1
|
Liang J, Ma R, Chen H, Zhang D, Ye W, Shi C, Luo L. Detection of Hyperacute Reactions of Desacetylvinblastine Monohydrazide in a Xenograft Model Using Intravoxel Incoherent Motion DWI and R2* Mapping. AJR Am J Roentgenol 2019; 212:717-726. [PMID: 30699010 DOI: 10.2214/ajr.18.20517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the feasibility of intravoxel incoherent motion (IVIM) DWI and R2* (transverse relaxation rate) mapping to monitor the hyperacute therapeutic efficacy of desacetylvinblastine monohydrazide (DAVLBH) on an experimental hepatocellular carcinoma mouse model within 24 hours. MATERIALS AND METHODS Forty-four mice were implanted with hepatocellular carcinoma and divided into three random groups. A treatment group and a control group underwent IVIM-DWI and R2* mapping examinations before and after a single injection of DAVLBH or saline at 1, 2, 4, and 24 hours. The pathology group was set for pathologic analysis, including H and E staining and CD31 and hypoxia-inducible factor (HIF)-1α immunohistochemical staining. RESULTS DAVLBH caused hyperacute disruptions on the tumor capillaries in the treatment group. Water molecule diffusion (D), microcirculation perfusion (D*), and perfusion fraction (f) decreased initially but then gradually recovered to the baseline level by 24 hours after the first injection of DAVLBH. In contrast, R2* increased dramatically at 1 hour and then gradually decreased from 1 hour to 24 hours after treatment. D*, f, and D showed similar trends and were positively correlated with CD31 expression (r = 0.868, 0.721, and 0.730, respectively), but were negatively correlated with HIF-1α expression (r = -0.784, -0.737, and -0.673, respectively). R2* showed a negative correlation with CD31 expression (r = -0.823) and a positive correlation with HIF-1α expression (r = 0.791). CONCLUSION Both IVIM-DWI and R2* mapping can adequately detect the vascular-disrupting effect of DAVLBH as early as 1 hour after injection in a mouse xenograft model. Moreover, D* and R2* are the two most sensitive hemodynamic parameters and can monitor the hyperacute changes associated with DAVLBH treatment in vivo.
Collapse
Affiliation(s)
- Jianye Liang
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Rd West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Rong Ma
- 2 Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Heru Chen
- 3 College of Pharmacy, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- 3 College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- 3 College of Pharmacy, Jinan University, Guangzhou, China
| | - Changzheng Shi
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Rd West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Liangping Luo
- 1 Medical Imaging Center, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Rd West, Tianhe District, Guangzhou, Guangdong 510630, China
| |
Collapse
|
2
|
Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J Med Chem 2016; 59:8685-8711. [DOI: 10.1021/acs.jmedchem.6b00463] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Eva-María Priego
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Oskía Bueno
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - María-Dolores Canela
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sandra Liekens
- Rega
Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Colliez F, Fruytier AC, Magat J, Neveu MA, Cani PD, Gallez B, Jordan BF. Monitoring Combretastatin A4-induced tumor hypoxia and hemodynamic changes using endogenous MR contrast and DCE-MRI. Magn Reson Med 2015; 75:866-72. [PMID: 25765253 DOI: 10.1002/mrm.25642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To benchmark MOBILE (Mapping of Oxygen By Imaging Lipid relaxation Enhancement), a recent noninvasive MR method of mapping changes in tumor hypoxia, electron paramagnetic resonance (EPR) oximetry, and dynamic contrast-enhanced MRI (DCE-MRI) as biomarkers of changes in tumor hemodynamics induced by the antivascular agent combretastatin A4 (CA4). METHODS NT2 and MDA-MB-231 mammary tumors were implanted subcutaneously in FVB/N and nude NMRI mice. Mice received 100 mg/kg of CA4 intraperitoneally 3 hr before imaging. The MOBILE sequence (assessing R1 of lipids) and the DCE sequence (assessing K(trans) hemodynamic parameter), were assessed on different cohorts. pO2 changes were confirmed on matching tumors using EPR oximetry consecutive to the MOBILE sequence. Changes in tumor vasculature were assessed using immunohistology consecutive to DCE-MRI studies. RESULTS Administration of CA4 induced a significant decrease in lipids R1 (P = 0.0273) on pooled tumor models and a reduction in tumor pO2 measured by EPR oximetry. DCE-MRI also exhibited a significant drop of K(trans) (P < 0.01) that was confirmed by immunohistology. CONCLUSION MOBILE was identified as a marker to follow a decrease in oxygenation induced by CA4. However, DCE-MRI showed a higher dynamic range to follow changes in tumor hemodynamics induced by CA4.
Collapse
Affiliation(s)
- Florence Colliez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Anne-Catherine Fruytier
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Julie Magat
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Marie-Aline Neveu
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| |
Collapse
|
4
|
Nielsen T, Bentzen L, Pedersen M, Tramm T, Rijken PFJW, Bussink J, Horsman MR, Østergaard L. Combretastatin A-4 phosphate affects tumor vessel volume and size distribution as assessed using MRI-based vessel size imaging. Clin Cancer Res 2012; 18:6469-77. [PMID: 23071260 DOI: 10.1158/1078-0432.ccr-12-2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Combretastatin A-4 disodium phosphate (CA4P) is a promising vascular disrupting agent (VDA) in clinical trials. As CA4P acts on dividing endothelial cells, we hypothesize that CA4P affects vessels of certain sizes. The aim of this study was to evaluate the effect of CA4P by the MRI-based vessel size imaging (VSI). EXPERIMENTAL DESIGN C3H mammary carcinomas were grown to 200 mm(3) in the right rear foot of female CDF(1) mice. A control group of mice received no treatment, and a treatment group had CA4P administered intraperitoneally at a dose of 250 mg/kg. VSI was conducted on a 3 Tesla MR scanner to estimate the tumor blood volume (ζ(0)) and mean vessel radius (R). Vascularization was also estimated histologically by endothelial and Hoechst 33342 staining. RESULTS ζ(0) and R showed different spatial heterogeneity. Tumor median and quartile values of ζ(0) were all significantly reduced by about 35% in the CA4P-treated group as compared with the control group, and the median and upper quartile of R were significantly increased. Histograms of ζ(0) and R showed a general decrease in ζ(0) following treatment, and values of R in a certain range (≈20-30 μm) were decreased in the treatment group. The drug-induced change in ζ(0) was in agreement with histology and our previous dynamic contrast enhanced MRI (DCE-MRI) data. CONCLUSIONS Tumor blood volume and mean vessel radius showed a clear response following treatment with CA4P. VSI may prove valuable in estimation of tumor angiogenesis and prediction of response to VDAs.
Collapse
Affiliation(s)
- Thomas Nielsen
- Department of Experimental Clinical Oncology, Danish National Research Foundations Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Monitoring antivascular therapy in head and neck cancer xenografts using contrast-enhanced MR and US imaging. Angiogenesis 2011; 14:491-501. [PMID: 21901534 DOI: 10.1007/s10456-011-9233-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/25/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging. METHODS Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve-AUC) were measured at baseline and 24 h after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment. RESULTS A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed 1 day after VDA therapy indicative of a reduction in blood flow. Early (24 h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts. CONCLUSIONS These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts.
Collapse
|
7
|
Bell LK, Ainsworth NL, Lee SH, Griffiths JR. MRI & MRS assessment of the role of the tumour microenvironment in response to therapy. NMR IN BIOMEDICINE 2011; 24:612-35. [PMID: 21567513 DOI: 10.1002/nbm.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
MRI and MRS techniques are being applied to the characterisation of various aspects of the tumour microenvironment and to the assessment of tumour response to therapy. For example, kinetic parameters describing tumour blood vessel flow and permeability can be derived from dynamic contrast-enhanced MRI data and have been correlated with a positive tumour response to antivascular therapies. The ongoing development and validation of noninvasive, high-resolution anatomical/molecular MR techniques will equip us with the means to detect specific tumour biomarkers early on, and then to monitor the efficacy of cancer treatments efficiently and reliably, all within a clinically relevant time frame. Reliable tumour microenvironment imaging biomarkers will provide obvious advantages by enabling tumour-specific treatment tailoring and potentially improving patient outcome. However, for routine clinical application across many disease types, such imaging biomarkers must be quantitative, robust, reproducible, sufficiently sensitive and cost-effective. These characteristics are all difficult to achieve in practice, but image biomarker development and validation have been greatly facilitated by an increasing number of pertinent preclinical in vivo cancer models. Emphasis must now be placed on discovering whether the preclinical results translate into an improvement in patient care and, therefore, overall survival.
Collapse
Affiliation(s)
- Leanne K Bell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
| | | | | | | |
Collapse
|
8
|
Mason RP, Zhao D, Liu L, Trawick ML, Pinney KG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr Biol (Camb) 2011; 3:375-87. [PMID: 21321746 PMCID: PMC3071431 DOI: 10.1039/c0ib00135j] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment provides a rich source of potential targets for selective therapeutic intervention with properly designed anticancer agents. Significant physiological differences exist between the microvessels that nourish tumors and those that supply healthy tissue. Selective drug-mediated damage of these tortuous and chaotic microvessels starves a tumor of necessary nutrients and oxygen and eventually leads to massive tumor necrosis. Vascular targeting strategies in oncology are divided into two separate groups: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). The mechanisms of action between these two classes of compounds are profoundly distinct. The AIAs inhibit the actual formation of new vessels, while the VDAs damage and/or destroy existing tumor vasculature. One subset of small-molecule VDAs functions by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature, triggered by a cascade of cell signaling events. Ultimately this results in catastrophic damage to the vessels feeding the tumor. The rapid emergence and subsequent development of the VDA field over the past decade has led to the establishment of a synergistic combination of preclinical state-of-the-art tumor imaging and biological evaluation strategies that are often indicative of future clinical efficacy for a given VDA. This review focuses on an integration of the appropriate biochemical and biological tools necessary to assess (preclinically) new small-molecule, tubulin active VDAs for their potential to be clinically effective anticancer agents.
Collapse
Affiliation(s)
- Ralph P. Mason
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Dawen Zhao
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Li Liu
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| |
Collapse
|
9
|
Preclinical Efficacy of Vascular Disrupting Agents in Non–Small-Cell Lung Cancer. Clin Lung Cancer 2011; 12:81-6. [DOI: 10.1016/j.cllc.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022]
|
10
|
Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer. World J Radiol 2011; 3:1-16. [PMID: 21286490 PMCID: PMC3030722 DOI: 10.4329/wjr.v3.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
Collapse
|
11
|
O'Connor JPB, Jackson A, Asselin MC, Buckley DL, Parker GJM, Jayson GC. Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 2008; 9:766-76. [PMID: 18672212 DOI: 10.1016/s1470-2045(08)70196-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Targeted therapeutics have challenged how imaging techniques assess tumour response to treatment because many new agents are thought to cause cytostasis rather than cytotoxicity. Advanced tracer development, image acquisition, and image analysis have been used to produce quantitative biomarkers of pathophysiology, with particular focus on measurement of tumour vascular characteristics. Here, we critically appraise strategies available to generate imaging biomarkers for use in development of targeted therapeutics. We consider important practical and technical features of data acquisition and analysis because these factors determine the precise physiological meaning of every biomarker. We discuss the merits of volume-based and other size-based metrics for assessment of targeted therapeutics, and we examine the strengths and weaknesses of CT, MRI, and PET biomarkers derived from conventional clinical data. We review imaging biomarkers of tumour microvasculature and discuss imaging strategies that probe other physiological processes including cell proliferation, apoptosis, and tumour invasion. We conclude on the need to develop comprehensive compound-specific imaging biomarkers that are appropriate for every class of targeted therapeutics, and to investigate the complementary information given in multimodality imaging studies of targeted therapeutics.
Collapse
Affiliation(s)
- James P B O'Connor
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK. james.o'
| | | | | | | | | | | |
Collapse
|