1
|
Azria D, Michalet M, Riou O, Bourgier C, Brengues M, Sroussi Y, Gourgou S, Farcy-Jacquet MP, Kotzki L, Ozsahin M. Radiation-induced lymphocyte apoptosis assay: Primetime for routine clinical use? Cancer Radiother 2024; 28:442-448. [PMID: 39304399 DOI: 10.1016/j.canrad.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 09/22/2024]
Abstract
The impact of curative radiotherapy mainly depends on the total dose delivered to the tumor. However, despite recent technological advances, the dose delivered to surrounding healthy tissues may reduce the therapeutic ratio of many radiation treatments. In the same population treated at one center with the same technique, individual radiosensitivity clearly exists, particularly in terms of late side effects that are, in principle, non-reversible. This article details the history of the radiation-induced lymphocyte apoptosis assay, from preclinical data to multicenter clinical trials. It puts the performance of such assays into perspective to define the optimal clinical situations for its use in daily practice.
Collapse
Affiliation(s)
- David Azria
- Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), université de Montpellier, avenue des Apothicaires, 34298 Montpellier, France; Fédération universitaire d'oncologie radiothérapie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France; Fédération universitaire d'oncologie radiothérapie, Institut de cancérologie du Gard, CHU de Nîmes, rue Henri-Pujol, 30000 Nîmes, France.
| | - Morgan Michalet
- Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), université de Montpellier, avenue des Apothicaires, 34298 Montpellier, France; Fédération universitaire d'oncologie radiothérapie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France
| | - Olivier Riou
- Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), université de Montpellier, avenue des Apothicaires, 34298 Montpellier, France; Fédération universitaire d'oncologie radiothérapie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France
| | - Céline Bourgier
- Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), université de Montpellier, avenue des Apothicaires, 34298 Montpellier, France; Fédération universitaire d'oncologie radiothérapie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France
| | - Muriel Brengues
- Inserm U1194, Institut de recherche en cancérologie de Montpellier (IRCM), université de Montpellier, avenue des Apothicaires, 34298 Montpellier, France
| | - Yohann Sroussi
- Fédération universitaire d'oncologie radiothérapie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France
| | - Sophie Gourgou
- Unité de biométrie, Institut régional du cancer de Montpellier (ICM), rue Croix-Verte, 34298 Montpellier, France
| | - Marie-Pierre Farcy-Jacquet
- Fédération universitaire d'oncologie radiothérapie, Institut de cancérologie du Gard, CHU de Nîmes, rue Henri-Pujol, 30000 Nîmes, France
| | - Léa Kotzki
- Fédération universitaire d'oncologie radiothérapie, Institut de cancérologie du Gard, CHU de Nîmes, rue Henri-Pujol, 30000 Nîmes, France
| | - Mahmut Ozsahin
- Department of Radiation Oncology, hôpital Riviera-Chablais, Rennaz, Switzerland
| |
Collapse
|
2
|
Buchsbaum JC, Espey MG, Obcemea C, Capala J, Ahmed M, Prasanna PG, Vikram B, Hong JA, Teicher B, Aryankalayil MJ, Bylicky MA, Coleman CN. Tumor Heterogeneity Research and Innovation in Biologically Based Radiation Therapy From the National Cancer Institute Radiation Research Program Portfolio. J Clin Oncol 2022; 40:1861-1869. [PMID: 35245101 DOI: 10.1200/jco.21.02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Overgaard J, Aznar MC, Bacchus C, Coppes RP, Deutsch E, Georg D, Haustermans K, Hoskin P, Krause M, Lartigau EF, Lee AWM, Löck S, Offersen BV, Thwaites DI, van der Kogel AJ, van der Heide UA, Valentini V, Baumann M. Personalised radiation therapy taking both the tumour and patient into consideration. Radiother Oncol 2022; 166:A1-A5. [PMID: 35051440 DOI: 10.1016/j.radonc.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, United Kingdom
| | - Carol Bacchus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rob P Coppes
- Departments of Radiation Oncology and Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Eric Deutsch
- Department of Radiation Oncology, Institut d'Oncologie Thoracique (IOT), Gustave Roussy, France
| | - Dietmar Georg
- Division Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna/AKH Wien, Austria
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium
| | - Peter Hoskin
- Mount Vernon Cancer Centre and University of Manchester, United Kingdom
| | - Mechthild Krause
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Eric F Lartigau
- Academic Department of Radiotherapy, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Anne W M Lee
- Department of Clinical Oncology, University of Hong Kong - Shenzhen Hospital and University of Hong Kong, China
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany
| | - Birgitte V Offersen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, The University of Sydney, Australia; Medical Physics Group, Leeds Institute of Medical Research, School of Medicine, University of Leeds, United Kingdom
| | - Albert J van der Kogel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | |
Collapse
|
4
|
Cosar R, Özen A, Tastekin E, Süt N, Cakina S, Demir S, Parlar S, Nurlu D, Kavuzlu Y, Koçak Z. Does Gender Difference Effect Radiation-Induced Lung Toxicity? An Experimental Study by Genetic and Histopathological Predictors. Radiat Res 2021; 197:280-288. [PMID: 34735567 DOI: 10.1667/rade-21-00075.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Several studies have reported differences in radiation toxicity between the sexes, but these differences have not been tested with respect to histopathology and genes. This animal study aimed to show an association between histopathological findings of radiation-induced lung toxicity and the genes ATM, SOD2, TGF-β1, XRCC1, XRCC3 and HHR2. In all, 120 animals were randomly divided into 2 control groups (male and female) and experimental groups comprising fifteen rats stratified by sex, radiotherapy (0 Gy vs. 10 Gy), and time to sacrifice (6, 12, and 24 weeks postirradiation). Histopathological evaluations for lung injury, namely, intra-alveolar edema, alveolar neutrophils, intra-alveolar erythrocytes, activated macrophages, intra-alveolar fibrosis, hyaline arteriosclerosis, and collapse were performed under a light microscope using a grid system; the evaluations were semi quantitatively scored. Then, the alveolar wall thickness was measured. Real-time quantitative reverse transcription PCR (RT-qPCR) was used to determine gene expression differences in ATM, TGF-β1, XRCC1, XRCC3, SOD2 and HHR2L among the groups. Histopathological data showed that radiation-induced acute, subacute, and chronic lung toxicity were worse in male rats. The expression levels of the evaluated genes were significantly higher in females than males in the control group, but this difference was lost over time after radiotherapy. Less toxicity in females may be attributable to the fact that the expression of the evaluated genes was higher in normal lung tissue in females than in males and the changes in gene expression patterns in the postradiotherapy period played a protective role in females. Additional data related to pulmonary function, lung weights, imaging, or outcomes are needed to support this data that is based on histopathology alone.
Collapse
Affiliation(s)
- Rusen Cosar
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Alaattin Özen
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Ebru Tastekin
- Department of Pathology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Necdet Süt
- Department of Biostatistics and Informatics, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Suat Cakina
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Sule Parlar
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Dilek Nurlu
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Yusuf Kavuzlu
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Zafer Koçak
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
5
|
Perillo A, Agbaje Olufemi MV, De Robbio J, Mancuso RM, Roscigno A, Tirozzi M, Scognamiglio IR. Liquid biopsy in NSCLC: a new challenge in radiation therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:156-173. [PMID: 36046142 PMCID: PMC9400754 DOI: 10.37349/etat.2021.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.
Collapse
Affiliation(s)
- Annarita Perillo
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Mohamed Vincenzo Agbaje Olufemi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Jacopo De Robbio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Rossella Margherita Mancuso
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Anna Roscigno
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Maddalena Tirozzi
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Ida Rosalia Scognamiglio
- Department of Advanced Biomedical Sciences, University “Federico II” School of Medicine, Via Sergio Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
6
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
7
|
Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, Pandey G, Bentzen SM, Janelsins M, Elliott RM, Pharoah PDP, Burnet NG, Dearnaley DP, Gulliford SL, Hall E, Sydes MR, Aguado-Barrera ME, Gómez-Caamaño A, Carballo AM, Peleteiro P, Lobato-Busto R, Stock R, Stone NN, Ostrer H, Usmani N, Singhal S, Tsuji H, Imai T, Saito S, Eeles R, DeRuyck K, Parliament M, Dunning AM, Vega A, Rosenstein BS, West CML. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J Natl Cancer Inst 2020; 112:179-190. [PMID: 31095341 PMCID: PMC7019089 DOI: 10.1093/jnci/djz075] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies. METHODS We conducted an individual patient data meta-analysis of six genome-wide association studies (n = 3871) in men of European ancestry who underwent radiotherapy for prostate cancer. Radiotoxicities (increased urinary frequency, decreased urinary stream, hematuria, rectal bleeding) were graded prospectively. We used grouped relative risk models to test associations with approximately 6 million genotyped or imputed variants (time to first grade 2 or higher toxicity event). Variants with two-sided Pmeta less than 5 × 10-8 were considered statistically significant. Bayesian false discovery probability provided an additional measure of confidence. Statistically significant variants were evaluated in three Japanese cohorts (n = 962). All statistical tests were two-sided. RESULTS Meta-analysis of the European ancestry cohorts identified three genomic signals: single nucleotide polymorphism rs17055178 with rectal bleeding (Pmeta = 6.2 × 10-10), rs10969913 with decreased urinary stream (Pmeta = 2.9 × 10-10), and rs11122573 with hematuria (Pmeta = 1.8 × 10-8). Fine-scale mapping of these three regions was used to identify another independent signal (rs147121532) associated with hematuria (Pconditional = 4.7 × 10-6). Credible causal variants at these four signals lie in gene-regulatory regions, some modulating expression of nearby genes. Previously identified variants showed consistent associations (rs17599026 with increased urinary frequency, rs7720298 with decreased urinary stream, rs1801516 with overall toxicity) in new cohorts. rs10969913 and rs17599026 had similar effects in the photon-treated Japanese cohorts. CONCLUSIONS This study increases the understanding of the architecture of common genetic variants affecting radiotoxicity, points to novel radio-pathogenic mechanisms, and develops risk models for testing in clinical studies. Further multinational radiogenomics studies in larger cohorts are worthwhile.
Collapse
Affiliation(s)
- Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | | | | | - Gillian C Barnett
- Department of Public Health and Primary Care
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrea Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | | | - Ke Hao
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore
| | - Michelle Janelsins
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | - Rebecca M Elliott
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Neil G Burnet
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - David P Dearnaley
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Sarah L Gulliford
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | - Richard Stock
- Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Department of Radiation Oncology
| | | | - Harry Ostrer
- Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Nawaid Usmani
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Hiroshi Tsuji
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Imai
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shiro Saito
- Department of Urology, National Tokyo Medical Center, Tokyo, Japan
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Kim DeRuyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Barry S Rosenstein
- Departments of Radiation Oncology & Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Catharine M L West
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| |
Collapse
|
8
|
He K, Zhang S, Shao LL, Yin JC, Wu X, Shao YW, Yuan S, Yu J. Developing more sensitive genomic approaches to detect radioresponse in precision radiation oncology: From tissue DNA analysis to circulating tumor DNA. Cancer Lett 2019; 472:108-118. [PMID: 31837443 DOI: 10.1016/j.canlet.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Despite the common application and considerable efforts to achieve precision radiotherapy (RT) in several types of cancer, RT has not yet entered the era of precision medicine; the ability to predict radiosensitivity and treatment responses in tumors and normal tissues is lacking. Therefore, development of genome-based methods for individual prognosis in radiation oncology is urgently required. Traditional DNA sequencing requires tissue samples collected during invasive operations; therefore, repeated tests are nearly impossible. Intra- and inter-tumoral heterogeneity may undermine the predictive power of a single assay from tumor samples. In contrast, analysis of circulating tumor DNA (ctDNA) allows for non-invasive and near real-time sampling of tumors. By investigating the genetic composition of tumors and monitoring dynamic changes during treatment, ctDNA analysis may potentially be clinically valuable in prediction of treatment responses prior to RT, surveillance of responses during RT, and evaluation of residual disease following RT. As a biomarker for RT response, ctDNA profiling may guide personalized treatments. In this review, we will discuss approaches of tissue DNA sequencing and ctDNA detection and summarize their clinical applications in both traditional RT and in combination with immunotherapy.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong, 250117, People's Republic of China; Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Shaotong Zhang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, People's Republic of China
| | - Liang L Shao
- Geneseeq Technology Inc., Toronto, Ontario, M5G 1L7, Canada
| | - Jiani C Yin
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Xue Wu
- Geneseeq Technology Inc., Toronto, Ontario, M5G 1L7, Canada
| | - Yang W Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Shuanghu Yuan
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China.
| | - Jinming Yu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China.
| |
Collapse
|
9
|
Fukunaga H, Yokoya A, Taki Y, Butterworth KT, Prise KM. Precision Radiotherapy and Radiation Risk Assessment: How Do We Overcome Radiogenomic Diversity? TOHOKU J EXP MED 2019; 247:223-235. [PMID: 30971620 DOI: 10.1620/tjem.247.223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Precision medicine is a rapidly developing area that aims to deliver targeted therapies based on individual patient characteristics. However, current radiation treatment is not yet personalized; consequently, there is a critical need for specific patient characteristics of both tumor and normal tissues to be fully incorporated into dose prescription. Furthermore, current risk assessment following environmental, occupational, or accidental exposures to radiation is based on population effects, and does not account for individual diversity underpinning radiosensitivity. The lack of personalized approaches in both radiotherapy and radiation risk assessment resulted in the current situation where a population-based model, effective dose, is being used. In this review article, to stimulate scientific discussion for precision medicine in both radiotherapy and radiation risk assessment, we propose a novel radiological concept and metric - the personalized dose and the personalized risk index - that incorporate individual physiological, lifestyle-related and genomic variations and radiosensitivity, outlining the potential clinical application for precision medicine. We also review on recent progress in both genomics and biobanking research, which is promising for providing novel insights into individual radiosensitivity, and for creating a novel conceptual framework of precision radiotherapy and radiation risk assessment.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Centre for Cancer Research and Cell Biology, Queen's University Belfast
| | - Akinari Yokoya
- Tokai Quantum Beam Science Center, National Institutes for Quantum and Radiological Science and Technology
| | - Yasuyuki Taki
- Institute of Development, Aging and Cancer, Tohoku University
| | | | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast
| |
Collapse
|
10
|
Rosenstein BS, Rao A, Moran JM, Spratt DE, Mendonca MS, Al‐Lazikani B, Mayo CS, Speers C. Genomics, bio specimens, and other biological data: Current status and future directions. Med Phys 2018; 45:e829-e833. [PMID: 30226926 PMCID: PMC6214357 DOI: 10.1002/mp.12912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Barry S. Rosenstein
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Arvind Rao
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborMI48109USA
| | - Jean M. Moran
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborMI48109USA
| | - Daniel E. Spratt
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborMI48109USA
| | - Marc S. Mendonca
- Department of Radiation OncologyRadiation and Cancer Biology LaboratoriesIndiana University School of MedicineIndianapolisIN46202USA
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIN46202USA
| | - Bissan Al‐Lazikani
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonSW7 3RPUK
| | - Charles S. Mayo
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborMI48109USA
| | - Corey Speers
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborMI48109USA
| |
Collapse
|
11
|
Brzozowska A, Mlak R, Homa-Mlak I, Gołębiowski P, Mazurek M, Ciesielka M, Małecka-Massalska T. Polymorphism of regulatory region of APEH gene (c.-521G>C, rs4855883) as a relevant predictive factor for radiotherapy induced oral mucositis and overall survival in head neck cancer patients. Oncotarget 2018; 9:29644-29653. [PMID: 30038710 PMCID: PMC6049874 DOI: 10.18632/oncotarget.25662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Abstract
Background The study purpose was to examine the correlation between SNP in the regulatory region (c.-521G>C, rs4855883) of APEH gene as well as the incidence and severity of radiotherapy (RTH) induced oral mucositis (OM) and overall survival (OS) in head and neck cancer (HNC) patients. Methods OM in 62 HNC patients subjected to irradiation was assessed using RTOG/EORTC scale. DNA was isolated from whole blood of HNC patients. Mini-sequencing method (SNaPshot PCR) was used to determine the genotype. Results The following frequency of occurrence of APEH gene was observed: CC: 37.1%, CG: 43.6% and GG: 19.3%. It was established that the presence of CC genotype reduced the risk of occurrence of grade 2 and 3 OM symptoms: 3-fold in RTH week 2 (in case of CC vs GC or GG it was: 26.8% vs 73.2% patients, respectively, OR = 0.27, 95 CI: 0.09–0.83; p = 0.0222), 6-fold in RTH week 3 (in case of CC vs GC or GG it was: 29.4% vs 70.6% patients, respectively, OR = 0.16, 95 CI: 0.04–0.67; p = 0.0125) and grade 3 OM symptoms 4-fold in RTH week 6 (in case of CC vs GC or GG it was: 19.2% vs 80.8% patients, respectively, OR = 0.23, 95 CI: 0.07–0.77; p = 0.0166). CC genotype was associated with lower OS (CC vs GG or GC: 29 months vs 38 months; HR = 2.48, 95% CI: 0.90–6.85; p = 0.0266). Conclusion CC genotype of APEH gene was correlated with the risk of more severe radiotherapy-induced OM in HNC patients and lower rates of survival.
Collapse
Affiliation(s)
- Anna Brzozowska
- Department of Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Paweł Gołębiowski
- Department of Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Lublin 20-080, Poland
| | - Marzanna Ciesielka
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-090, Poland
| | | |
Collapse
|
12
|
Du L, Yu W, Huang X, Zhao N, Liu F, Tong F, Zhang S, Niu B, Liu X, Xu S, Huang Y, Dai X, Xie C, Chen G, Cong X, Qu B. GSTP1 Ile105Val polymorphism might be associated with the risk of radiation pneumonitis among lung cancer patients in Chinese population: A prospective study. J Cancer 2018; 9:726-735. [PMID: 29556330 PMCID: PMC5858494 DOI: 10.7150/jca.20643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Growing data suggest that DNA damage repair and detoxification pathways play crucial roles in radiation-induced toxicities. To determine whether common functional single-nucleotide polymorphisms (SNPs) in candidate genes from these pathways can be used as predictors of radiation pneumonitis (RP), we conducted a prospective study to evaluate the associations between functional SNPs and risk of RP. Methods: We recruited a total of 149 lung cancer patients who had received intensity modulated radiation therapy (IMRT). GSTP1 and XRCC1 were genotyped using the SurPlexTM-xTAG method in all patients. RP events were prospectively scored using the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE), version 4.0. Kaplan-Meier analysis was used to determine the cumulative probability of RP of grade ≥ 2. Cox proportional hazard regression was performed to identify clinical variables and SNPs associated with risk of RP grade ≥ 2, using univariate and multivariate analysis, respectively. Results: With a median follow-up of 9 months, the incidence of RP of grade ≥ 2 was 38.3%. A predicting role in RP was observed for the GSTP1 SNP (adjusted hazard ratio 3.543; 95% CI 1.770-7.092; adjusted P< 0.001 for the Ile/Val and Val/Val genotypes versus Ile/Ile genotype). Whereas, we found that patients with XRCC1 399Arg/Gln and Gln/Gln genotypes had a lower risk of RP compares with those carrying Arg/Arg genotype (adjusted HR 0.653; 95% CI 0.342-1.245), but with no statistical significance observed (adjusted P = 0.195). Conclusions: Our results suggested a novel association between GSTP1 SNP 105Ile/Val and risk of RP development, which suggests the potential use of this genetic polymorphism as a predictor of RP. In addition, genetic polymorphisms of XRCC1 399Arg/Gln may also be associated with RP.
Collapse
Affiliation(s)
- Lehui Du
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Wei Yu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiang Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Nana Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Fang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Fang Tong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Sujing Zhang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baolong Niu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiaoliang Liu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Shouping Xu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Yurong Huang
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiangkun Dai
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Chuanbin Xie
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Gaoxiang Chen
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Xiaohu Cong
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baolin Qu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| |
Collapse
|
13
|
Normando AGC, Rocha CL, de Toledo IP, de Souza Figueiredo PT, dos Reis PED, De Luca Canto G, Guerra ENS. Biomarkers in the assessment of oral mucositis in head and neck cancer patients: a systematic review and meta-analysis. Support Care Cancer 2017. [DOI: 10.1007/s00520-017-3783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 2016; 383:212-219. [PMID: 27693457 DOI: 10.1016/j.canlet.2016.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Abstract
A small percentage of cancer radiotherapy patients develop abnormally severe side effects as a consequence of intrinsic radiosensitivity. We analysed the γ-H2AX response to ex-vivo irradiation of peripheral blood lymphocytes (PBL) and plucked eyebrow hair follicles from 16 patients who developed severe late radiation toxicity following radiotherapy, and 12 matched control patients. Longer retention of the γ-H2AX signal and lower colocalization efficiency of repair factors in over-responding patients confirmed that DNA repair in these individuals was compromised. Five of the radiosensitive patients harboured LoF mutations in DNA repair genes. An extensive range of quantitative parameters of the γ-H2AX response were studied with the objective to establish a predictor for radiosensitivity status. The most powerful predictor was the combination of the fraction of the unrepairable component of γ-H2AX foci and repair rate in PBL, both derived from non-linear regression analysis of foci repair kinetics. We introduce a visual representation of radiosensitivity status that allocates a position for each patient on a two-dimensional "radiosensitivity map". This analytical approach provides the basis for larger prospective studies to further refine the algorithm, ultimately to triage capability.
Collapse
|
15
|
Kerns SL, Dorling L, Fachal L, Bentzen S, Pharoah PDP, Barnes DR, Gómez-Caamaño A, Carballo AM, Dearnaley DP, Peleteiro P, Gulliford SL, Hall E, Michailidou K, Carracedo Á, Sia M, Stock R, Stone NN, Sydes MR, Tyrer JP, Ahmed S, Parliament M, Ostrer H, Rosenstein BS, Vega A, Burnet NG, Dunning AM, Barnett GC, West CML. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine 2016; 10:150-63. [PMID: 27515689 PMCID: PMC5036513 DOI: 10.1016/j.ebiom.2016.07.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leila Dorling
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Laura Fachal
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK; Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Søren Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ana M Carballo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - David P Dearnaley
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5NG, UK
| | - Paula Peleteiro
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Sarah L Gulliford
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5NG, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Spain
| | - Michael Sia
- Department of Radiation Oncology, Tom Baker Cancer Center, University of Calgary, Calgary, Canada
| | - Richard Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson N Stone
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew R Sydes
- Cancer and Other Non-Infectious Diseases, MRC Clinical Trials Unit, London WC2B 6NH, UK
| | - Jonathan P Tyrer
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Shahana Ahmed
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - Ana Vega
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Department of Radiation Oncology, Tom Baker Cancer Center, University of Calgary, Calgary, Canada
| | - Neil G Burnet
- University of Cambridge, Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Gillian C Barnett
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK; Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB0 0QQ, UK
| | - Catharine M L West
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK.
| |
Collapse
|
16
|
Zhang Y, Liu Z, Wang M, Tian H, Su K, Cui J, Dong L, Han F. Single Nucleotide Polymorphism rs1801516 in Ataxia Telangiectasia-Mutated Gene Predicts Late Fibrosis in Cancer Patients After Radiotherapy: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore) 2016; 95:e3267. [PMID: 27057881 PMCID: PMC4998797 DOI: 10.1097/md.0000000000003267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Studies on associations between ataxia telangiectasia-mutated (ATM) polymorphisms and late radiotherapy-induced adverse events vary in clinical settings, and the results are inconsistent.We conducted the first meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to investigate the role of the ATM polymorphism rs1801516 in the development of radiotherapy-induced late fibrosis.We searched PubMed, Embase, Web of Science, and Chinese National Knowledge Infrastructure databases to identify studies that investigated the effect of the ATM polymorphism rs1801516 on radiotherapy-induced late fibrosis before September 8, 2015. Summary odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were used to assess the association between late fibrosis and the rs1801516 polymorphism. Subgroup analyses were conducted to evaluate the influence of clinical features on the genetic association. Tests of interaction were used to compare differences in the effect estimates between subgroups.The overall meta-analysis of 2000 patients from 9 studies showed that the minor allele of the rs1801516 polymorphism was associated with a significantly increased risk of developing late fibrosis (OR = 1.78, 95% CI: 1.07, 2.94), with high between-study heterogeneity (I = 66.6%, P = 0.002). In subgroup analyses, we identified that the incidence of late fibrosis was a major source of heterogeneity across studies. The OR for patients with a high incidence of late fibrosis was 3.19 (95% CI: 1.86, 5.47), in contrast to 1.09 (95% CI: 1.01, 1.17) for those with a low incidence. There was a significant difference in the effect estimates between the 2 subgroups (ratio of OR = 2.94, 95% CI 1.70, 5.08, P = 0.031).This meta-analysis supported previously reported effect of the ATM polymorphism rs1801516 on radiotherapy-induced late fibrosis. This finding encouraged further researches to identify more genetic polymorphisms that were predictive for radiotherapy-induced adverse events. In addition, we showed that the inconsistency of the associations seen in these studies might be related to variations in the incidence of late fibrosis in the patients. This suggested that future studies should consider the incidence of radiotherapy-induced adverse events when investigating radiosensitivity signature genes.
Collapse
Affiliation(s)
- Yuyu Zhang
- From the Department of Radiation Oncology (YZ, LD) and Cancer Center (ZL, MW, HT, KS, JC, FH), The First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Song YZ, Duan MN, Zhang YY, Shi WY, Xia CC, Dong LH. ERCC2 polymorphisms and radiation-induced adverse effects on normal tissue: systematic review with meta-analysis and trial sequential analysis. Radiat Oncol 2015; 10:247. [PMID: 26627042 PMCID: PMC4665885 DOI: 10.1186/s13014-015-0558-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Background The relationship between ERCC2 polymorphisms and the risk of radiotoxicity remains inconclusive. The aim of our study is to systematically evaluate the association between ERCC2 polymorphisms and the risk of radiotoxicity. Methods Publications were identified through a search of the PubMed and Web of Science databases up to August 15, 2015. The pooled odds ratios (ORs) with corresponding 95 % confidence intervals (CIs) were calculated to evaluate the association between ERCC2 polymorphisms and radiotoxicity. Trial sequential analysis (TSA) and power calculation were performed to evaluate the type 1 and type 2 errors. Results Eleven studies involving 2584 patients were ultimately included in this meta-analysis. Conventional meta-analysis identified a significant association between ERCC2 rs13181 polymorphism and radiotoxicity (OR = 0.71, 95 % CI: 0.55-0.93, P = 0.01), but this association failed to get the confirmation of TSA. Conclusions The minor allele of rs13181 polymorphism may confer a protect effect against radiotoxicity. To confirm this correlation at the level of OR = 0.71, an overall information size of approximate 2800 patients were needed. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0558-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Zhe Song
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Mei-Na Duan
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yu-Yu Zhang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Wei-Yan Shi
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Cheng-Cheng Xia
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| | - Li-Hua Dong
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, Jilin, China.
| |
Collapse
|
18
|
Barnett GC, Kerns SL, Noble DJ, Dunning AM, West CML, Burnet NG. Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity. Clin Oncol (R Coll Radiol) 2015; 27:579-87. [PMID: 26166774 DOI: 10.1016/j.clon.2015.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
There is considerable variation in the level of toxicity patients experience for a given dose of radiotherapy, which is associated with differences in underlying individual normal tissue radiosensitivity. A number of syndromes have a large effect on clinical radiosensitivity, but these are rare. Among non-syndromic patients, variation is less extreme, but equivalent to a ±20% variation in dose. Thus, if individual normal tissue radiosensitivity could be measured, it should be possible to optimise schedules for individual patients. Early investigations of in vitro cellular radiosensitivity supported a link with tissue response, but individual studies were equivocal. A lymphocyte apoptosis assay has potential, and is currently under prospective validation. The investigation of underlying genetic variation also has potential. Although early candidate gene studies were inconclusive, more recent genome-wide association studies are revealing definite associations between genotype and toxicity and highlighting the potential for future genetic testing. Genetic testing and individualised dose prescriptions could reduce toxicity in radiosensitive patients, and permit isotoxic dose escalation to increase local control in radioresistant individuals. The approach could improve outcomes for half the patients requiring radical radiotherapy. As a number of patient- and treatment-related factors also affect the risk of toxicity for a given dose, genetic testing data will need to be incorporated into models that combine patient, treatment and genetic data.
Collapse
Affiliation(s)
- G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S L Kerns
- Rubin Center for Cancer Survivorship, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
19
|
Song YZ, Han FJ, Liu M, Xia CC, Shi WY, Dong LH. Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis. PLoS One 2015; 10:e0130388. [PMID: 26091483 PMCID: PMC4474802 DOI: 10.1371/journal.pone.0130388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/20/2015] [Indexed: 01/26/2023] Open
Abstract
The X-ray repair cross-complementing group 3 (XRCC3) protein plays an important role in the repair of DNA double-strand breaks. The relationship between XRCC3 polymorphisms and the risk of radiation-induced adverse effects on normal tissue remains inconclusive. Thus, we performed a meta-analysis to elucidate the association between XRCC3 polymorphisms and radiation-induced adverse effects on normal tissue. All eligible studies up to December 2014 were identified through a search of the PubMed, Embase and Web of Science databases. Seventeen studies involving 656 cases and 2193 controls were ultimately included in this meta-analysis. The pooled odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between XRCC3 polymorphisms and the risk of radiation-induced normal tissue adverse effects. We found that the XRCC3 p.Thr241Met (rs861539) polymorphism was significantly associated with early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31-3.01, P = 0.001). A positive association lacking statistical significance with late adverse effects was also identified (OR = 1.28, 95%CI: 0.97-1.68, P = 0.08). In addition, the rs861539 polymorphism was significantly correlated with a higher risk of adverse effects induced by head and neck area irradiation (OR = 2.41, 95%CI: 1.49-3.89, p = 0.0003) and breast irradiation (OR = 1.41, 95%CI: 1.02-1.95, p = 0.04), whereas the correlation was not significant for lung irradiation or pelvic irradiation. Furthermore, XRCC3 rs1799794 polymorphism may have a protective effect against late adverse effects induced by radiotherapy (OR = 0.47, 95%CI: 0.26-0.86, P = 0.01). Well-designed large-scale clinical studies are required to further validate our results.
Collapse
Affiliation(s)
- Yu-Zhe Song
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Fu-Jun Han
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Min Liu
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Cheng-Cheng Xia
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei-Yan Shi
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Li-Hua Dong
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
20
|
Kelley MR, Logsdon D, Fishel ML. Targeting DNA repair pathways for cancer treatment: what's new? Future Oncol 2015; 10:1215-37. [PMID: 24947262 DOI: 10.2217/fon.14.60] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Disruptions in DNA repair pathways predispose cells to accumulating DNA damage. A growing body of evidence indicates that tumors accumulate progressively more mutations in DNA repair proteins as cancers progress. DNA repair mechanisms greatly affect the response to cytotoxic treatments, so understanding those mechanisms and finding ways to turn dysregulated repair processes against themselves to induce tumor death is the goal of all DNA repair inhibition efforts. Inhibition may be direct or indirect. This burgeoning field of research is replete with promise and challenge, as more intricacies of each repair pathway are discovered. In an era of increasing concern about healthcare costs, use of DNA repair inhibitors can prove to be highly effective stewardship of R&D resources and patient expenses.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
21
|
Sprung CN, Forrester HB, Siva S, Martin OA. Immunological markers that predict radiation toxicity. Cancer Lett 2015; 368:191-7. [PMID: 25681035 DOI: 10.1016/j.canlet.2015.01.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/31/2022]
Abstract
Radiotherapy is a major modality of cancer treatment responsible for a large proportion of cancer that is cured. Radiation exposure induces an inflammatory response which can be influenced by genetic, epigenetic, tumour, health and other factors which can lead to very different treatment outcomes between individuals. Molecules involved in the immunological response provide excellent potential biomarkers for the prediction of radiation-induced toxicity. The known molecular and cellular immunological responses in relation to radiation and the potential to improve cancer treatment are presented in this review. In particular, immunological biomarkers of radiation-induced fibrosis and pneumonitis in cancer radiotherapy patients are discussed.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunology and Infectious Disease, MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Vic., Australia.
| | - Helen B Forrester
- Centre for Innate Immunology and Infectious Disease, MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Vic., Australia
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic., Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, Vic., Australia
| |
Collapse
|
22
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
23
|
Foro P, Algara M, Lozano J, Rodriguez N, Sanz X, Torres E, Carles J, Reig A, Membrive I, Quera J, Fernandez-Velilla E, Pera O, Lacruz M, Bellosillo B. Relationship between radiation-induced apoptosis of T lymphocytes and chronic toxicity in patients with prostate cancer treated by radiation therapy: a prospective study. Int J Radiat Oncol Biol Phys 2014; 88:1057-63. [PMID: 24661659 DOI: 10.1016/j.ijrobp.2014.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess the correlation of radiation-induced apoptosis in vitro of CD4 and CD8 T lymphocytes with late toxicity of prostate cancer patients treated with radiation therapy. METHODS AND MATERIALS 214 patients were prospectively included in the study. Peripheral blood was drawn from patients before treatment and irradiated with 8 Gy. The percentage of CD4+ and CD8+ T lymphocytes that underwent radiation-induced apoptosis was assessed by flow cytometry. Toxicity and mortality were correlated in 198 cases with pretreatment apoptosis and clinical and biological variables by use of a Cox proportional hazards model. RESULTS The mean percentage of CD4+ and CD8+ T lymphocyte radiation-induced apoptosis was 28.58% (±14.23) and 50.76% (±18.9), respectively. Genitourinary (GU) toxicity was experienced by 39.9% of patients, while gastrointestinal (GI) toxicity was experienced by 19.7%. The probability of development of GU toxicity was nearly doubled (hazard ratio [HR] 1.99, P=.014) in those patients in whom the percentage of in vitro radiation-induced apoptosis of CD4+ T-lymphocytes was ≤28.58%. It was also almost double in patients who received doses ≥50 Gy in 65% of the bladder volume (V65 ≥50) (HR 1.92, P=.048). No correlation was found between GI toxicity and any of the variables studied. The probability of death during follow-up, after adjustment for different variables, was 2.7 times higher in patients with a percentage of CD8+ T lymphocyte apoptosis ≤50.76% (P=.022). CONCLUSIONS In conclusion, our study shows, in the largest prospective cohort of prostate cancer patients undergoing radiation therapy, that in vitro radiation-induced apoptosis of CD4+ T lymphocytes assessed before radiation therapy was associated with the probability of developing chronic GU toxicity. In addition, the radiation dose received in the urinary bladder (V65 ≥50) affected the occurrence of GU toxicity. Finally, we also demonstrate that radiation-induced apoptosis of CD8+ T lymphocytes was associated with overall survival, although larger series are needed to confirm this finding.
Collapse
Affiliation(s)
- Palmira Foro
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Manuel Algara
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Lozano
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain
| | - Nuria Rodriguez
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Sanz
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Erica Torres
- Pathology Department, Parc de Salut Mar, Barcelona, Spain
| | - Joan Carles
- Universitat Autonoma de Barcelona, Barcelona, Spain; Department of Oncology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Reig
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain
| | - Ismael Membrive
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain
| | - Jaume Quera
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Oscar Pera
- Department of Radiation Oncology, Parc de Salut Mar, Barcelona, Spain
| | - Marti Lacruz
- Universitat Pompeu Fabra, Barcelona, Spain; Radiation Protection Department, Parc de Salut Mar, Barcelona, Spain
| | - Beatriz Bellosillo
- Universitat Pompeu Fabra, Barcelona, Spain; Pathology Department, Parc de Salut Mar, Barcelona, Spain
| |
Collapse
|
24
|
Andreassen CN. The future has begun in radiogenomics! Radiother Oncol 2014; 111:165-7. [DOI: 10.1016/j.radonc.2014.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 12/22/2022]
|
25
|
Fowler TL, Fulkerson RK, Micka JA, Kimple RJ, Bednarz BP. A novel high-throughput irradiator for in vitro radiation sensitivity bioassays. Phys Med Biol 2014; 59:1459-70. [PMID: 24584120 PMCID: PMC4036445 DOI: 10.1088/0031-9155/59/6/1459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes the development and characterization of a fully automated in vitro cell irradiator using an electronic brachytherapy source to perform radiation sensitivity bioassays. This novel irradiator allows complex variable dose and dose rate schemes to be delivered to multiple wells of 96-well culture plates used in standard biological assays. The Xoft Axxent® eBx™ was chosen as the x-ray source due to its ability to vary tube current up to 300 µA for a 50 kVp spectrum using clinical surface applicators. Translation of the multiwell plate across the fixed radiation field is achieved using a precision motor driven computer controlled positioning system. A series of measurements was performed to characterize dosimetric performance of the system. Measurements have shown that the radiation output measured with an end window ionization chamber is stable between operating currents of 50-300 µA. In addition, radiochromic film was used to characterize the field flatness and symmetry. The average field flatness in the in-plane and cross-plane direction was 2.9 ± 1.0% and 4.0 ± 1.7%, respectively. The average symmetry in the in-plane and cross-plane direction was 1.8 ± 0.9% and 1.6 ± 0.5%, respectively. The optimal focal spot resolution at the cellular plane was determined by measuring sequential irradiations on radiochromic film for three different well spacing schemes. It was determined that the current system can irradiate every other well with negligible impact on the radiation field characteristics. Finally, a performance comparison between this system and a common cabinet irradiator is presented.
Collapse
Affiliation(s)
- Tyler L. Fowler
- Department of Medical Physics, University of Wisconsin Madison, WI 53705, USA
| | - Regina K. Fulkerson
- Medical Radiation Research Center, University of Wisconsin Madison, WI 53705, USA
| | - John A. Micka
- Medical Radiation Research Center, University of Wisconsin Madison, WI 53705, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin Madison, WI 53705, USA
| | - Bryan P. Bednarz
- Department of Medical Physics, University of Wisconsin Madison, WI 53705, USA
| |
Collapse
|
26
|
Kerns SL, Ostrer H, Rosenstein BS. Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov 2014; 4:155-65. [PMID: 24441285 DOI: 10.1158/2159-8290.cd-13-0197] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Normal-tissue adverse effects following radiotherapy are common and significantly affect quality of life. These effects cannot be accounted for by dosimetric, treatment, or demographic factors alone, and evidence suggests that common genetic variants are associated with radiotherapy adverse effects. The field of radiogenomics has evolved to identify such genetic risk factors. Radiogenomics has two goals: (i) to develop an assay to predict which patients with cancer are most likely to develop radiation injuries resulting from radiotherapy, and (ii) to obtain information about the molecular pathways responsible for radiation-induced normal-tissue toxicities. This review summarizes the history of the field and current research. SIGNIFICANCE A single-nucleotide polymorphism–based predictive assay could be used, along with clinical and treatment factors, to estimate the risk that a patient with cancer will develop adverse effects from radiotherapy. Such an assay could be used to personalize therapy and improve quality of life for patients with cancer.
Collapse
Affiliation(s)
- Sarah L Kerns
- Departments of 1Radiation Oncology and 2Dermatology, Preventive Medicine and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; 3Department of Radiation Oncology, New York University School of Medicine, New York; Departments of 4Pathology, and 5Genetics and Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | | | | |
Collapse
|
27
|
Chua M, Rothkamm K. Biomarkers of Radiation Exposure: Can They Predict Normal Tissue Radiosensitivity? Clin Oncol (R Coll Radiol) 2013; 25:610-6. [DOI: 10.1016/j.clon.2013.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 11/29/2022]
|
28
|
Andreassen CN, Dikomey E, Parliament M, West CML. Will SNPs be useful predictors of normal tissue radiosensitivity in the future? Radiother Oncol 2013; 105:283-8. [PMID: 23245645 DOI: 10.1016/j.radonc.2012.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 01/09/2023]
Abstract
The ability to predict individual risk of radiation-induced normal tissue complications is a long sought goal in radiobiology. The last decade saw increasing interest in identifying associations between single nucleotide polymorphisms (SNPs) and normal tissue complication risk. Nevertheless, it remains controversial whether SNPs will be useful predictors of normal tissue radiosensitivity. This paper provides a summary of a scientific debate held at the 31st ESTRO conference in which four scientists argued in favor or against the motion that SNPs will be useful predictors of normal tissue radiosensitivity in the future.
Collapse
|
29
|
Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci 2013; 20:485-502. [PMID: 23416129 DOI: 10.1016/j.jocn.2012.09.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
Radiation therapy forms one of the building blocks of the multi-disciplinary management of patients with brain tumors. Improved survival following radiation therapy may come with a cost, including the potential complication of radiation necrosis. Radiation necrosis impacts the quality of life in cancer survivors, and it is essential to detect and effectively treat this entity as early as possible. Significant progress in neuro-radiology and molecular pathology facilitate more straightforward diagnosis and characterization of cerebral radiation necrosis. Several therapeutic interventions, both medical and surgical, may halt the progression of radiation necrosis and diminish or abrogate its clinical manifestations, but there are still no definitive guidelines to follow explicitly that guide treatment of radiation necrosis. We discuss the pathobiology, clinical features, diagnosis, available treatment modalities, and outcomes in the management of patients with intracranial radiation necrosis that follows radiation used to treat brain tumors.
Collapse
Affiliation(s)
- Gazanfar Rahmathulla
- The Burkhardt Brain Tumor & Neuro-Oncology Center, Desk S-7, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
30
|
Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J Gastroenterol 2013; 19:185-98. [PMID: 23345941 PMCID: PMC3547560 DOI: 10.3748/wjg.v19.i2.185] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/31/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
Ionising radiation therapy is a common treatment modality for different types of cancer and its use is expected to increase with advances in screening and early detection of cancer. Radiation injury to the gastrointestinal tract is important factor working against better utility of this important therapeutic modality. Cancer survivors can suffer a wide variety of acute and chronic symptoms following radiotherapy, which significantly reduces their quality of life as well as adding an extra burden to the cost of health care. The accurate diagnosis and treatment of intestinal radiation injury often represents a clinical challenge to practicing physicians in both gastroenterology and oncology. Despite the growing recognition of the problem and some advances in understanding the cellular and molecular mechanisms of radiation injury, relatively little is known about the pathophysiology of gastrointestinal radiation injury or any possible susceptibility factors that could aggravate its severity. The aims of this review are to examine the various clinical manifestations of post-radiation gastrointestinal symptoms, to discuss possible patient and treatment factors implicated in normal gastrointestinal tissue radiosensitivity and to outline different mechanisms of intestinal tissue injury.
Collapse
|
31
|
Kim EJ, Kim SY, Yun HJ, Kim CG, Jeong JW, Kim TH, Kim CH, Darroudi F, Kang CM. Detection and quantification of a radiation-associated mitochondrial DNA deletion by a nested real-time PCR in human peripheral lymphocytes. Mutat Res 2012; 749:53-9. [PMID: 22944079 DOI: 10.1016/j.mrgentox.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 11/18/2022]
Abstract
In this study we implemented a new assay using a nested real-time polymerase chain reaction (PCR) to detect radiation-induced common deletion (CD) in mitochondrial DNA (mtDNA) of human peripheral lymphocytes. A standard curve for real-time PCR was established by applying a plasmid DNA containing human normal mtDNA or mutated mtDNA. Human peripheral lymphocyte DNA was amplified and quantified by real-time PCR using primer sets for total damaged or mutated mtDNA, plus probes labeled with the fluorescent dyes. The first-round PCR generated multiple products were used as the template for a second-round PCR. We herein describe a nested real-time PCR assay capable of quantifying mtDNA bearing the CD in human peripheral lymphocytes following exposure (in vitro) to (137)Cs γ-rays in a dose range of 0.5 up to 5Gy. The reproducibility of this assay was evident for both unirradiated and irradiated samples by examining human blood lymphocytes from 14 donors. This technique was sensitive enough to detect deletions in mtDNA at low dose levels, as low as 0.5Gy, and higher levels of CD mtDNA were evident at higher doses (≥1Gy), however, there was no consistent dose-response relationship.
Collapse
Affiliation(s)
- Eun Ju Kim
- Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Conducting radiogenomic research – Do not forget careful consideration of the clinical data. Radiother Oncol 2012; 105:337-40. [DOI: 10.1016/j.radonc.2012.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/22/2022]
|
33
|
Xiong H, Liao Z, Liu Z, Xu T, Wang Q, Liu H, Komaki R, Gomez D, Wang LE, Wei Q. ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 2012; 85:1066-73. [PMID: 23154078 DOI: 10.1016/j.ijrobp.2012.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). METHODS AND MATERIALS We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. RESULTS Of 362 patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. CONCLUSIONS ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings.
Collapse
Affiliation(s)
- Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Azria D, Ardiet JM, Chauvet B, Denis F, Eschwège F, Hennequin C, Lartigau É, Rocher F, Mahé MA, Maingon P, Mazeron JJ, Metayer Y, Peiffert D, Thureau S, Mornex F. Implications récentes des équipes françaises en oncologie radiothérapie et radiobiologie clinique. Cancer Radiother 2012; 16:386-91. [DOI: 10.1016/j.canrad.2012.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022]
|
35
|
|
36
|
Brackett J, Krull KR, Scheurer ME, Liu W, Srivastava DK, Stovall M, Merchant TE, Packer RJ, Robison LL, Okcu MF. Antioxidant enzyme polymorphisms and neuropsychological outcomes in medulloblastoma survivors: a report from the Childhood Cancer Survivor Study. Neuro Oncol 2012; 14:1018-25. [PMID: 22661588 DOI: 10.1093/neuonc/nos123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Psychological or neurocognitive impairment is often seen in medulloblastoma survivors after craniospinal radiation; however, significant variability in outcomes exists. This study investigated the role of antioxidant enzyme polymorphisms in moderating this outcome and hypothesized that patients who had polymorphisms associated with lower antioxidant enzyme function would have a higher occurrence of impairment. From the Childhood Cancer Survivor Study (CCSS) cohort, 109 medulloblastoma survivors and 143 siblings were identified who completed the CCSS Neurocognitive Questionnaire (NCQ) and the Brief Symptom Inventory-18 (BSI-18) and who provided buccal DNA samples. Real-time polymerase chain reaction (PCR) allelic discrimination was used for SOD2 (rs4880), GPX1 (rs1050450), and GSTP1 (rs1695 and rs1138272) genotyping and PCR for GSTM1 and GSTT1 gene deletions. Outcomes on NCQ and BSI-18 subscale scores were examined in association with genotypes and clinical factors, including age at diagnosis, sex, and radiation dose, using univariate and multivariate analysis of variance. Patients <7 years of age at diagnosis displayed more problems with task efficiency (P < .001) and fewer problems with somatic complaints (P = .004) than did patients ≥7 years of age. Female patients reported more organization problems than did male patients (P = .02). Patients with homozygous GSTM1 gene deletion reported higher anxiety (mean null genotype = 47.3 ± 9.2, non-null = 43.9 ± 7.8; P = .04), more depression (null = 51.0 ± 9.8, non-null = 47.0 ± 9.4; P = .03), and more global distress (null = 50.2 ± 9.7, non-null = 45.2 ± 9.9; P = .01). All associations for the GSTM1 polymorphism remained statistically significant in a multivariate model controlling for age, sex, and radiation dose. Homozygous GSTM1 gene deletion was consistently associated with greater psychological distress in medulloblastoma survivors across multiple domains, suggesting that this genotype may predispose patients for increased emotional late effects.
Collapse
Affiliation(s)
- Julienne Brackett
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
A Polymorphism Within the Promoter of the TGFβ1 Gene Is Associated With Radiation Sensitivity Using an Objective Radiologic Endpoint. Int J Radiat Oncol Biol Phys 2012; 82:e247-55. [DOI: 10.1016/j.ijrobp.2011.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 02/25/2011] [Indexed: 12/23/2022]
|
38
|
Ivanov S. Biochemical markers predicting response to radiation- and radiochemo-therapy in cancer patients. ACTA ACUST UNITED AC 2012; 58:635-50. [DOI: 10.18097/pbmc20125806635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In last years there is increasing interest in radiogenomics and the characterization of DNA array molecular profiles that can predict tumor and no tumor tissues radioresponse. Ongoing studies carried out worldwide in the banking of tumor and no tumor samples give evidence that perspective markers for response prediction in individual patient to intended radiation therapy can be some apoptotic indexes, spectrum a number of specific proteins, and DNA-based microarray molecular profiling analysis as well determination of single nucleotide polymorphisms in genome of the patients. So far there are only a few robust reports of molecular markers predicting tumor and no tumor tissues response to radiation. The results of new studies, which in future should be validated in larger definitive trials, are likely to see in nearest years. It is needed to determine technologies of methods and to define more precisely areas of its applications.
Collapse
Affiliation(s)
- S.D. Ivanov
- Russian Research Center for Radiology and Surgical Technologies
| |
Collapse
|
39
|
Henríquez-Hernández LA, Bordón E, Pinar B, Lloret M, Rodríguez-Gallego C, Lara PC. Prediction of normal tissue toxicity as part of the individualized treatment with radiotherapy in oncology patients. Surg Oncol 2011; 21:201-6. [PMID: 22209348 DOI: 10.1016/j.suronc.2011.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022]
Abstract
Normal tissue toxicity caused by radiotherapy conditions the success of the treatment and the quality of life of patients. Radiotherapy is combined with surgery in both the preoperative or postoperative setting for the treatment of most localized solid tumour types. Furthermore, radical radiotherapy is an alternative to surgery in several tumour locations. The possibility of predicting such radiation-induced toxicity would make possible a better treatment schedule for the individual patient. Radiation-induced toxicity is, at least in part, genetically determined. From decades, several predictive tests have been proposed to know the individual sensitivity of patients to the radiotherapy schedules. Among them, initial DNA damage, radiation-induced apoptosis, gene expression profiles, and gene polymorphisms have been proposed. We report here an overview of the main studies regarding to this field. Radiation-induced apoptosis in peripheral blood lymphocytes seem to be the most promising assay tested in prospective clinical trials, although they have to be validated in large clinical studies. Other promising assays, as those related with single nucleotide polymorphisms, need to be validated as well.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Radiation Oncology Department, Hospital Universitario de Gran Canaria "Dr. Negrín", Barranco de La Ballena s/n, CP 35010, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | |
Collapse
|
40
|
West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 2011; 3:52. [PMID: 21861849 PMCID: PMC3238178 DOI: 10.1186/gm268] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is involved in many curative treatments of cancer; millions of survivors live with the consequences of treatment, and toxicity in a minority limits the radiation doses that can be safely prescribed to the majority. Radiogenomics is the whole genome application of radiogenetics, which studies the influence of genetic variation on radiation response. Work in the area focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation, which is important for effective, safe treatment. In this review, we highlight recent advances in radiotherapy and discuss results from four genome-wide studies of radiotoxicity.
Collapse
Affiliation(s)
- Catharine M West
- School of Cancer and Enabling Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie, Wilmslow Road, Manchester M20 4BX, UK.
| | | |
Collapse
|
41
|
Vogin G. Radiosensibilité, radiocurabilité et réparation. Cancer Radiother 2011; 15:294-306. [DOI: 10.1016/j.canrad.2010.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/12/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
|
42
|
Wernicke AG, Parashar B, Kulidzhanov F, Riley L, Christos PJ, Fischer A, Nori D, Chao KSC. Prospective study validating inter- and intraobserver variability of tissue compliance meter in breast tissue of healthy volunteers: potential implications for patients with radiation-induced fibrosis of the breast. Int J Radiat Oncol Biol Phys 2011; 80:39-46. [PMID: 20395064 PMCID: PMC3612398 DOI: 10.1016/j.ijrobp.2010.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/04/2009] [Accepted: 01/19/2010] [Indexed: 12/25/2022]
Abstract
PURPOSE Accurate detection of radiation-induced fibrosis (RIF) is crucial in management of breast cancer survivors. Tissue compliance meter (TCM) has been validated in musculature. We validate TCM in healthy breast tissue with respect to interobserver and intraobserver variability before applying it in RIF. METHODS AND MATERIALS Three medical professionals obtained three consecutive TCM measurements in each of the four quadrants of the right and left breasts of 40 women with no breast disease or surgical intervention. The intraclass correlation coefficient (ICC) assessed interobserver variability. The paired t test and Pearson correlation coefficient (r) were used to assess intraobserver variability within each rater. RESULTS The median age was 45 years (range, 24-68 years). The median bra size was 35C (range, 32A-40DD). Of the participants, 27 were white (67%), 4 black (10%), 5 Asian (13%), and 4 Hispanic (10%). ICCs indicated excellent interrater reliability (low interobserver variability) among the three raters, by breast and quadrant (all ICC ≥ 0.99). The paired t test and Pearson correlation coefficient both indicated low intraobserver variability within each rater (right vs. left breast), stratified by quadrant (all r ≥ 0.94, p < 0.0001). CONCLUSIONS The interobserver and intraobserver variability is small using TCM in healthy mammary tissue. We are now embarking on a prospective study using TCM in women with breast cancer at risk of developing RIF that may guide early detection, timely therapeutic intervention, and assessment of success of therapy for RIF.
Collapse
Affiliation(s)
- A Gabriella Wernicke
- Stich Radiation Oncology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao R, Price DK, Dahut WL, Reed E, Figg WD. Genetic polymorphisms in XRCC1 associated with radiation therapy in prostate cancer. Cancer Biol Ther 2011; 10:13-8. [PMID: 20495366 DOI: 10.4161/cbt.10.1.12172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Radiation therapy is a potentially curative, important treatment option in localized prostate cancer. However, at 8 years after radiation therapy, even in the best risk subset of patients, approximately 10% of patients will experience clinical disease recurrence. The identification of molecular markers of treatment success or failure may allow for the development of strategies to further improve treatment outcomes. Herein, we investigated five molecular markers of DNA repair. 513 patients with castrate-resistant prostate cancer (CRPC), including 284 patients who received radiotherapy, 229 patients without radiotherapy and 152 healthy individuals were genotyped for five polymorphisms in DNA excision repair genes:ERCC1 N118N (500C>T), XPD K751Q (2282A>C), XRCC1 R194W (685C>T), XRCC1 R399Q (1301G>A) and PARP1 V762A(2446T>C). The distribution of genetic polymorphisms in the patients with CRPC and in healthy controls was compared,and the association between the polymorphisms and overall survival was investigated. The polymorphisms evaluated did not show differences between the patient group and the healthy controls, nor did they show a trend toward an association with survival. However, in the radiation treated subgroup, the median survival time was associated with the XRCC1 haplotype. The median survival time was 11.75 years for patients with the R399Q AA /R194W CC haplotype,12.17 years for patients with the R399Q AG/R194W CC haplotype, 6.665 years for patients with the R399Q AG/R194WCT haplotype, and 6.21 years for patients with the R399Q GG/R194W CT haplotype (p = 0.034). This association was not found when all patients were investigated. We conclude that the genetic polymorphisms in XRCC1 may affect the outcome in patients who received radiotherapy for localized prostate cancer.
Collapse
Affiliation(s)
- Rui Gao
- Molecular Pharmacology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
44
|
Hirst DG, Robson T. Molecular biology: the key to personalised treatment in radiation oncology? Br J Radiol 2011; 83:723-8. [PMID: 20739343 DOI: 10.1259/bjr/91488645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the "New Biology" era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.
Collapse
|
45
|
Dunberger G, Lind H, Steineck G, Waldenström AC, Onelöv E, Avall-Lundqvist E. Loose stools lead to fecal incontinence among gynecological cancer survivors. Acta Oncol 2011; 50:233-42. [PMID: 21231784 DOI: 10.3109/0284186x.2010.535013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Many patients treated with radiotherapy to the pelvic region report a change in bowel habits. Loose stools, urgency and fecal incontinence may have a significant impact on daily life and social functioning. MATERIAL AND METHODS We attempted to follow up 789 women, treated with pelvic radiotherapy for a gynecological cancer during 1991 to 2003 at two departments of gynecological oncology in Sweden. A control group of 478 women from the Swedish Population Registry was also included. As a preparatory study, we made in-depth interviews with 26 women previously treated for gynecological cancer. Based on their narratives, we constructed a study-specific questionnaire including 351 questions and validated it face-to-face. The questionnaire covered questions of physical symptoms originating in the pelvis, demographics, psychological and quality of life factors. In relation to bowel symptoms, 60 questions were asked. RESULTS Six-hundred and sixteen (78%) gynecological cancer survivors and 344 (72%) control women participated. Two-hundred and twenty-six (37%) cancer survivors reported loose stools at least once a week. Eighty-three percent of the survivors with loose stools every day reported defecation urgency with fecal leakage, compared to 20% of cancer survivors without loose stools. Cancer survivors with loose stools at least once a week were 7.7 times more likely to suffer from defecation urgency with fecal leakage (95% CI 4.4-13.3) compared to those who had loose stools once a month or less. In order to avoid loose stools affected survivors with loose stools often skipped meals (13%), made an active choice of food (47%) and preferentially used prescribed medication (36%). DISCUSSION There is a relation between loose stools and defecation urgency with fecal leakage among long-term gynecological cancer survivors treated with pelvic radiotherapy. Targeting loose stools can possibly help survivors to decrease frequency of fecal leakage.
Collapse
Affiliation(s)
- Gail Dunberger
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
46
|
Blom Goldman U, Wennberg B, Svane G, Bylund H, Lind P. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol 2010; 5:99. [PMID: 21034456 PMCID: PMC2987943 DOI: 10.1186/1748-717x-5-99] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/29/2010] [Indexed: 11/16/2022] Open
Abstract
Introduction Adjuvant local-regional radiotherapy (LRRT) is routinely recommended for breast cancer patients. It is well known being related to pulmonary side-effects. We studied post-RT radiological changes on X-ray and CT, and correlated the findings with Quality of Life (QoL), common dosimetric factors and co-variates. The results were compared with a previously reported cohort of 137 irradiated women. Methods 88 women underwent chest X-ray and CT pre-and 4-5 months after 3-D planned LRRT, minimizing the dose to the ipsilateral lung to V20 < 30%. The lung field was divided into 3 regions and the development of post-RT density changes were graded (0-3). Patients with radiological changes were compared with non-responders. Clinical symptoms were registered and data on patient and treatment related co-variates were gathered prospectively. The ipsilateral lung dosimetric factors V13, V20, V30 and mean dose were calculated and QoL was assessed before and 4 months after RT. Results The use of dose-volume constraints significally reduced moderate-severe radiological changes on chest X-ray compared with our earlier study (Chi square trend test: p < 0.001). Symptomatic pneumonitis was also rare in the present study. No agreement was found between CT and chest X-ray as diagnostic tools for post-RT pneumonitis. V13 correlated independently with radiological changes on CT (logistic regression: p = 0.04; ROC area: 0.7). The Co-variates smoking habits, age, chemotherapy, endocrine or trastuzumab therapy did not influence the outcome on multivariate analysis. QoL changes in physical function, i.e. fatigue, dyspnoea were not detected but there was a trend for a worse recovery after chemotherapy in patients with high V13 (Spearman Rank Correlation: p < 0.05). Conclusions The use of dose-volume constraints significantly reduced post-RT radiological changes on chest X-ray in LRRT for BC. The lung changes on CT were also generally limited when we used this strategy and was not always picked up on chest X-ray. Variation in V13 alone was correlated with occurrence of lung changes on CT.
Collapse
Affiliation(s)
- Ulla Blom Goldman
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Fleckenstein J, Kühne M, Seegmüller K, Derschang S, Melchior P, Gräber S, Fricke A, Rübe CE, Rübe C. The impact of individual in vivo repair of DNA double-strand breaks on oral mucositis in adjuvant radiotherapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2010; 81:1465-72. [PMID: 20947264 DOI: 10.1016/j.ijrobp.2010.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 07/17/2010] [Accepted: 08/07/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate the impact of individual in vivo DNA double-strand break (DSB) repair capacity on the incidence of severe oral mucositis in patients with head-and-neck cancer undergoing adjuvant radiotherapy (RT) or radiochemotherapy (RCT). PATIENTS AND METHODS Thirty-one patients with resected head-and-neck cancer undergoing adjuvant RT or RCT were examined. Patients underwent RT of the primary tumor site and locoregional lymph nodes with a total dose of 60-66 Gy (single dose 2 Gy, five fractions per week). Chemotherapy consisted of two cycles of cisplatin and 5-fluorouracil. To assess DSB repair, γ-H2AX foci in blood lymphocytes were quantified before and 0.5 h, 2.5 h, 5 h, and 24 h after in vivo radiation exposure (the first fraction of RT). World Health Organization scores for oral mucositis were documented weekly and correlated with DSB repair. RESULTS Sixteen patients received RT alone; 15 patients received RCT. In patients who developed Grade≥3 mucositis (n=18) the amount of unrepaired DSBs 24 h after radiation exposure and DSB repair half-times did not differ significantly from patients with Grade≤2 mucositis (n=13). Patients with a proportion of unrepaired DSBs after 24 h higher than the mean value + one standard deviation had an increased incidence of severe oral mucositis. CONCLUSIONS Evaluation of in vivo DSB repair by determination of γ-H2AX foci loss is feasible in clinical practice and allows identification of patients with impaired DSB repair. The incidence of oral mucositis is not closely correlated with DSB repair under the evaluated conditions.
Collapse
Affiliation(s)
- Jochen Fleckenstein
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical School, Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Andreassen CN. Searching for genetic determinants of normal tissue radiosensitivity – Are we on the right track? Radiother Oncol 2010; 97:1-8. [DOI: 10.1016/j.radonc.2010.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 01/24/2023]
|
49
|
Azria D, Betz M, Bourgier C, Jeanneret Sozzi W, Ozsahin M. Identifying patients at risk for late radiation-induced toxicity. Crit Rev Oncol Hematol 2010; 84 Suppl 1:e35-41. [PMID: 20869261 DOI: 10.1016/j.critrevonc.2010.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/05/2010] [Accepted: 08/20/2010] [Indexed: 11/29/2022] Open
Abstract
The impact of curative radiotherapy depends mainly on the total dose delivered in the targeted volume. Nevertheless, the dose delivered to the surrounding healthy tissues may reduce the therapeutic ratio of many treatments. Two different side effects (acute and late) can occur during and after radiotherapy. Of particular interest are the radiation-induced late complications (LC) due to their irreversibility and the potential impact on quality of life. In one population treated with the same technique, it appears that individual radiosensitivity clearly exists. In the hypothesis that genetic is involved in this area of research, low CD4 and CD8 lymphocyte apoptosis were shown to be correlated with high grade of LC. In addition, recent data suggest that patients with severe radiation-induced LC possess 4 or more single nucleotide polymorphisms (SNPs) in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro. On-going studies are being analyzing the entire genome using a genome-wide association study (GWAS).
Collapse
Affiliation(s)
- D Azria
- CRLC Val d'Aurelle-Paul Lamarque, Radiation Oncology Department, Rue Croix Verte, Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
50
|
Braccini A, Ozsahin M, Azria D. Paramètres biologiques de réponse tardive des tissus sains aux rayonnements ionisants. ONCOLOGIE 2010. [DOI: 10.1007/s10269-010-1909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|