyzed. The irradiation dose was set at 51.6 Gy (relative biological effectiveness) delivered in 12 fractions over 3 weeks. Biochemical relapse was defined using the Phoenix definition. Toxicities were assessed according to CTCAE version 4.0. RESULTS The median patient age was 70 (47-86) years. The median follow-up duration was 35.3 (4.1-52.9) months. According to the D'Amico classification system, 8, 88, and 157 patients were classified as having low, intermediate, and high risks, respectively. Androgen deprivation therapy was administered in 244 patients. The biochemical relapse-free rate in the low-, intermediate-, and high-risk groups at 3 years was 87.5, 88.0, and 97.5%, respectively (P = 0.036). Grade 2 acute urinary toxicity was observed in 12 (4.7%) patients. Grade 2 acute rectal toxicity was not observed. Grade 2 late urinary toxicity and grade 2 late rectal toxicity were observed in 17 (6.7%) and 3 patients (1.2%), respectively. Previous transurethral resection of the prostate was significantly associated with late grade 2 toxicity in univariate analysis. The predictive factor for late rectal toxicity was not detected. CONCLUSION The present study demonstrated that CIRT using the spot scanning method for prostate cancer produces favorable outcomes.
Collapse
Affiliation(s)
- Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan.
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Wataru Anno
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Kanagawa, 241-8515, Japan
| |
Collapse
|
30
|
Vogel J, Carmona R, Ainsley CG, Lustig RA. The Promise of Proton Therapy for Central Nervous System Malignancies. Neurosurgery 2020; 84:1000-1010. [PMID: 30476191 DOI: 10.1093/neuros/nyy454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/28/2018] [Indexed: 11/15/2022] Open
Abstract
Radiation therapy plays a significant role in management of benign and malignant diseases of the central nervous system. Patients may be at risk of acute and late toxicity from radiation therapy due to dose deposition in critical normal structures. In contrast to conventional photon delivery techniques, proton therapy is characterized by Bragg peak dose deposition which results in decreased exit dose beyond the target and greater sparing of normal structure which may reduce the rate of late toxicities from treatment. Dosimetric studies have demonstrated reduced dose to normal structures using proton therapy as compared to photon therapy. In addition, clinical studies are being reported demonstrating safety, feasibility, and low rates of acute toxicity. Technical challenges in proton therapy remain, including full understanding of depth of proton penetration and the biological activity in the distal Bragg peak. In addition, longer clinical follow-up is required to demonstrate reduction in late toxicities as compared to conventional photon-based radiation techniques. In this review, we summarize the current clinical literature and areas of active investigation in proton therapy for adult central nervous system malignancies.
Collapse
Affiliation(s)
- Jennifer Vogel
- Department of Rad-iation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ruben Carmona
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Christopher G Ainsley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
31
|
Bolst D, Guatelli S, Tran LT, Chartier L, Davis J, Biasi G, Prokopovich DA, Pogossov A, Reinhard MI, Petasecca M, Lerch MLF, Matsufuji N, Povoli M, Summanwar A, Kok A, Jackson M, Rosenfeld AB. Validation of Geant4 for silicon microdosimetry in heavy ion therapy. ACTA ACUST UNITED AC 2020; 65:045014. [DOI: 10.1088/1361-6560/ab586a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Inaniwa T, Suzuki M, Hyun Lee S, Mizushima K, Iwata Y, Kanematsu N, Shirai T. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. ACTA ACUST UNITED AC 2020; 65:045005. [DOI: 10.1088/1361-6560/ab6eba] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Usami N, Hirayama R, Kobayashi K, Furusawa Y, Le Sech C. Combination of agents modifying effects in hadrontherapy: modelization of the role of HO° free radicals. Int J Radiat Biol 2020; 96:622-627. [PMID: 31976790 DOI: 10.1080/09553002.2020.1721594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: A study is presented of the irradiation of cancerous cervical cell line HeLa loaded with a platinum salt, betamethasone and deoxyglucose. The presence of the platinum increases the free-radical concentration and augments the cell death rate, whereas betamethasone or deoxyglucose induces radiosensitization by the alteration of metabolic pathways. Two by two combinations of these chemicals are made to investigate the possible benefit when two radiosensitizers are present. A model is proposed to understand the results of the presence of two modifying agents on the dose effects.Materials and methods: The cells were incubated for 6 h in the presence of the following molecules: dichloro terpyridine platinum, concentration C = 350 μM, betamethasone and deoxyglucose with concentrations of C = 0.2 μM and C = 6 mM, respectively. The cells were subsequently irradiated by carbon C6+ ion 290 MeV/amu up to a dose of 2.5 Gy, under atmospheric conditions.Results: The presence of the platinum salt or bethamethasone augments the cell death rate. The combination of betamethasone with the platinum salt also increases the cell death rate, but less than for the platinum salt alone. The explanation is that any radiosensitizer also behaves as a scavenger of free radicals. This dual behavior should be considered in any optimization of the design of radiosensitizers when different ionizing particles are used.
Collapse
Affiliation(s)
- Noriko Usami
- Photon Factory KEK, Institute of Materials Structure Science, Tsukuba, Japan
| | - Ryoichi Hirayama
- National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology, Inage, Japan
| | - Katsumi Kobayashi
- Photon Factory KEK, Institute of Materials Structure Science, Tsukuba, Japan
| | - Yoshiya Furusawa
- National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology, Inage, Japan
| | - Claude Le Sech
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
34
|
Chew MT, Nisbet A, Jones B, Suzuki M, Matsufuji N, Murakami T, Bradley DA. Ion beams for space radiation radiobiological effect studies. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Hirano Y, Kodaira S, Souda H, Osaki K, Torikoshi M. Estimations of relative biological effectiveness of secondary fragments in carbon ion irradiation of water using CR‐39 plastic detector and microdosimetric kinetic model. Med Phys 2019; 47:781-789. [DOI: 10.1002/mp.13916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/19/2019] [Accepted: 11/04/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yoshiyuki Hirano
- Heavy Ion Medical Center Gunma University 3‐39‐22 Showa‐Machi Maebashi Gunma371‐8511Japan
| | - Satoshi Kodaira
- National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa Inage‐ku Chiba263‐8555Japan
| | - Hikaru Souda
- Heavy Ion Medical Center Gunma University 3‐39‐22 Showa‐Machi Maebashi Gunma371‐8511Japan
| | - Kohei Osaki
- Heavy Ion Medical Center Gunma University 3‐39‐22 Showa‐Machi Maebashi Gunma371‐8511Japan
| | - Masami Torikoshi
- Heavy Ion Medical Center Gunma University 3‐39‐22 Showa‐Machi Maebashi Gunma371‐8511Japan
| |
Collapse
|
36
|
Kasuya G, Terashima K, Shibuya K, Toyama S, Ebner DK, Tsuji H, Okimoto T, Ohno T, Shioyama Y, Nakano T, Kamada T. Carbon-ion radiotherapy for cholangiocarcinoma: a multi-institutional study by and the Japan carbon-ion radiation oncology study group (J-CROS). Oncotarget 2019; 10:4369-4379. [PMID: 31320991 PMCID: PMC6633891 DOI: 10.18632/oncotarget.27028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
To evaluate the safety and efficacy of carbon-ion radiotherapy (CIRT) for cholangiocarcinoma via a multicenter retrospective study. Clinical data were collected from patients with cholangiocarcinoma who had received CIRT at one of four treating institutions in Japan. Of 56 eligible patients, none received surgery for cholangiocarcinoma before or after CIRT. The primary endpoint was overall survival (OS). Based on the tumor site, the 56 cases were categorized as intrahepatic cholangiocarcinoma (IHC) (n=27) or perihilar cholangiocarcinoma (PHC) (n=29). In all patients, the median tumor size was 37 (range, 15‒110) mm, and the most commonly prescribed dose was 76 Gy (relative biological effectiveness) in 20 fractions. The median survival was 14.8 (range, 2.1-129.2) months, and the 1- and 2-year OS rates were 69.7% and 40.9%, respectively. The median survival times of the patients with IHC and those with PHC were 23.8 and 12.6 months, respectively. Both univariate and multivariate analyses revealed that cholangitis pre-CIRT and Child‒Pugh class B were significant prognostic factors for an unfavorable OS. Of four patients who died of liver failure, one with IHC was suspected to have radiation-induced liver disease because of newly developed ascites, and died at 4.3 months post-CIRT. Grade 3 CIRT-related bile duct stenosis was observed in one IHC case. No other CIRT-related severe adverse events, including gastrointestinal events, were observed. These results suggest that CIRT yields relatively favorable treatment outcomes, especially for patients with IHC, and acceptable toxicities were observed in patients with cholangiocarcinoma who did not receive surgery.
Collapse
Affiliation(s)
- Goro Kasuya
- QST Hospital (Former Hospital of the National Institute of Radiological Sciences), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Kei Shibuya
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Shingo Toyama
- Ion Beam Therapy Center, SAGA-HIMAT Foundation, Tosu, Japan
| | - Daniel K Ebner
- QST Hospital (Former Hospital of the National Institute of Radiological Sciences), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hiroshi Tsuji
- QST Hospital (Former Hospital of the National Institute of Radiological Sciences), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Takashi Nakano
- QST Hospital (Former Hospital of the National Institute of Radiological Sciences), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- QST Hospital (Former Hospital of the National Institute of Radiological Sciences), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
37
|
Mao A, Guo H, Liu Y, Wang F, Tang J, Liao S, Zhang Y, Sun C, Xia X, Zhang H. Exogenous melatonin modulates carbon ion radiation-induced immune dysfunction in mice. Toxicology 2019; 417:35-41. [PMID: 30779955 DOI: 10.1016/j.tox.2019.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
In spite of carbon ion radiotherapy is a talented modality for malignant tumor patients, the radiation damage of normal tissues adjacent to tumor and the dysfunction of immune system limits therapeutic gain. Protecting immune system against carbon ion radiation-caused damage has the possibility to improve cancer treatment, but it is uncertain whether conventional radioprotective agents play a role in carbon ion radiation. To certify carbon ion caused immune dysfunction and assess the radioprotective effect of melatonin on immune system, animal experiments were performed in radiosensitive BALB/C mice. Here, we observed the bodyweight loss, death and apoptosis, abnormal T-cell distributions in immune system in carbon ion radiated mice. Pretreatment with melatonin could increase the index of thymus and spleen, reduce cell apoptosis in thymus and spleen, and attenuate the carbon ion radiation-caused imbalance of T lymphocytes and disorder of cytokines. These results suggest that melatonin can act as an effective protector against carbon ion radiation-caused immune dysfunction. Furthermore, we also found melatonin restored the activity of the antioxidant enzymes and reduced the level of lipid peroxidation in serum. These data have provided baseline information both for radiation workers and cancer patients to use melatonin as a radioprotector during the carbon ion radiation treatment.
Collapse
Affiliation(s)
- Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hongyun Guo
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China
| | - Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jinzhou Tang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China
| | - Shiqi Liao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China
| | - Yongdong Zhang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xiaojun Xia
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, PR China; Gansu Provincial Cancer Hospital, 730050, PR China.
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
38
|
Inaniwa T, Suzuki M, Sato S, Noda A, Iwata Y, Kanematsu N, Shirai T, Noda K. Enhancement of biological effectiveness of carbon-ion beams by applying a longitudinal magnetic field. Int J Radiat Biol 2019; 95:720-724. [DOI: 10.1080/09553002.2019.1569774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Shinji Sato
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Noda
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshiyuki Iwata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuyuki Kanematsu
- Medical Physics Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Noda
- National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
39
|
Spychalski P, Kobiela J, Antoszewska M, Błażyńska-Spychalska A, Jereczek-Fossa BA, Høyer M. Patient specific outcomes of charged particle therapy for hepatocellular carcinoma - A systematic review and quantitative analysis. Radiother Oncol 2019; 132:127-134. [PMID: 30825961 DOI: 10.1016/j.radonc.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is a raising condition world-wide. Most of patients are ineligible for surgery at diagnosis due to the advanced stage of the disease or poor medical condition of the patient. Charged particle therapy (CPT) is a radiotherapy modality showing promising results. The aim of this systematic review was to summarize current knowledge on patient-specific outcomes of CPT for HCC, including overall survival, local control, the effect of radiation dose and the toxicity burden. The systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). After comprehensive database search 17 cohorts (16 studies, 1516 patients) were included into qualitative and quantitative analyses; 11 of 16 studies were retrospective. Eleven studies were on protons, 2 studies were on protons and carbon ions and 4 on carbon ions alone, were identified. Median BED10 (biologically equivalent dose) range was 68.75-122.5 GyE. Mean weighted overall survival across studies was 86%, 62%, 59% and 35% at 1, 2, 3 and 5 years, respectively. Mean weighted local control was 86%, 89%, 87% and 89% at 1, 2, 3 and 5 years, respectively. Adjusted morbidity rates were: 54% for acute G1-2 toxicities and 6% for acute ≥G3 toxicities; 9% for late G1-2 toxicities and less than 4% for late ≥G3 toxicities. There was no treatment-associated mortality. CONCLUSIONS: CPT offers high local control, acceptable overall survival and low post-treatment morbidity. Quality of findings, especially on toxicities, is decreased by incomplete reporting and retrospective designs of available studies. Therefore, there is a strong need for better reporting and prospective studies.
Collapse
Affiliation(s)
- Piotr Spychalski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark.
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland
| | - Magdalena Antoszewska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland
| | | | - Barbara A Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
40
|
Kasuya G, Tsuji H, Nomiya T, Makishima H, Haruyama Y, Kobashi G, Hayashi K, Ebner DK, Omatsu T, Kishimoto R, Yasuda S, Igarashi T, Oya M, Akakura K, Suzuki H, Ichikawa T, Shimazaki J, Kamada T. Prospective clinical trial of 12-fraction carbon-ion radiotherapy for primary renal cell carcinoma. Oncotarget 2019; 10:76-81. [PMID: 30713604 PMCID: PMC6343760 DOI: 10.18632/oncotarget.26539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The aims of this study were to clarify the safety and efficacy of 12-fraction carbon-ion radiotherapy (CIRT) for primary renal cell carcinoma (RCC) and to confirm the recommended dose in a prospective clinical trial. This clinical trial was planned as a non-randomized, open-label, single-center phase I/II study of CIRT monotherapy. The incidence of acute adverse events was the primary endpoint. Dose-limiting toxicities (DLTs) were defined as grade ≥3 skin, gastrointestinal tract, or urologic adverse events. Based on the eligibility criteria, 8 patients with primary RCC, including 3 medically inoperable patients and 5 patients with tumors >4 cm, were enrolled. Of the 8 patients, 5 were treated with 66 Gy (relative biological effectiveness [RBE]), and subsequently, the dose was escalated to 72 Gy (RBE) for the remaining 3 patients. The median follow-up time was 43.1 months. No DLTs were observed at any dose level though the end of follow-up. Although 1 patient died of pneumonia 3 months after CIRT, which was determined to be unrelated to CIRT, no grade 3 or higher adverse events were observed, and both local control and cancer-specific survival rates were 100%. In conclusion, the safety and efficacy of CIRT hypofractionation using 12-fractions for the treatment of eligible RCC patients, including those with inoperable or tumor size >4 cm, were confirmed in this prospective trial, and a recommended dose of 72 Gy (RBE) was established.
Collapse
Affiliation(s)
- Goro Kasuya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuma Nomiya
- Department of Radiology, Joban Hospital, Iwaki, Japan
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuo Haruyama
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | | | - Daniel K Ebner
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tokuhiko Omatsu
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Riwa Kishimoto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeo Yasuda
- Department of Radiation Oncology, Chiba Rosai Hospital, Chiba, Japan
| | - Tatsuo Igarashi
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan.,Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Akakura
- Department of Urology, Japan Community Health Care Organization Tokyo, Shinjuku Medical Center, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Shimazaki
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
41
|
Paz AE, Yamamoto N, Sakama M, Matsufuji N, Kanai T. Tumor Control Probability Analysis for Single-Fraction Carbon-Ion Radiation Therapy of Early-Stage Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2018; 102:1551-1559. [DOI: 10.1016/j.ijrobp.2018.07.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
|
42
|
Hirano Y, Kodaira S, Souda H, Matsumura A, Torikoshi M. Linear energy transfer (LET) spectra and survival fraction distribution based on the CR-39 plastic charged-particle detector in a spread-out Bragg peak irradiation by a 12C beam. Phys Med Biol 2018; 63:185006. [PMID: 30113018 DOI: 10.1088/1361-6560/aadaa6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Facilities for heavy ion therapies are steadily increasing in number worldwide. One of the advantages of heavy ions is their high relative biological effect (RBE). In a model used at NIRS (National Institute of Radiological Sciences), linear energy transfer (LET) spectra are required to estimate biological dose (physical dose × RBE). The CR-39 plastic charged-particle detector (CR-39) is suitable for measurement of LET. For the present study, done at the Gunma University Heavy Ion Medical Center (GHMC), we measured LET spectra at 11 depths in spread-out Bragg peak (SOBP) irradiation by a 12C beam of 380 MeV/u. The lower threshold of the CR-39 to measure LET was about 5 keV µm-1 due to poor sensitivity for low LET. Then we calculated biological dose and survival fraction distributions and compared them with treatment planning results at GHMC. We used Monte Carlo simulation (Geant4) to calculate LET spectra. The simulation results were in good agreement with the experimental spectra. Moreover, the biological dose and survival fraction distributions estimated from the CR-39 reproduced the treatment planning. The CR-39 is suitable for estimating biological dose in carbon ion therapy.
Collapse
Affiliation(s)
- Yoshiyuki Hirano
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan. Present address: Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | |
Collapse
|
43
|
Kasuya G, Tsuji H, Nomiya T, Makishima H, Haruyama Y, Kobashi G, Ebner DK, Hayashi K, Omatsu T, Kishimoto R, Yasuda S, Igarashi T, Oya M, Akakura K, Suzuki H, Ichikawa T, Shimazaki J, Kamada T. Updated long-term outcomes after carbon-ion radiotherapy for primary renal cell carcinoma. Cancer Sci 2018; 109:2873-2880. [PMID: 29981249 PMCID: PMC6125442 DOI: 10.1111/cas.13727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
Long‐term oncological outcomes for primary renal cell carcinoma (RCC) treated with carbon‐ion radiotherapy (CIRT) are poorly understood. Patients with primary RCC were treated with 12 or 16‐fraction CIRT at The Hospital of the National Institute of Radiological Sciences outside of clinical trials. Outcome data were pooled and retrospectively analyzed for toxicity, local control, and disease‐free, cancer‐specific, and overall survival. From 1997 to 2014, 19 RCC patients (11 with T1aN0M0, 4 with T1bN0M0, and 4 with inoperable advanced stage [T4N0M0, T3aN1M0, and T1aN0M1]) were treated with CIRT and followed up for a median of 6.6 (range, 0.7‐16.5) years; 9 of these patients were inoperable because of comorbidities or advanced‐stage disease. Diagnoses were confirmed by imaging in 11 patients and by biopsy in the remaining 8. In 4 of 5 patients with definitive renal comorbidities, including diabetic nephropathy, sclerotic kidney or solitary kidney pre‐CIRT progressed to grade 4 chronic kidney disease (CKD). In contrast, the remaining 14 patients without definitive renal comorbidities did not progress to grade 3 or higher CKD. Furthermore, although 1 case of grade 4 dermatitis was observed, there were no other grade 3 or higher non‐renal adverse events. Local control rate, and disease‐free, cancer‐specific, and overall survival rates at 5 years of all 19 patients were 94.1%, 68.9%, 100%, and 89.2%, respectively. This updated retrospective analysis based on long‐term follow‐up data suggests that CIRT is a safe treatment for primary RCC patients without definitive renal comorbidities pre‐CIRT, and yield favorable treatment outcomes, even in inoperable cases.
Collapse
Affiliation(s)
- Goro Kasuya
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuma Nomiya
- Department of Radiology, Joban Hospital, Iwaki, Japan
| | - Hirokazu Makishima
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuo Haruyama
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Daniel K Ebner
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Brown University Alpert Medical School, Providence, Rhode Island
| | - Kazuhiko Hayashi
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tokuhiko Omatsu
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Riwa Kishimoto
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeo Yasuda
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Chiba Rosai Hospital, Chiba, Japan
| | - Tatsuo Igarashi
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Akakura
- Department of Urology, Japan Community Health Care Organization Tokyo, Shinjuku Medical Center, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | | | - Jun Shimazaki
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tadashi Kamada
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
44
|
Matsumoto Y, Furusawa Y, Uzawa A, Hirayama R, Koike S, Ando K, Tsuboi K, Sakurai H. Antimetastatic Effects of Carbon-Ion Beams on Malignant Melanomas. Radiat Res 2018; 190:412-423. [DOI: 10.1667/rr15075.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Uzawa
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sachiko Koike
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Koichi Ando
- Medicine & Biology Division, Heavy Ion Medical Center, Gunma University, Gunma, 371-8511, Japan
| | - Koji Tsuboi
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hideyuki Sakurai
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
45
|
Sakama M, Kanematsu N. An evaluation method of clinical impact with setup, range, and radiosensitivity uncertainties in fractionated carbon-ion therapy. Phys Med Biol 2018; 63:135003. [PMID: 29863484 DOI: 10.1088/1361-6560/aaca19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In light ion therapy, the dose concentration is highly sensitive to setup and range errors. Here we propose a method for evaluating the effects of these errors by using the correlation between fractions on tumour control probability (TCP) in carbon-ion therapy. This method incorporates the concept of equivalent stochastic dose (Cranmer-Sargison and Zavgorodni 2005 Phys. Med. Biol. 50 4097-109), which was defined as a dose that gives the mean expected survival fraction (SF) for the stochastically variable dose. The mean expected SFs were calculated while considering the correlation between fractions for setup and range errors. By using this SF, equivalent stochastic clinical doses (ESCD), which are weighted by relative biological effectiveness, of lung and prostate cases with varying errors were derived. To account for spatial dose heterogeneity, equivalent uniform stochastic clinical doses (EUSCD) were obtained by using the mean expected SF in the volume of interest. TCP curves were calculated for each assumed error considering inter-patient sensitivity variation with a fractionation effect. ESCD distributions, EUSCD, and TCP curves were affected by the inter-fraction correlation and the contribution of setup and range errors. Irradiated areas that could be affected by these errors can be visualized quantitatively by using the ESCD distribution. TCP curves for the errors of various conditions converged around the TCP curve in nominal conditions by using the EUSCD. EUSCD correlated well with TCP in setup and range errors when the errors were not large and was comparatively stably insensitive to uncertain biological parameters. The proposed evaluation method with EUSCD and TCP calculations will be useful to indicate tumour doses to improve realistic dose distributions in carbon-ion therapy.
Collapse
Affiliation(s)
- Makoto Sakama
- Medical Physics Section, National Institute of Radiological Sciences Hospital, QST, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | | |
Collapse
|
46
|
Inaniwa T, Kanematsu N. Adaptation of stochastic microdosimetric kinetic model for charged-particle therapy treatment planning. Phys Med Biol 2018; 63:095011. [PMID: 29726401 DOI: 10.1088/1361-6560/aabede] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microdosimetric kinetic (MK) model underestimates the cell-survival fractions for high linear energy transfer (LET) and high dose irradiations. To address the issue, some researchers previously extended the MK model to the stochastic microdosimetric kinetic (SMK) model. In the SMK model, the radiation induced cell-survival fractions were estimated from the specific energies z d and z n absorbed by a microscopic subnuclear structure domain and a cell nucleus, respectively. By taking the stochastic nature of z n as well as that of z d into account, the SMK model could reproduce the measured cell-survival fractions for radiations with wide LET and dose ranges. However, treatment planning based on the SMK model was unrealistic in clinical practice due to its long computation time and huge memory space required for the computation. In this study, we modified the SMK model to shorten the computation time and to reduce the memory space required for the computation. By using the dose-averaged cell-nucleus specific energy per event [Formula: see text] in the SMK formalism, the stochastic nature of z n was reflected onto the estimated cell-survival fractions. The accuracy of the modified SMK model was examined through the comparison between the estimated and the measured survival fractions of human salivary gland tumor cells and V79 cells. We then implemented the modified SMK model into the in-house treatment planning software for scanned charged-particle therapy to validate its applicability in clinical practice. As examples, treatment plans of helium-, carbon-, and neon-ion beams were made for an orbital tumor case. The modified SMK model could reproduce the measured cell-survival fractions more accurately compared to the MK model especially for high-LET and high-dose irradiations. In summary, the modified SMK model offers the accuracy and simplicity required in treatment planning of scanned charged-particle therapy for wide LET and dose ranges.
Collapse
Affiliation(s)
- T Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Author to whom any correspondence should be addressed
| | | |
Collapse
|
47
|
Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Semin Radiat Oncol 2018. [DOI: 10.1016/j.semradonc.2017.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018; 10:cancers10030066. [PMID: 29509684 PMCID: PMC5876641 DOI: 10.3390/cancers10030066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.
Collapse
Affiliation(s)
- Osama Mohamad
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Oncology, University of Texas-Southwestern Medical Center, 2280 Inwood Rd., Dallas, TX 75390, USA.
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
49
|
Matsufuji N. Selection of carbon beam therapy: biophysical models of carbon beam therapy. JOURNAL OF RADIATION RESEARCH 2018; 59:i58-i62. [PMID: 29528425 PMCID: PMC5868195 DOI: 10.1093/jrr/rry014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/05/2018] [Indexed: 11/06/2024]
Abstract
Variation in the relative biological effectiveness (RBE) within the irradiation field of a carbon beam makes carbon-ion radiotherapy unique and advantageous in delivering the therapeutic dose to a deep-seated tumor, while sparing surrounding normal tissues. However, it is crucial to consider the RBE, not only in designing the dose distribution during treatment planning, but also in analyzing the clinical response retrospectively. At the National Institute of Radiological Sciences, the RBE model was established based on the response of human salivary gland cells. The response was originally handled with a linear-quadratic model, and later with a microdosimetric kinetic model. Retrospective analysis with a tumor-control probability model of non-small cell cancer treatment revealed a steep dose response in the tumor, and that the RBE of the tumor was adequately estimated using the model. A commonly used normal tissue complication probability model has not yet fully been accountable for the variable RBE of carbon ions; however, analysis of rectum injury after prostate cancer treatment suggested a highly serial-organ structure for the rectum, and a steep dose response similar to that observed for tumors.
Collapse
Affiliation(s)
- Naruhiro Matsufuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
50
|
Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams. Oncotarget 2018; 7:80568-80578. [PMID: 27802188 PMCID: PMC5348341 DOI: 10.18632/oncotarget.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.
Collapse
|