1
|
Vincenzi MM, Cicchetti A, Castriconi R, Mangili P, Ubeira-Gabellini MG, Chiara A, Deantoni C, Mori M, Pasetti M, Palazzo G, Tummineri R, Rancati T, Di Muzio NG, Vecchio AD, Fodor A, Fiorino C. Training and temporally validating an NTCP model of acute toxicity after whole breast radiotherapy, including the impact of advanced delivery techniques. Radiother Oncol 2024; 204:110700. [PMID: 39725068 DOI: 10.1016/j.radonc.2024.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE The aim is to train and validate a multivariable Normal Tissue Complication Probability (NTCP) model predicting acute skin reactions in patients with breast cancer receiving adjuvant Radiotherapy (RT). METHODS AND MATERIALS We retrospectively reviewed 1570 single-institute patients with breast cancer treated with whole breast irradiation (40 Gy/15fr). The patients were divided into training (n = 878, treated with 3d-CRT, from 2009 to 2017) and validation cohorts (n = 692, treated from 2017 to 2021, including advanced RT techniques). In the validation cohort, patients were classified according to the delivery techniques into static (n = 404) and arc techniques (n = 288). Several clinical/technical information and DVHs of the "skin" (5 mm inner expansion from the body contour) were available. Skin toxicity was assessed during follow-up using the RTOG scale criteria. A multivariable logistic regression model was generated combining skin DVH and clinical parameters, using cross-validation methods that ensured high internal consistency and robustness. The performance of the model was tested in the validation cohort. RESULTS 14.0 %/17.4 % of patients developed ≥ G2 toxicity, in the training/validation cohorts, respectively. The resulting multivariable logistic model included axillary lymph node dissection (OR = 1.58, 95 %CI = 1.01-2.48, p = 0.045), hypertension (OR = 1.54, 95 %CI = 1.04-2.27, p = 0.030) and skin V20Gy (OR = 1.008, 95 %CI = 1.004-1.013, p < 0.0001). The AUC of the model was 0.64/0.59 in training/validation, with better performance in the validation cohort if considering only V20Gy (0.62). The model showed satisfactory agreement between predicted and observed toxicity rates: in the validation group, the slope of the calibration plot was 0.96 (R2 = 0.6) with excellent goodness-of-fit (Hosmer-Lemeshow p-value = 0.99). Looking at each of the three predictors individually, only the role of V20Gy was confirmed in the validation group. Results were similar when considering patients treated with static or arc techniques. CONCLUSION An NTCP model for acute toxicity after moderately hypofractionated breast RT was trained. The model underwent temporal validation even for patients treated with advanced delivery techniques. Despite clinical differences and techniques, the confirmation of the dosimetry parameter in the validation cohort highlights its robustness and corroborates the hypothesis that skin DVH may assess the risk with the potential for improving plan optimisation.
Collapse
Affiliation(s)
| | - Alessandro Cicchetti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy
| | - Roberta Castriconi
- IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy
| | - Paola Mangili
- IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy
| | | | - Anna Chiara
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy
| | - Chiara Deantoni
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy
| | - Martina Mori
- IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy
| | - Marcella Pasetti
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy
| | - Gabriele Palazzo
- IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy
| | - Roberta Tummineri
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy
| | - Nadia Gisella Di Muzio
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | | | - Andrei Fodor
- IRCCS San Raffaele Scientific Institute, Radiotherapy Dept., Milan, Italy
| | - Claudio Fiorino
- IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy.
| |
Collapse
|
2
|
Stokkevåg CH, Journy N, Vogelius IR, Howell RM, Hodgson D, Bentzen SM. Radiation Therapy Technology Advances and Mitigation of Subsequent Neoplasms in Childhood Cancer Survivors. Int J Radiat Oncol Biol Phys 2024; 119:681-696. [PMID: 38430101 DOI: 10.1016/j.ijrobp.2024.01.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE In this Pediatric Normal Tissue Effects in the Clinic (PENTEC) vision paper, challenges and opportunities in the assessment of subsequent neoplasms (SNs) from radiation therapy (RT) are presented and discussed in the context of technology advancement. METHODS AND MATERIALS The paper discusses the current knowledge of SN risks associated with historic, contemporary, and future RT technologies. Opportunities for research and SN mitigation strategies in pediatric patients with cancer are reviewed. RESULTS Present experience with radiation carcinogenesis is from populations exposed during widely different scenarios. Knowledge gaps exist within clinical cohorts and follow-up; dose-response and volume effects; dose-rate and fractionation effects; radiation quality and proton/particle therapy; age considerations; susceptibility of specific tissues; and risks related to genetic predisposition. The biological mechanisms associated with local and patient-level risks are largely unknown. CONCLUSIONS Future cancer care is expected to involve several available RT technologies, necessitating evidence and strategies to assess the performance of competing treatments. It is essential to maximize the utilization of existing follow-up while planning for prospective data collection, including standardized registration of individual treatment information with linkage across patient databases.
Collapse
Affiliation(s)
- Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Neige Journy
- French National Institute of Health and Medical Research (INSERM) Unit 1018, Centre for Research in Epidemiology and Population Health, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Ivan R Vogelius
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases and University of Copenhagen, Copenhagen, Denmark
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - David Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
3
|
Cicchetti A, Mangili P, Fodor A, Gabellini MGU, Chiara A, Deantoni C, Mori M, Pasetti M, Palazzo G, Rancati T, Del Vecchio A, Gisella Di Muzio N, Fiorino C. Skin dose-volume predictors of moderate-severe late side effects after whole breast radiotherapy. Radiother Oncol 2024; 194:110183. [PMID: 38423138 DOI: 10.1016/j.radonc.2024.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Toxicity after whole breast Radiotherapy is a relevant issue, impacting the quality-of-life of a not negligible number of patients. We aimed to develop a Normal Tissue Complication Probability (NTCP) model predicting late toxicities by combining dosimetric parameters of the breast dermis and clinical factors. METHODS The skin structure was defined as the outer CT body contour's 5 mm inner isotropic expansion. It was retrospectively segmented on a large mono-institutional cohort of early-stage breast cancer patients enrolled between 2009 and 2017 (n = 1066). Patients were treated with tangential-field RT, delivering 40 Gy in 15 fractions to the whole breast. Toxicity was reported during Follow-Up (FU) using SOMA/LENT scoring. The study endpoint was moderate-severe late side effects consisting of Fibrosis-Atrophy-Telangiectasia-Pain (FATP G ≥ 2) developed within 42 months after RT completion. A machine learning pipeline was designed with a logistic model combining clinical factors and absolute skin DVH (cc) parameters as output. RESULTS The FATP G2 + rate was 3.8 %, with 40/1066 patients experiencing side effects. After the preprocessing of variables, a cross-validation was applied to define the best-performing model. We selected a 4-variable model with Post-Surgery Cosmetic alterations (Odds Ratio, OR = 7.3), Aromatase Inhibitors (as a protective factor with OR = 0.45), V20 Gy (50 % of the prescribed dose, OR = 1.02), and V42 Gy (105 %, OR = 1.09). Factors were also converted into an adjusted V20Gy. CONCLUSIONS The association between late reactions and skin DVH when delivering 40 Gy/15 fr was quantified, suggesting an independent role of V20 and V42. Few clinical factors heavily modulate the risk.
Collapse
Affiliation(s)
- Alessandro Cicchetti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy.
| | - Paola Mangili
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Andrei Fodor
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | | | - Anna Chiara
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Chiara Deantoni
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Martina Mori
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Marcella Pasetti
- IRCCS San Raffaele Scientific Institute, Radiotherapy, Milan, Italy
| | - Gabriele Palazzo
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Data Science Unit, Milan, Italy
| | | | | | - Claudio Fiorino
- IRCCS San Raffaele Scientific Institute, Medical Physics Milan, Italy
| |
Collapse
|
4
|
Naderi E, Aguado-Barrera ME, Schack LMH, Dorling L, Rattay T, Fachal L, Summersgill H, Martínez-Calvo L, Welsh C, Dudding T, Odding Y, Varela-Pazos A, Jena R, Thomson DJ, Steenbakkers RJHM, Dennis J, Lobato-Busto R, Alsner J, Ness A, Nutting C, Gómez-Caamaño A, Eriksen JG, Thomas SJ, Bates AM, Webb AJ, Choudhury A, Rosenstein BS, Taboada-Valladares B, Herskind C, Azria D, Dearnaley DP, de Ruysscher D, Sperk E, Hall E, Stobart H, Chang-Claude J, De Ruyck K, Veldeman L, Altabas M, De Santis MC, Farcy-Jacquet MP, Veldwijk MR, Sydes MR, Parliament M, Usmani N, Burnet NG, Seibold P, Symonds RP, Elliott RM, Bultijnck R, Gutiérrez-Enríquez S, Mollà M, Gulliford SL, Green S, Rancati T, Reyes V, Carballo A, Peleteiro P, Sosa-Fajardo P, Parker C, Fonteyne V, Johnson K, Lambrecht M, Vanneste B, Valdagni R, Giraldo A, Ramos M, Diergaarde B, Liu G, Leal SM, Chua MLK, Pring M, Overgaard J, Cascallar-Caneda LM, Duprez F, Talbot CJ, Barnett GC, Dunning AM, Vega A, Andreassen CN, Langendijk JA, West CML, Alizadeh BZ, Kerns SL. Large-scale meta-genome-wide association study reveals common genetic factors linked to radiation-induced acute toxicities across cancer types. JNCI Cancer Spectr 2023; 7:pkad088. [PMID: 37862240 PMCID: PMC10653584 DOI: 10.1093/jncics/pkad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity across 4 cancer types (prostate, head and neck, breast, and lung). METHODS A genome-wide association study meta-analysis was performed using 19 cohorts totaling 12 042 patients. Acute standardized total average toxicity (STATacute) was modelled using a generalized linear regression model for additive effect of genetic variants, adjusted for demographic and clinical covariates (rSTATacute). Linkage disequilibrium score regression estimated shared single-nucleotide variation (SNV-formerly SNP)-based heritability of rSTATacute in all patients and for each cancer type. RESULTS Shared SNV-based heritability of STATacute among all cancer types was estimated at 10% (SE = 0.02) and was higher for prostate (17%, SE = 0.07), head and neck (27%, SE = 0.09), and breast (16%, SE = 0.09) cancers. We identified 130 suggestive associated SNVs with rSTATacute (5.0 × 10‒8 < P < 1.0 × 10‒5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size ‒0.17; P = 1.7 × 10‒7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified 'RNA splicing via endonucleolytic cleavage and ligation' (P = 5.1 × 10‒6, P = .079 corrected) as the top gene set associated with rSTATacute among all patients. In silico gene expression analysis showed that the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed P = .004 corrected; sun exposed P = .026 corrected). CONCLUSIONS There is shared SNV-based heritability for acute radiation-induced toxicity across and within individual cancer sites. Future meta-genome-wide association studies among large radiation therapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Gødstrup Hospital, Herning, Denmark
- NIDO | Centre for Research and Education, Gødstrup Hospital, Herning, Denmark
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Laura Fachal
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Holly Summersgill
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Laura Martínez-Calvo
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Yasmin Odding
- Bristol Cancer Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Ana Varela-Pazos
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Rajesh Jena
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - David J Thomson
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Andy Ness
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Chris Nutting
- Head and Neck Unit, The Royal Marsden Hospital, London, UK
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jesper G Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Steve J Thomas
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Amy M Bates
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Adam J Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Begona Taboada-Valladares
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Azria
- Fédération Universitaire d’Oncologie Radiothérapie d’Occitanie Méditérranée, Département d’Oncologie Radiothérapie, ICM Montpellier, INSERM U1194 IRCM, University of Montpellier, Montpellier, France
| | - David P Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Dirk de Ruysscher
- MAASTRO Clinic, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Hilary Stobart
- Patient Advocate, Independent Cancer Patients’ Voice, London, UK
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kim De Ruyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Manuel Altabas
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Marie-Pierre Farcy-Jacquet
- Fédération Universitaire d’Oncologie Radiothérapie d’Occitanie Méditérranée, Département d’Oncologie Radiothérapie, CHU Carémeau, Nîmes, France
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Nawaid Usmani
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - R Paul Symonds
- Cancer Research Centre, University of Leicester, Leicester, UK
| | - Rebecca M Elliott
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Renée Bultijnck
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Meritxell Mollà
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sarah L Gulliford
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Sheryl Green
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Victoria Reyes
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Carballo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Paula Peleteiro
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Paloma Sosa-Fajardo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Chris Parker
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Valérie Fonteyne
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Kerstie Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Ben Vanneste
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
- Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Riccardo Valdagni
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alexandra Giraldo
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mónica Ramos
- Radiation Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Temerty Faculty of Medicine, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Miranda Pring
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luis M Cascallar-Caneda
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Fréderic Duprez
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Christopher J Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Gillian C Barnett
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sarah L Kerns
- Department of Radiation Oncology, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Aguado-Barrera ME, Sosa-Fajardo P, Gómez-Caamaño A, Taboada-Valladares B, Couñago F, López-Guerra JL, Vega A. Radiogenomics in lung cancer: Where are we? Lung Cancer 2023; 176:56-74. [PMID: 36621035 DOI: 10.1016/j.lungcan.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Huge technological and biomedical advances have improved the survival and quality of life of lung cancer patients treated with radiotherapy. However, during treatment planning, a probability that the patient will experience adverse effects is assumed. Radiotoxicity is a complex entity that is largely dose-dependent but also has important intrinsic factors. One of the most studied is the genetic variants that may be associated with susceptibility to the development of adverse effects of radiotherapy. This review aims to present the current status of radiogenomics in lung cancer, integrating results obtained in association studies of SNPs (single nucleotide polymorphisms) related to radiotherapy toxicities. We conclude that despite numerous publications in this field, methodologies and endpoints vary greatly, making comparisons between studies difficult. Analyzing SNPs from the candidate gene approach, together with the study in cohorts limited by the sample size, has complicated the possibility of having validated results. All this delays the incorporation of genetic biomarkers in predictive models for clinical application. Thus, from all analysed SNPs, only 12 have great potential as esophagitis genetic risk factors and deserve further exploration. This review highlights the efforts that have been made to date in the radiogenomic study of radiotoxicity in lung cancer.
Collapse
Affiliation(s)
- Miguel E Aguado-Barrera
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain
| | - Paloma Sosa-Fajardo
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain
| | - Antonio Gómez-Caamaño
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Begoña Taboada-Valladares
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Av. Choupana s/n, Edif. Consultas, Planta menos 3, 15706, Santiago de Compostela, A Coruña, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, C. del Maestro Ángel Llorca 8, 28003, Madrid, Spain
| | - José Luis López-Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Av. Manuel Siurot, s/n, 41013, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), C. Antonio Maura Montaner s/n, 41013, Seville, Spain
| | - Ana Vega
- Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Av. Choupana s/n, Edif. D, Planta 1, 15706, Santiago de Compostela, A Coruña, Spain; Fundación Pública Galega de Medicina Xenómica (FPGMX), Av. Choupana s/n, Edif. Consultas, Planta menos 2, 15706, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
6
|
Naderi E, Schack LMH, Welsh C, Sim AYL, Aguado-Barrera ME, Dudding T, Summersgil H, Martínez-Calvo L, Ong EHW, Odding Y, Varela-Pazos A, Steenbakkers RJHM, Crijns APG, Jena R, Pring M, Dennis J, Lobato-Busto R, Alsner J, Ness A, Nutting C, Thomson DJ, Gómez-Caamaño A, Eriksen JG, Thomas SJ, Bates AM, Overgaard J, Cascallar-Caneda LM, Duprez F, Barnett GC, Dorling L, Chua MLK, Vega A, West CML, Langendijk JA, Nicolaj Andreassen C, Alizadeh BZ. Meta-GWAS identifies the heritability of acute radiation-induced toxicities in head and neck cancer. Radiother Oncol 2022; 176:138-148. [PMID: 36191651 DOI: 10.1016/j.radonc.2022.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to the genetic components and susceptibility variants associated with acute radiation-induced toxicities (RITs) in patients with head and neck cancer (HNC). MATERIALS AND METHODS We performed the largest meta-GWAS of seven European cohorts (n = 4,042). Patients were scored weekly during radiotherapy for acute RITs including dysphagia, mucositis, and xerostomia. We analyzed the effect of variants on the average burden (measured as area under curve, AUC) per each RIT, and standardized total average acute toxicity (STATacute) score using a multivariate linear regression. We tested suggestive variants (p < 1.0x10-5) in discovery set (three cohorts; n = 2,640) in a replication set (four cohorts; n = 1,402). We meta-analysed all cohorts to calculate RITs specific SNP-based heritability, and effect of polygenic risk scores (PRSs), and genetic correlations among RITS. RESULTS From 393 suggestive SNPs identified in discovery set; 37 were nominally significant (preplication < 0.05) in replication set, but none reached genome-wide significance (pcombined < 5 × 10-8). In-silico functional analyses identified "3'-5'-exoribonuclease activity" (FDR = 1.6e-10) for dysphagia, "inositol phosphate-mediated signalling" for mucositis (FDR = 2.20e-09), and "drug catabolic process" for STATacute (FDR = 3.57e-12) as the most enriched pathways by the RIT specific suggestive genes. The SNP-based heritability (±standard error) was 29 ± 0.08 % for dysphagia, 9 ± 0.12 % (mucositis) and 27 ± 0.09 % (STATacute). Positive genetic correlation was rg = 0.65 (p = 0.048) between dysphagia and STATacute. PRSs explained limited variation of dysphagia (3 %), mucositis (2.5 %), and STATacute (0.4 %). CONCLUSION In HNC patients, acute RITs are modestly heritable, sharing 10 % genetic susceptibility, when PRS explains < 3 % of their variance. We identified numerus suggestive SNPs, which remain to be replicated in larger studies.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands; Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Regional Hospital West Jutland, Gødstrup, Denmark
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Adelene Y L Sim
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Medical Sciences, National Cancer Centre, Singapore
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol, UK; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Holly Summersgil
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Laura Martínez-Calvo
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre, Singapore
| | - Yasmin Odding
- University Hospitals Bristol and Weston, Bristol, UK
| | - Ana Varela-Pazos
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne P G Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Rajesh Jena
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Miranda Pring
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Andy Ness
- Bristol Dental School, University of Bristol, Bristol, UK
| | | | - David J Thomson
- Christie Hospital NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Jesper G Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Steve J Thomas
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Amy M Bates
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luis M Cascallar-Caneda
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Fréderic Duprez
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gillian C Barnett
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melvin L K Chua
- Division of Radiation Oncology, Dept of Head and Neck and Thoracic Cancers, Duke-NUS Medical School, Singapore, Singapore; Division of Radiation Oncology, National Cancer Centre, Singapore
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica (FPGMX), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
van der Weijst L, Azria D, Berkovic P, Boisselier P, Briers E, Bultijnck R, Chang-Claude J, Choudhury A, Defraene G, Demontois S, Elliott RM, Ennis D, Faivre-Finn C, Franceschini M, Giandini T, Giraldo A, Gutiérrez-Enríquez S, Herskind C, Higginson DS, Kerns SL, Johnson K, Lambrecht M, Lang P, Ramos M, Rancati T, Rimner A, Rosenstein BS, De Ruysscher D, Salem A, Sangalli C, Seibold P, Sosa Fajardo P, Sperk E, Stobart H, Summersgill H, Surmont V, Symonds P, Taboada-Valladares B, Talbot CJ, Vega A, Veldeman L, Veldwijk MR, Ward T, Webb A, West CML, Lievens Y. The correlation between pre-treatment symptoms, acute and late toxicity and patient-reported health-related quality of life in non-small cell lung cancer patients: Results of the REQUITE study. Radiother Oncol 2022; 176:127-137. [PMID: 36195214 PMCID: PMC10404651 DOI: 10.1016/j.radonc.2022.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the association between clinician-scored toxicities and patient-reported health-related quality of life (HRQoL), in early-stage (ES-) and locally-advanced (LA-) non-small cell lung cancer (NSCLC) patients receiving loco-regional radiotherapy, included in the international real-world REQUITE study. MATERIALS AND METHODS Clinicians scored eleven radiotherapy-related toxicities (and baseline symptoms) with the Common Terminology Criteria for Adverse Events version 4. HRQoL was assessed with the European Organization for Research and Treatment of Cancer core HRQoL questionnaire (EORTC-QLQ-C30). Statistical analyses used the mixed-model method; statistical significance was set at p = 0.01. Analyses were performed for baseline and subsequent time points up to 2 years after radiotherapy and per treatment modality, radiotherapy technique and disease stage. RESULTS Data of 435 patients were analysed. Pre-treatment, overall symptoms, dyspnea, chest wall pain, dysphagia and cough impacted overall HRQoL and specific domains. At subsequent time points, cough and dysphagia were overtaken by pericarditis in affecting HRQoL. Toxicities during concurrent chemo-radiotherapy and 3-dimensional radiotherapy had the most impact on HRQoL. Conversely, toxicities in sequential chemo-radiotherapy and SBRT had limited impact on patients' HRQoL. Stage impacts the correlations: LA-NSCLC patients are more adversely affected by toxicity than ES-NSCLC patients, mimicking the results of radiotherapy technique and treatment modality. CONCLUSION Pre-treatment symptoms and acute/late toxicities variously impact HRQoL of ES- and LA-NSCLC patients undergoing different treatment approaches and radiotherapy techniques. Throughout the disease, dyspnea seems crucial in this association, highlighting the additional effect of co-existing comorbidities. Our data call for optimized radiotherapy limiting toxicities that may affect patients' HRQoL.
Collapse
Affiliation(s)
- Lotte van der Weijst
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium.
| | - David Azria
- Federation Universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, Univ Montpellier, IRCM Inserm U1194, ICM, Montpellier, France
| | - Patrick Berkovic
- Department of Radiotherapy-oncology, Leuvens Kanker Instituut, UZ Leuven, Leuven, Belgium
| | - Pierre Boisselier
- Federation Universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, Univ Montpellier, IRCM Inserm U1194, ICM, Montpellier, France
| | | | - Renée Bultijnck
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium; Research Foundation - Flanders (FWO), Brussels, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, United Kingdom
| | - Gilles Defraene
- Laboratory of Experimental Radiotherapy, Department of Oncology, KULEUVEN, Leuven, Belgium
| | - Sylvian Demontois
- Federation Universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, Univ Montpellier, IRCM Inserm U1194, ICM, Montpellier, France
| | - Rebecca M Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, United Kingdom
| | - Dawn Ennis
- Royal Derby Hospital, Derby DE22 3NE, United Kingdom
| | - Corinne Faivre-Finn
- University of Manchester, UK, The Christie NHS Foundation Trust, United Kingdom
| | - Marzia Franceschini
- Unit of Radiation Oncology 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Giandini
- Unit of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alexandra Giraldo
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, New York, NY, United States
| | - Kerstie Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Maarten Lambrecht
- Department of Radiotherapy-oncology, Leuvens Kanker Instituut, UZ Leuven, Leuven, Belgium
| | - Philippe Lang
- Federation Universitaire d'oncologie radiothérapie d'Occitanie, ICG CHU Caremeau, Nîmes, France
| | - Mónica Ramos
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, United States
| | - Barry S Rosenstein
- Department of Radiation Oncology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Ahmed Salem
- University of Manchester, UK, The Christie NHS Foundation Trust, United Kingdom; Department of Basic Medical Sciences, School of Medicine, Hashemite University, Zarqa, Jordan
| | - Claudia Sangalli
- Unit of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paloma Sosa Fajardo
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago, SERGAS.Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Holly Summersgill
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, United Kingdom
| | - Veerle Surmont
- Department of Respiratory Medicine, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Paul Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Begoña Taboada-Valladares
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago, SERGAS.Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Christopher J Talbot
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsklinikum Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tim Ward
- Trustee Pelvic Radiation Disease Association, NCRI CTRad Consumer, United Kingdom
| | - Adam Webb
- Department of Genetics and Genome Biology, University of Leicester, United Kingdom
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, United Kingdom
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Barnett GC, Kerns SL, Dorling L, Fachal L, Aguado-Barrera ME, Martínez-Calvo L, Jandu HK, Welsh C, Tyrer J, Coles CE, Haviland JS, Parker C, Gómez-Caamaño A, Calvo-Crespo P, Sosa-Fajardo P, Burnet NG, Summersgill H, Webb A, De Ruysscher D, Seibold P, Chang-Claude J, Talbot CJ, Rattay T, Parliament M, De Ruyck K, Rosenstein BS, Pharoah PDP, Dunning AM, Vega A, West CML. No Association Between Polygenic Risk Scores for Cancer and Development of Radiation Therapy Toxicity. Int J Radiat Oncol Biol Phys 2022; 114:494-501. [PMID: 35840111 DOI: 10.1016/j.ijrobp.2022.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Our aim was to test whether updated polygenic risk scores (PRS) for susceptibility to cancer affect risk of radiation therapy toxicity. METHODS AND MATERIALS Analyses included 9,717 patients with breast (n=3,078), prostate (n=5,748) or lung (n=891) cancer from Radiogenomics and REQUITE Consortia cohorts. Patients underwent potentially curative radiation therapy and were assessed prospectively for toxicity. Germline genotyping involved genome-wide single nucleotide polymorphism (SNP) arrays with nontyped SNPs imputed. PRS for each cancer were generated by summing literature-identified cancer susceptibility risk alleles: 352 breast, 136 prostate, and 24 lung. Weighted PRS were generated using log odds ratio (ORs) for cancer susceptibility. Standardized total average toxicity (STAT) scores at 2 and 5 years (breast, prostate) or 6 to 12 months (lung) quantified toxicity. Primary analysis tested late STAT, secondary analyses investigated acute STAT, and individual endpoints and SNPs using multivariable regression. RESULTS Increasing PRS did not increase risk of late toxicity in patients with breast (OR, 1.000; 95% confidence interval [CI], 0.997-1.002), prostate (OR, 0.99; 95% CI, 0.98-1.00; weighted PRS OR, 0.93; 95% CI, 0.83-1.03), or lung (OR, 0.93; 95% CI, 0.87-1.00; weighted PRS OR, 0.68; 95% CI, 0.45-1.03) cancer. Similar results were seen for acute toxicity. Secondary analyses identified rs138944387 associated with breast pain (OR, 3.05; 95% CI, 1.86-5.01; P = 1.09 × 10-5) and rs17513613 with breast edema (OR, 0.94; 95% CI, 0.92-0.97; P = 1.08 × 10-5). CONCLUSIONS Patients with increased polygenic predisposition to breast, prostate, or lung cancer can safely undergo radiation therapy with no anticipated excess toxicity risk. Some individual SNPs increase the likelihood of a specific toxicity endpoint, warranting validation in independent cohorts and functional studies to elucidate biologic mechanisms.
Collapse
Affiliation(s)
- Gillian C Barnett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom.
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Laura Martínez-Calvo
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Grupo Genética en Cáncer y Enfermedades Raras, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Harkeran K Jandu
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ceilidh Welsh
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Charlotte E Coles
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, United Kingdom
| | - Joanne S Haviland
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London, United Kingdom
| | - Christopher Parker
- Institute of Cancer Research & Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Paloma Sosa-Fajardo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - Neil G Burnet
- Proton Beam Therapy Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Holly Summersgill
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Adam Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, Maastricht, The Netherlands; Radiation Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Christopher J Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Kim De Ruyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Barry S Rosenstein
- Departments of Radiation Oncology and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Ana Vega
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom; Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Santiago de Compostela, A Coruña, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
9
|
Webb AJ, Harper E, Rattay T, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, Briers E, Bultijnck R, Chang-Claude J, Choudhury A, Cicchetti A, De Ruysscher D, De Santis MC, Dunning AM, Elliott RM, Fachal L, Gómez-Caamaño A, Gutiérrez-Enríquez S, Johnson K, Lobato-Busto R, Kerns SL, Post G, Rancati T, Reyes V, Rosenstein BS, Seibold P, Seoane A, Sosa-Fajardo P, Sperk E, Taboada-Valladares B, Valdagni R, Vega A, Veldeman L, Ward T, West CM, Symonds RP, Talbot CJ. Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort. EBioMedicine 2022; 84:104269. [PMID: 36130474 PMCID: PMC9486558 DOI: 10.1016/j.ebiom.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort. METHODS Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors. FINDINGS Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype. INTERPRETATION Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally. FUNDING EU-FP7.
Collapse
Affiliation(s)
- Adam J Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Emily Harper
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - David Azria
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Celine Bourgier
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Muriel Brengues
- Institut de Recherche en Cancérologie de Montpellier, Université Montpellier, Inserm U1194, Montpellier, France
| | | | - Renée Bultijnck
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro clinic), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Maria Carmen De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rebecca M Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kerstie Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, New York, NY, United States
| | - Giselle Post
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Victoria Reyes
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Barry S Rosenstein
- Department of Radiation Oncology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alejandro Seoane
- Medical Physics Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paloma Sosa-Fajardo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Elena Sperk
- Department of Radiation Oncology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Begoña Taboada-Valladares
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haematology-Oncology, Universita degli Studi di Milano, Italy
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Tim Ward
- Patient advocate, NCRI CTRad consumer, UK
| | - Catharine M West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - R Paul Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | |
Collapse
|
10
|
Schack LMH, Naderi E, Fachal L, Dorling L, Luccarini C, Dunning AM, Ong EHW, Chua MLK, Langendijk JA, Alizadeh BZ, Overgaard J, Eriksen JG, Andreassen CN, Alsner J. A genome-wide association study of radiotherapy induced toxicity in head and neck cancer patients identifies a susceptibility locus associated with mucositis. Br J Cancer 2022; 126:1082-1090. [PMID: 35039627 PMCID: PMC8980077 DOI: 10.1038/s41416-021-01670-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE A two-stage genome-wide association study was carried out in head and neck cancer (HNC) patients aiming to identify genetic variants associated with either specific radiotherapy-induced (RT) toxicity endpoints or a general proneness to develop toxicity after RT. MATERIALS AND METHODS The analysis included 1780 HNC patients treated with primary RT for laryngeal or oro/hypopharyngeal cancers. In a non-hypothesis-driven explorative discovery study, associations were tested in 1183 patients treated within The Danish Head and Neck Cancer Group. Significant associations were later tested in an independent Dutch cohort of 597 HNC patients and if replicated, summary data obtained from discovery and replication studies were meta-analysed. Further validation of significantly replicated findings was pursued in an Asian cohort of 235 HNC patients with nasopharynx as the primary tumour site. RESULTS We found and replicated a significant association between a locus on chromosome 5 and mucositis with a pooled OR for rs1131769*C in meta-analysis = 1.95 (95% CI 1.48-2.41; ppooled = 4.34 × 10-16). CONCLUSION This first exploratory GWAS in European cohorts of HNC patients identified and replicated a risk locus for mucositis. A larger Meta-GWAS to identify further risk variants for RT-induced toxicity in HNC patients is warranted.
Collapse
Affiliation(s)
- Line M H Schack
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Elnaz Naderi
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Behrooz Z Alizadeh
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Grau Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Nicolaj Andreassen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Lotte VDW, Barrera E. Miguel A, David A, Patrick B, Pierre B, Erik B, Renée B, Patricia CC, Jenny CC, Ananya C, Gilles D, Sylvian D, Dunning Alison M, Elliott Rebecca M, Dawn E, Corinne FF, Marzia F, Sara GE, Carsten H, Higginson Daniel S, Kerns Sarah L, Kerstie J, Meritxell M, Maarten L, Mónica R, Tiziana R, Andreas R, Rosenstein Barry S, Ruysscher Dirk D, Ahmed S, Claudia S, Petra S, Paloma SF, Elena S, Hilary S, Holly S, Veerle S, Paul S, Begoña TL, Talbot Christopher J, Riccardo V, Ana V, Liv V, Veldwijk Marlon R, Tim W, Adam W, West Catharine M, Yolande L. Overview of health-related quality of life and toxicity of non-small cell lung cancer patients receiving curative-intent radiotherapy in a real-life setting (the REQUITE study). Lung Cancer 2022; 166:228-241. [PMID: 35334417 PMCID: PMC9698940 DOI: 10.1016/j.lungcan.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Radiotherapy-induced toxicity may negatively impact health-related quality of life (HRQoL). This report investigates the impact of curative-intent radiotherapy on HRQoL and toxicity in early stage and locally-advanced non-small cell lung cancer patients treated with radiotherapy or chemo-radiotherapy enrolled in the observational prospective REQUITE study. MATERIALS AND METHODS HRQoL was assessed using the European Organisation for Research and Treatment of Cancer QLQ-C30 questionnaire up to 2 years post radiotherapy. Eleven toxicities were scored by clinicians using the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Toxicity scores were calculated by subtracting baseline values. Mixed model analyses were applied to determine statistical significance (p ≤ 0.01). Meaningful clinical important differences (MCID) were determined for changes in HRQoL. Analysis was performed on the overall data, different radiotherapy techniques, multimodality treatments and disease stages. RESULTS Data of 510 patients were analysed. There was no significant change in HRQoL or its domains, except for deterioration in cognitive functioning (p = 0.01). Radiotherapy technique had no significant impact on HRQoL. The addition of chemotherapy was significantly associated with HRQoL over time (p <.001). Overall toxicity did not significantly change over time. Acute toxicities of radiation-dermatitis (p =.003), dysphagia (p =.002) and esophagitis (p <.001) peaked at 3 months and decreased thereafter. Pneumonitis initially deteriorated but improved significantly after 12 months (p =.011). A proportion of patients experienced meaningful clinically important improvements and deteriorations in overall HRQoL and its domains. In some patients, pre-treatment symptoms improved gradually. CONCLUSIONS While overall HRQoL and toxicity did not change over time, some patients improved, whereas others experienced acute radiotherapy-induced toxicities and deteriorated HRQoL, especially physical and cognitive functioning. Patient characteristics, more so than radiotherapy technique and treatment modality, impact post-radiotherapy toxicity and HRQoL outcomes. This stresses the importance of considering the potential impact of radiotherapy on individuals' HRQoL, symptoms and toxicity in treatment decision-making.
Collapse
|
12
|
Kesavan M, Turner JH. Myeloid Toxicity of Radionuclide Cancer Therapy. Cancer Biother Radiopharm 2021; 37:164-172. [PMID: 34871036 DOI: 10.1089/cbr.2021.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emergent genomic analytic techniques in patients with cancer offer the potential to define the risk of myelo dysplastic syndrome (MDS) and acute leukemia (AL) manifesting following targeted radionuclide therapy of metastatic lymphoma, neuroendocrine tumors (NETs), and prostate cancer. Characterization of the genetic profile will allow risk stratification of patients before theranostic radionuclide management of advanced cancers and offers the opportunity to minimize toxicity while preserving optimal individualized efficacy in the practice of personalized precision nuclear oncology. Our review of a single-center experience of prospective radionuclide theranostic management of metastatic non-Hodgkin lymphoma (NHL), NETs, and castration-resistant prostate cancer (metastatic castrate-resistant prostate cancer [mCRPC]) over the past decade, and comparison with published studies, shows that while the risk of significant myelotoxicity is generally low, at <3%, the consequences in the small minority of patients who develop MDS or AL are substantial, and survival is poor. Timely identification of patients at heightened risk of hematologic toxic complication, using novel genomic technology before institution of radionuclide therapy, will facilitate amelioration of myelotoxicity. In current clinical practice, the minimal hematological toxicity of chemo-free theranostic management of advanced cancer is significantly less compared with newly adopted chemotherapy -immunotherapy regimens, and the financial toxicity associated with these novel agents is avoided.
Collapse
Affiliation(s)
- Murali Kesavan
- Department of Hematology, School of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| | - J Harvey Turner
- Department of Hematology, School of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Naderi E, Crijns APG, Steenbakkers RJHM, van den Hoek JGM, Boezen HM, Alizadeh BZ, Langendijk JA. A two-stage genome-wide association study of radiation-induced acute toxicity in head and neck cancer. J Transl Med 2021; 19:481. [PMID: 34838041 PMCID: PMC8626989 DOI: 10.1186/s12967-021-03145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most head and neck cancer (HNC) patients receive radiotherapy (RT) and develop toxicities. This genome-wide association study (GWAS) was designed to identify single nucleotide polymorphisms (SNPs) associated with common acute radiation-induced toxicities (RITs) in an HNC cohort. METHODS A two-stage GWAS was performed in 1279 HNC patients treated with RT and prospectively scored for mucositis, xerostomia, sticky saliva, and dysphagia. The area under the curve (AUC) was used to estimate the average load of toxicity during RT. At the discovery study, multivariate linear regression was used in 957 patients, and the top-ranking SNPs were tested in 322 independent replication cohort. Next, the discovery and the replication studies were meta-analyzed. RESULTS A region on 5q21.3 containing 16 SNPs showed genome-wide (GW) significance association at P-value < 5.0 × 10-8 with patient-rated acute xerostomia in the discovery study. The top signal was rs35542 with an adjusted effect size of 0.17*A (95% CI 0.12 to 0.23; P-value < = 3.78 × 10-9). The genome wide significant SNPs were located within three genes (EFNA5, FBXL17, and FER). In-silico functional analysis showed these genes may be involved in DNA damage response and co-expressed in minor salivary glands. We found 428 suggestive SNPs (P-value < 1.0 × 10-5) for other toxicities, taken to the replication study. Eleven of them showed a nominal association (P-value < 0.05). CONCLUSIONS This GWAS suggested novel SNPs for patient-rated acute xerostomia in HNC patients. If validated, these SNPs and their related functional pathways could lead to a predictive assay to identify sensitive patients to radiation, which may eventually allow a more individualized RT treatment.
Collapse
Affiliation(s)
- Elnaz Naderi
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anne Petra Gerarda Crijns
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | - Johanna Geertruida Maria van den Hoek
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Hendrika Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Ziad Alizadeh
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, HPC; DA 30, P.O. Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
14
|
Van Der Weijst L, Surmont V, Schrauwen W, Lievens Y. Real Life Data on Patient-Reported Outcomes and Neuro-Cognitive Functioning of Lung Cancer Patients: The PRO-Long Study. Front Oncol 2021; 11:685605. [PMID: 34222010 PMCID: PMC8247464 DOI: 10.3389/fonc.2021.685605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION This report investigates the impact of systemic treatments (chemotherapy or immunotherapy) with(out) loco-regional radiotherapy, on HRQoL, toxicity and neurocognitive functioning (NCF) in locally advanced and metastatic non-small cell lung cancer patients enrolled in the PRO-Long study. MATERIALS AND METHODS Data on patient-reported HRQoL and fourteen toxicities was collected, while NCF was tested, up to one-year post-treatment. HRQoL was assessed using the European Organisation for Research and Treatment of Cancer QLQ-C30. Lung cancer, treatment and neuro-psychological related toxicities were scored with the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events. NCF was evaluated with six neurocognitive tests. Mixed model analyses were conducted to determine statistical significance (p = .01). Meaningful clinical important differences (MCIDs) were applied for changes in HRQoL and NCF data, while toxicities were compared to baseline values. RESULTS In total, 50 patients were enrolled. Overall HRQoL (p = .357) nor its domains (physical, p = .643; role, p = .069; emotional, p = .254; cognitive, p = 494; social, p = .735) changed significantly over time. Meaningful improvements in overall HRQoL were seen in 22, 38 and 39% and deteriorations in 22, 5 and 28% of patients at 2-3, 6 and 12 months respectively post-treatment. Overall toxicity (p = .007), lack of appetite (p = .001), nausea (p = .004) and dysphagia (p = .000) significantly decreased over time. Treatment caused acute toxicity, such as dyspnoea (45%) and memory problems (42%), but also alleviated pre-existing symptoms, including lack of appetite (32%), anxiety (29%) and depression (28%) at 2/3 months. The NCF domains of visual memory (p = .000) and cognitive processing speed (p = .000) showed significant improvements over time. In terms of MCIDs, at 2-3 months (18%) and 6 months (15%), verbal memory was particularly impacted; at 12 months, visual memory (18%) and executive function (18%) deteriorated primarily. CONCLUSION The results suggest that therapy has no significant negative impact on overall HRQoL, its domains, and NCF. About one-third of patients reported a meaningful improved HRQoL at 1 year post-treatment. Treatment caused toxicity, but also alleviated pre-existing symptoms.
Collapse
Affiliation(s)
| | - Veerle Surmont
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Wim Schrauwen
- Department of Medical Psychology, Ghent University Hospital, Ghent, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Massi MC, Gasperoni F, Ieva F, Paganoni AM, Zunino P, Manzoni A, Franco NR, Veldeman L, Ost P, Fonteyne V, Talbot CJ, Rattay T, Webb A, Symonds PR, Johnson K, Lambrecht M, Haustermans K, De Meerleer G, de Ruysscher D, Vanneste B, Van Limbergen E, Choudhury A, Elliott RM, Sperk E, Herskind C, Veldwijk MR, Avuzzi B, Giandini T, Valdagni R, Cicchetti A, Azria D, Jacquet MPF, Rosenstein BS, Stock RG, Collado K, Vega A, Aguado-Barrera ME, Calvo P, Dunning AM, Fachal L, Kerns SL, Payne D, Chang-Claude J, Seibold P, West CML, Rancati T. A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort. Front Oncol 2020; 10:541281. [PMID: 33178576 PMCID: PMC7593843 DOI: 10.3389/fonc.2020.541281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning.
Collapse
Affiliation(s)
- Michela Carlotta Massi
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
- Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy
| | - Francesca Gasperoni
- Medical Research Council-Biostatistic Unit, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ieva
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
- Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy
- CHRP-National Center for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Anna Maria Paganoni
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
- Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy
- CHRP-National Center for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Paolo Zunino
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
| | - Andrea Manzoni
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
| | - Nicola Rares Franco
- Modelling and Scientific Computing Laboratory, Math Department, Politecnico di Milano, Milan, Italy
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Valérie Fonteyne
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Christopher J. Talbot
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Tim Rattay
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Adam Webb
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Paul R. Symonds
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Kerstie Johnson
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk de Ruysscher
- Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Ben Vanneste
- Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Evert Van Limbergen
- Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, Manchester Academic Health Science Centre, Christie Hospital, University of Manchester, Manchester, United Kingdom
| | - Rebecca M. Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, Manchester Academic Health Science Centre, Christie Hospital, University of Manchester, Manchester, United Kingdom
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Avuzzi
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Giandini
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Valdagni
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology, Montpellier Cancer Institute, Univ Montpellier MUSE, Grant INCa_Inserm_DGOS_12553, Inserm U1194, Montpellier, France
| | - Marie-Pierre Farcy Jacquet
- Department of Radiation Oncology, University Federation of Radiation Oncology, CHU Caremeau, Nîmes, France
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Richard G. Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kayla Collado
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel Elías Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica (USC), Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Calvo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Alison M. Dunning
- Strangeways Research Labs, Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Laura Fachal
- Strangeways Research Labs, Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Sarah L. Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, New York, NY, United States
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research (CIGMR), University of Manchester, Manchester, United Kingdom
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catharine M. L. West
- Translational Radiobiology Group, Division of Cancer Sciences, Manchester Academic Health Science Centre, Christie Hospital, University of Manchester, Manchester, United Kingdom
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
16
|
Wong G, Lam E, Karam I, Yee C, Drost L, Tam S, Lam H, McCarvell A, McKenzie E, Chow E. The impact of smoking on adjuvant breast cancer radiation treatment: A systematic review. Cancer Treat Res Commun 2020; 24:100185. [PMID: 32593846 DOI: 10.1016/j.ctarc.2020.100185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The influence of cigarette smoking on cancer risk has been well-studied. Similarly, exposure to ionizing radiation from radiotherapy (RT) can produce detrimental effects on an individual's health. In patients administered RT, there has been an observed relationship in other primary carcinomas. The purpose of this systematic review was to summarize the influence of cigarette smoking on outcomes post adjuvant RT in breast cancer patients. METHODS OVID Medline, Cochrane and Embase were searched and 1893 articles were identified. A total of 71 articles were included in the review. Study type, published year and sample size, age, systemic therapies, RT techniques and treatment side effects were collected if available. RESULTS The review found 198 different outcomes which fell into 7 categories and similar outcomes were recorded. 40% of skin reaction outcomes, 50% of cardiovascular outcomes, 71% of reconstruction outcomes, 29% of pulmonary function outcomes, 33% of mortality outcomes and 42% of secondary recurrence outcomes reported significant differences between smokers and non-smokers. None of the articles reported non-smokers to have a higher risk than smokers. CONCLUSION Cigarette smoking can pose a higher risk of post-treatment complications that can influence an individual's quality of life, survival rate and/or recurrence risk. This review further assessed the impact of smoking on various patient outcomes and side-effects in the adjuvant breast RT setting. The information provided in this review suggest that smoking cessation programs would help educate patients to understand their risks of being a current or former smoker when undergoing RT.
Collapse
Affiliation(s)
- Gina Wong
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Emily Lam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Irene Karam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Caitlin Yee
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leah Drost
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Samantha Tam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Henry Lam
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alyson McCarvell
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Erin McKenzie
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Edward Chow
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Vogelius IR, Petersen J, Bentzen SM. Harnessing data science to advance radiation oncology. Mol Oncol 2020; 14:1514-1528. [PMID: 32255249 PMCID: PMC7332210 DOI: 10.1002/1878-0261.12685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
Radiation oncology, a major treatment modality in the care of patients with malignant disease, is a technology‐ and computer‐intensive medical specialty. As such, it should lend itself ideally to data science methods, where computer science, statistics, and clinical knowledge are combined to advance state‐of‐the‐art care. Nevertheless, data science methods in radiation oncology research are still in their infancy and successful applications leading to improved patient care remain scarce. Here, we discuss data interoperability issues within and across organizational boundaries that hamper the introduction of big data and data science techniques in radiation oncology. At the semantic level, creating common underlying models and codification of the data, including the use of data elements with standardized definitions, an ontology, remains a work in progress. Methodological issues in data science and in the use of large population‐based health data registries are identified. We show that data science methods and big data cannot replace randomized clinical trials in comparative effectiveness research by reviewing a series of instances where the outcomes of big data analyses and randomized trials are at odds. We also discuss the modern wave of machine learning and artificial intelligence as represented by deep learning and convolutional neural networks. Finally, we identify promising research avenues and remain optimistic that the data sources in radiation oncology can be linked to yield important insights in the near future. We argue that data science will be a valuable complement to, but not a replacement of, the traditional hypothesis‐driven translational research chain and the randomized clinical trials that form the backbone of evidence‐based medicine.
Collapse
Affiliation(s)
- Ivan R. Vogelius
- Deptartment of OncologyRigshospitaletCopenhagenDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Jens Petersen
- Deptartment of Computer ScienceUniversity of CopenhagenDenmark
| | - Søren M. Bentzen
- Department of Epidemiology & Public HealthGreenebaum Cancer CenterUniversity of Maryland BaltimoreMDUSA
| |
Collapse
|
18
|
Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, Pandey G, Bentzen SM, Janelsins M, Elliott RM, Pharoah PDP, Burnet NG, Dearnaley DP, Gulliford SL, Hall E, Sydes MR, Aguado-Barrera ME, Gómez-Caamaño A, Carballo AM, Peleteiro P, Lobato-Busto R, Stock R, Stone NN, Ostrer H, Usmani N, Singhal S, Tsuji H, Imai T, Saito S, Eeles R, DeRuyck K, Parliament M, Dunning AM, Vega A, Rosenstein BS, West CML. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J Natl Cancer Inst 2020; 112:179-190. [PMID: 31095341 PMCID: PMC7019089 DOI: 10.1093/jnci/djz075] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies. METHODS We conducted an individual patient data meta-analysis of six genome-wide association studies (n = 3871) in men of European ancestry who underwent radiotherapy for prostate cancer. Radiotoxicities (increased urinary frequency, decreased urinary stream, hematuria, rectal bleeding) were graded prospectively. We used grouped relative risk models to test associations with approximately 6 million genotyped or imputed variants (time to first grade 2 or higher toxicity event). Variants with two-sided Pmeta less than 5 × 10-8 were considered statistically significant. Bayesian false discovery probability provided an additional measure of confidence. Statistically significant variants were evaluated in three Japanese cohorts (n = 962). All statistical tests were two-sided. RESULTS Meta-analysis of the European ancestry cohorts identified three genomic signals: single nucleotide polymorphism rs17055178 with rectal bleeding (Pmeta = 6.2 × 10-10), rs10969913 with decreased urinary stream (Pmeta = 2.9 × 10-10), and rs11122573 with hematuria (Pmeta = 1.8 × 10-8). Fine-scale mapping of these three regions was used to identify another independent signal (rs147121532) associated with hematuria (Pconditional = 4.7 × 10-6). Credible causal variants at these four signals lie in gene-regulatory regions, some modulating expression of nearby genes. Previously identified variants showed consistent associations (rs17599026 with increased urinary frequency, rs7720298 with decreased urinary stream, rs1801516 with overall toxicity) in new cohorts. rs10969913 and rs17599026 had similar effects in the photon-treated Japanese cohorts. CONCLUSIONS This study increases the understanding of the architecture of common genetic variants affecting radiotoxicity, points to novel radio-pathogenic mechanisms, and develops risk models for testing in clinical studies. Further multinational radiogenomics studies in larger cohorts are worthwhile.
Collapse
Affiliation(s)
- Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | | | | | - Gillian C Barnett
- Department of Public Health and Primary Care
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrea Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | | | - Ke Hao
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehmet Eren Ahsen
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore
| | - Michelle Janelsins
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, NY
| | - Rebecca M Elliott
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Neil G Burnet
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - David P Dearnaley
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Sarah L Gulliford
- Academic Urooncology Unit, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | - Richard Stock
- Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain; Department of Radiation Oncology
| | | | - Harry Ostrer
- Icahn School of Medicine at Mount Sinai, New York, NY; Departments of Pathology and Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Nawaid Usmani
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Sandeep Singhal
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Hiroshi Tsuji
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Imai
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shiro Saito
- Department of Urology, National Tokyo Medical Center, Tokyo, Japan
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Kim DeRuyck
- Departments of Basic Medical Sciences and Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-Servizo Galego de Saude (SERGAS & Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Barry S Rosenstein
- Departments of Radiation Oncology & Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Catharine M L West
- Division of Cancer Sciences, the University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| |
Collapse
|
19
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
20
|
Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM, Bernstein JL, Evans JD, Gerber NK, Kerns SL, Keen J, Litton JK, Reiner AS, Riaz N, Rosenstein BS, Sawakuchi GO, Shaitelman SF, Powell SN, Woodward WA. The Implications of Genetic Testing on Radiation Therapy Decisions: A Guide for Radiation Oncologists. Int J Radiat Oncol Biol Phys 2019; 105:698-712. [PMID: 31381960 DOI: 10.1016/j.ijrobp.2019.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
The advent of affordable and rapid next-generation DNA sequencing technology, along with the US Supreme Court ruling invalidating gene patents, has led to a deluge of germline and tumor genetic variant tests that are being rapidly incorporated into clinical cancer decision-making. A major concern for clinicians is whether the presence of germline mutations may increase the risk of radiation toxicity or secondary malignancies. Because scarce clinical data exist to inform decisions at this time, the American Society for Radiation Oncology convened a group of radiation science experts and clinicians to summarize potential issues, review relevant data, and provide guidance for adult patients and their care teams regarding the impact, if any, that genetic testing should have on radiation therapy recommendations. During the American Society for Radiation Oncology workshop, several main points emerged, which are discussed in this manuscript: (1) variants of uncertain significance should be considered nondeleterious until functional genomic data emerge to demonstrate otherwise; (2) possession of germline alterations in a single copy of a gene critical for radiation damage responses does not necessarily equate to increased risk of radiation-induced toxicity; (3) deleterious ataxia-telangiesctasia gene mutations may modestly increase second cancer risk after radiation therapy, and thus follow-up for these patients after indicated radiation therapy should include second cancer screening; (4) conveying to patients the difference between relative and absolute risk is critical to decision-making; and (5) more work is needed to assess the impact of tumor somatic alterations on the probability of response to radiation therapy and the potential for individualization of radiation doses. Data on radiosensitivity related to specific genetic mutations is also briefly discussed.
Collapse
Affiliation(s)
- Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Catharine M West
- Division of Cancer Sciences, National Institute for Health Research Manchester Biomedical Research Centre, University of Manchester, Christie National Health Service Foundation Trust Hospital, Manchester, UK
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohamed E Abazeed
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio; Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, Ohio
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jaden D Evans
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Radiation Oncology and Precision Genomics, Intermountain Healthcare, Ogden, Utah
| | - Naamit K Gerber
- Department of Radiation Oncology, New York University Langone Health, New York, New York
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Judy Keen
- Scientific Affairs, American Society for Radiation Oncology, Arlington, Virginia
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gabriel O Sawakuchi
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simona F Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
21
|
Seibold P, Auvinen A, Averbeck D, Bourguignon M, Hartikainen JM, Hoeschen C, Laurent O, Noël G, Sabatier L, Salomaa S, Blettner M. Clinical and epidemiological observations on individual radiation sensitivity and susceptibility. Int J Radiat Biol 2019; 96:324-339. [PMID: 31539290 DOI: 10.1080/09553002.2019.1665209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: To summarize existing knowledge and to understand individual response to radiation exposure, the MELODI Association together with CONCERT European Joint Programme has organized a workshop in March 2018 on radiation sensitivity and susceptibility.Methods: The workshop reviewed the current evidence on this matter, to inform the MELODI Strategic Research Agenda (SRA), to determine social and scientific needs and to come up with recommendations for suitable and feasible future research initiatives to be taken for the benefit of an improved medical diagnosis and treatment as well as for radiation protection.Results: The present paper gives an overview of the current evidence in this field, including potential effect modifiers such as age, gender, genetic profile, and health status of the exposed population, based on clinical and epidemiological observations.Conclusion: The authors conclude with the following recommendations for the way forward in radiation research: (a) there is need for large (prospective) cohort studies; (b) build upon existing radiation research cohorts; (c) use data from well-defined cohorts with good exposure assessment and biological material already collected; (d) focus on study quality with standardized data collection and reporting; (e) improve statistical analysis; (f) cooperation between radiobiology and epidemiology; and (g) take consequences of radiosensitivity and radiosusceptibility into account.
Collapse
Affiliation(s)
- Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anssi Auvinen
- Faculty of Social Sciences, Tampere University, Tampere, Finland.,STUK - Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Dietrich Averbeck
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DRF, Fontenay-aux-Roses Cedex, France
| | - Michel Bourguignon
- Department of Biophysics, Université Paris Saclay (UVSQ), Versailles, France
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.,Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Christoph Hoeschen
- Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - Olivier Laurent
- Laboratoire d'épidémiologie des Rayonnements Ionisants, Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LEPID, BP17, 92260, Fontenay aux Roses, France
| | - Georges Noël
- Département Universitaire de Radiothérapie, Centre Paul-Strauss, Unicancer, Strasbourg cedex, France
| | - Laure Sabatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DRF, Fontenay-aux-Roses Cedex, France
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University of Mainz, Mainz, Germany
| |
Collapse
|
22
|
Vittrup AS, Kirchheiner K, Fokdal LU, Bentzen SM, Nout RA, Pötter R, Tanderup K. Reporting of Late Morbidity After Radiation Therapy in Large Prospective Studies: A Descriptive Review of the Current Status. Int J Radiat Oncol Biol Phys 2019; 105:957-967. [PMID: 31470092 DOI: 10.1016/j.ijrobp.2019.08.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this review was to evaluate the current status of reporting prospectively assessed late morbidity after curative radiation therapy in large clinical studies. METHODS AND MATERIALS A descriptive review on publications from 10 high-impact journals with a primary or partial focus on radiation therapy published between December 1, 2015, and November 30, 2017, was conducted. Publications were considered eligible if they reported prospectively assessed late morbidity after curative radiation therapy and included ≥200 patients with cancer of any type. Full text publication and supplementary material were analyzed according to items based on extensions to the Consolidated Standards of Reporting Trials (CONSORT) statement regarding reporting of harms and patient reported outcomes. RESULTS Overall, 802 publications were identified in PubMed; of these, 69 met the eligibility criteria. Mild and moderate morbidity were reported in 40% and 57% of publications; aggregated endpoints instead of individual endpoints were reported in 23%. In 43% of publications, crude incidence of worst grade of morbidity was used as the only statistical method for summarizing physician-assessed morbidity. Duration of morbidity or recurrent events were not reported in any of the publications. CONCLUSIONS Comprehensive, quantitative reporting of late morbidity after radiation therapy is challenging because of the high dimensionality and time evolution of the range of normal tissue effects. The following suggestions and recommendations are proposed: (1) report on individual severity grades, including moderate and mild; (2) use patient reported outcomes in complement to physician-assessed morbidity; (3) report on individual symptoms/endpoints on top of aggregated endpoints; (4) report on duration of morbidity or recurrent events; (5) take steps toward a consensus on severity grading scales/patient questionnaires; (6) use time to event analysis and prevalence rates; (7) report or use statistical methods accounting for pretreatment morbidity when relevant.
Collapse
Affiliation(s)
| | - Kathrin Kirchheiner
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Austria
| | - Lars U Fokdal
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Remi A Nout
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard Pötter
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna, Austria
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
23
|
Burnet NG, Barnett GC, Summersgill HR, Dunning AM, West CML. RAPPER - A Success Story for Collaborative Translational Radiotherapy Research. Clin Oncol (R Coll Radiol) 2019; 31:416-419. [PMID: 31101404 DOI: 10.1016/j.clon.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 01/28/2023]
Affiliation(s)
- N G Burnet
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - H R Summersgill
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | - A M Dunning
- University of Cambridge Department of Oncology, Strangeways Research Laboratory, Cambridge, UK
| | - C M L West
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
24
|
Fukunaga H, Yokoya A, Taki Y, Butterworth KT, Prise KM. Precision Radiotherapy and Radiation Risk Assessment: How Do We Overcome Radiogenomic Diversity? TOHOKU J EXP MED 2019; 247:223-235. [PMID: 30971620 DOI: 10.1620/tjem.247.223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Precision medicine is a rapidly developing area that aims to deliver targeted therapies based on individual patient characteristics. However, current radiation treatment is not yet personalized; consequently, there is a critical need for specific patient characteristics of both tumor and normal tissues to be fully incorporated into dose prescription. Furthermore, current risk assessment following environmental, occupational, or accidental exposures to radiation is based on population effects, and does not account for individual diversity underpinning radiosensitivity. The lack of personalized approaches in both radiotherapy and radiation risk assessment resulted in the current situation where a population-based model, effective dose, is being used. In this review article, to stimulate scientific discussion for precision medicine in both radiotherapy and radiation risk assessment, we propose a novel radiological concept and metric - the personalized dose and the personalized risk index - that incorporate individual physiological, lifestyle-related and genomic variations and radiosensitivity, outlining the potential clinical application for precision medicine. We also review on recent progress in both genomics and biobanking research, which is promising for providing novel insights into individual radiosensitivity, and for creating a novel conceptual framework of precision radiotherapy and radiation risk assessment.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Centre for Cancer Research and Cell Biology, Queen's University Belfast
| | - Akinari Yokoya
- Tokai Quantum Beam Science Center, National Institutes for Quantum and Radiological Science and Technology
| | - Yasuyuki Taki
- Institute of Development, Aging and Cancer, Tohoku University
| | | | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast
| |
Collapse
|
25
|
Agrawal A. Oncoplastic breast surgery and radiotherapy-Adverse aesthetic outcomes, proposed classification of aesthetic components, and causality attribution. Breast J 2019; 25:207-218. [DOI: 10.1111/tbj.13193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Amit Agrawal
- Cambridge Breast Unit, Cambridge University Hospitals; Cambridge UK
| |
Collapse
|
26
|
Mbah C, De Ruyck K, De Schrijver S, De Sutter C, Schiettecatte K, Monten C, Paelinck L, De Neve W, Thierens H, West C, Amorim G, Thas O, Veldeman L. A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients. Acta Oncol 2018; 57:604-612. [PMID: 29299946 DOI: 10.1080/0284186x.2017.1417633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. METHODS AND MATERIALS In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. RESULTS With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. DISCUSSION The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.
Collapse
Affiliation(s)
- Chamberlain Mbah
- a Department of Radiotherapy and Experimental Cancer Research , Ghent University , Ghent , Belgium
- b Department of Mathematical Modelling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering , University of Ghent , Ghent , Belgium
| | - Kim De Ruyck
- c Department of Basic Medical Sciences, Faculty of Health Sciences , University of Ghent , Ghent , Belgium
| | - Silke De Schrijver
- c Department of Basic Medical Sciences, Faculty of Health Sciences , University of Ghent , Ghent , Belgium
| | - Charlotte De Sutter
- a Department of Radiotherapy and Experimental Cancer Research , Ghent University , Ghent , Belgium
| | - Kimberly Schiettecatte
- a Department of Radiotherapy and Experimental Cancer Research , Ghent University , Ghent , Belgium
| | - Chris Monten
- a Department of Radiotherapy and Experimental Cancer Research , Ghent University , Ghent , Belgium
- d Department of Radiation Oncology , Ghent University Hospital , Ghent , Belgium
| | - Leen Paelinck
- d Department of Radiation Oncology , Ghent University Hospital , Ghent , Belgium
| | - Wilfried De Neve
- a Department of Radiotherapy and Experimental Cancer Research , Ghent University , Ghent , Belgium
- d Department of Radiation Oncology , Ghent University Hospital , Ghent , Belgium
| | - Hubert Thierens
- c Department of Basic Medical Sciences, Faculty of Health Sciences , University of Ghent , Ghent , Belgium
| | - Catharine West
- e Translational Radiobiology Group , Institute of Cancer Sciences Radiotherapy Related Research Christie Hospital NHS Trust , Manchester , UK
| | - Gustavo Amorim
- b Department of Mathematical Modelling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering , University of Ghent , Ghent , Belgium
| | - Olivier Thas
- b Department of Mathematical Modelling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering , University of Ghent , Ghent , Belgium
- f National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics , University of Wollongong , Wollongong , Australia
| | - Liv Veldeman
- d Department of Radiation Oncology , Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
27
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|
28
|
Abstract
The overall goal of radiogenomics is the identification of genomic markers that are predictive for the development of adverse effects resulting from cancer treatment with radiation. The principal rationale for a focus on toxicity in radiogenomics is that for many patients treated with radiation, especially individuals diagnosed with early-stage cancers, the survival rates are high, and therefore a substantial number of people will live for a significant period of time beyond treatment. However, many of these patients could suffer from debilitating complications resulting from radiotherapy. Work in radiogenomics has greatly benefited from creation of the Radiogenomics Consortium (RGC) that includes investigators at multiple institutions located in a variety of countries. The common goal of the RGC membership is to share biospecimens and data so as to achieve large-scale studies with increased statistical power to enable identification of relevant genomic markers. A major aim of research in radiogenomics is the development of a predictive instrument to enable identification of people who are at greatest risk for adverse effects resulting from cancer treatment using radiation. It is anticipated that creation of a predictive assay characterized by a high level of sensitivity and specificity will improve precision radiotherapy and assist patients and their physicians to select the optimal treatment for each individual.
Collapse
Affiliation(s)
- Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
29
|
Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett 2017; 403:37-47. [DOI: 10.1016/j.canlet.2017.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022]
|
30
|
Mohan A, Forde E. Adherence to ICRU-83 reporting recommendations is inadequate in prostate dosimetry studies. Pract Radiat Oncol 2017; 8:e133-e138. [PMID: 28951088 DOI: 10.1016/j.prro.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aimed to investigate if the International Commission on Radiation Units and Measurements (ICRU) 83 recommendations for reporting dosimetric endpoints are followed in published prostate studies using modulated techniques. METHODS AND MATERIALS Prostate dosimetry studies using inverse planning techniques were identified through a search of PubMed and EMBASE databases. These studies were analyzed to determine if the endpoints reported followed the recommendations outlined in ICRU-83. A data collection form was completed and any alternative methods of reporting were recorded. Results were analyzed using frequencies, percentages, and Fisher exact tests. RESULTS The ICRU-83 recommendations were not followed in the majority of studies. For the planning target volume, the dose received by 2% of the volume, the dose received by 98% of the volume, and the dose received by 50% of the volume were reported in 22.9%, 18.8%, and 8.3% of studies, respectively. The adherence to reporting for the clinical target volume was below 5% for all specifications. The mean dose, the dose received by a specified volume, and dose received by 2% of the volume for organs at risk were reported in 47.1%, 83.3%, and 16.7%, respectively. The homogeneity index was used in 14.6% of studies. Conformity was discussed in 45.8% of studies. Confidence intervals were included in 37.5% of studies. CONCLUSIONS The reporting recommendations of ICRU-83 were not adhered to in the majority of the dosimetry studies reviewed, highlighting the need for greater diligence for authors and reviewers when publishing planning outcomes for modulated techniques.
Collapse
Affiliation(s)
- Aishling Mohan
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Ireland
| | - Elizabeth Forde
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
31
|
Azria D, Lapierre A, Gourgou S, De Ruysscher D, Colinge J, Lambin P, Brengues M, Ward T, Bentzen SM, Thierens H, Rancati T, Talbot CJ, Vega A, Kerns SL, Andreassen CN, Chang-Claude J, West CML, Gill CM, Rosenstein BS. Data-Based Radiation Oncology: Design of Clinical Trials in the Toxicity Biomarkers Era. Front Oncol 2017; 7:83. [PMID: 28497027 PMCID: PMC5406456 DOI: 10.3389/fonc.2017.00083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The ability to stratify patients using a set of biomarkers, which predict that toxicity risk would allow for radiotherapy (RT) modulation and serve as a valuable tool for precision medicine and personalized RT. For patients presenting with tumors with a low risk of recurrence, modifying RT schedules to avoid toxicity would be clinically advantageous. Indeed, for the patient at low risk of developing radiation-associated toxicity, use of a hypofractionated protocol could be proposed leading to treatment time reduction and a cost-utility advantage. Conversely, for patients predicted to be at high risk for toxicity, either a more conformal form or a new technique of RT, or a multidisciplinary approach employing surgery could be included in the trial design to avoid or mitigate RT when the potential toxicity risk may be higher than the risk of disease recurrence. In addition, for patients at high risk of recurrence and low risk of toxicity, dose escalation, such as a greater boost dose, or irradiation field extensions could be considered to improve local control without severe toxicities, providing enhanced clinical benefit. In cases of high risk of toxicity, tumor control should be prioritized. In this review, toxicity biomarkers with sufficient evidence for clinical testing are presented. In addition, clinical trial designs and predictive models are described for different clinical situations.
Collapse
Affiliation(s)
- David Azria
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Ariane Lapierre
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Sophie Gourgou
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Dirk De Ruysscher
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
- Radiation Oncology, KU Leuven, Leuven, Belgium
| | - Jacques Colinge
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Philippe Lambin
- Department of Radiation Oncology, Maastricht University Medical Centre, MAASTRO Clinic, Maastricht, Netherlands
| | - Muriel Brengues
- Department of Radiation Oncology, Radiobiology Unit, Biometric and Bio-informatic Divisions, Montpellier Cancer Institute (ICM), IRCM, INSERM U1194, Montpellier, France
| | - Tim Ward
- Patient Advocate, Manchester, UK
| | - Søren M. Bentzen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharine M. L. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Trust, Manchester, UK
| | - Corey M. Gill
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Andreassen CN, Rosenstein BS, Kerns SL, Ostrer H, De Ruysscher D, Cesaretti JA, Barnett GC, Dunning AM, Dorling L, West CML, Burnet NG, Elliott R, Coles C, Hall E, Fachal L, Vega A, Gómez-Caamaño A, Talbot CJ, Symonds RP, De Ruyck K, Thierens H, Ost P, Chang-Claude J, Seibold P, Popanda O, Overgaard M, Dearnaley D, Sydes MR, Azria D, Koch CA, Parliament M, Blackshaw M, Sia M, Fuentes-Raspall MJ, Ramon Y Cajal T, Barnadas A, Vesprini D, Gutiérrez-Enríquez S, Mollà M, Díez O, Yarnold JR, Overgaard J, Bentzen SM, Alsner J. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol 2016; 121:431-439. [PMID: 27443449 PMCID: PMC5559879 DOI: 10.1016/j.radonc.2016.06.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/18/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Several small studies have indicated that the ATM rs1801516 SNP is associated with risk of normal tissue toxicity after radiotherapy. However, the findings have not been consistent. In order to test this SNP in a well-powered study, an individual patient data meta-analysis was carried out by the International Radiogenomics Consortium. MATERIALS AND METHODS The analysis included 5456 patients from 17 different cohorts. 2759 patients were given radiotherapy for breast cancer and 2697 for prostate cancer. Eight toxicity scores (overall toxicity, acute toxicity, late toxicity, acute skin toxicity, acute rectal toxicity, telangiectasia, fibrosis and late rectal toxicity) were analyzed. Adjustments were made for treatment and patient related factors with potential impact on the risk of toxicity. RESULTS For all endpoints except late rectal toxicity, a significantly increased risk of toxicity was found for carriers of the minor (Asn) allele with odds ratios of approximately 1.5 for acute toxicity and 1.2 for late toxicity. The results were consistent with a co-dominant pattern of inheritance. CONCLUSION This study convincingly showed a significant association between the ATM rs1801516 Asn allele and increased risk of radiation-induced normal tissue toxicity.
Collapse
Affiliation(s)
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, USA; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, New York, USA
| | - Dirk De Ruysscher
- Department of Radiotherapy (Maastro Clinic), Maastricht University Medical Center, The Netherlands
| | | | - Gillian C Barnett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK; Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK; Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, UK
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, UK
| | - Neil G Burnet
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Rebecca Elliott
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Charlotte Coles
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Emma Hall
- Clinical Trials & Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, UK
| | - Laura Fachal
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Ana Vega
- Fundacion Publica Galega de Medicina Xenomica-SERGAS, Grupo de Medicina Xenomica-USC, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | | | - R Paul Symonds
- Department of Cancer Studies, University of Leicester, UK
| | - Kim De Ruyck
- Department of Basic Medical Sciences, Ghent University, Belgium
| | - Hubert Thierens
- Department of Basic Medical Sciences, Ghent University, Belgium
| | - Piet Ost
- Department of Radiotherapy, Ghent University Hospital, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg, University (UCCH), University Medical Center Hamburg-Eppendorf, Germany
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - David Dearnaley
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Azria
- Department of Radiation Oncology and Medical Physics, Institut regional du Cancer Montpellier, France
| | - Christine Anne Koch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Matthew Parliament
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Michael Blackshaw
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Michael Sia
- Department of Radiation Oncology, British Columbia Cancer Agency Abbotsford Clinic, Canada
| | | | - Teresa Ramon Y Cajal
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Agustin Barnadas
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Spain
| | - Meritxell Mollà
- Department of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - John R Yarnold
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Søren M Bentzen
- Greenebaum Cancer Center and Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
33
|
Herskind C, Talbot CJ, Kerns SL, Veldwijk MR, Rosenstein BS, West CML. Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity? Cancer Lett 2016; 382:95-109. [PMID: 26944314 PMCID: PMC5016239 DOI: 10.1016/j.canlet.2016.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review 'omics' approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different 'omics' approaches may be more efficient in identifying critical pathways than pathway analysis based on single 'omics' data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterised by different mechanisms. Thus 'omics' and functional approaches may synergise if they are integrated into radiogenomics 'systems biology' to facilitate the goal of individualised radiotherapy.
Collapse
Affiliation(s)
- Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | | | - Sarah L Kerns
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Barry S Rosenstein
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, New York University School of Medicine, USA; Department of Dermatology, Mount Sinai School of Medicine, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| |
Collapse
|
34
|
Kerns SL, Dorling L, Fachal L, Bentzen S, Pharoah PDP, Barnes DR, Gómez-Caamaño A, Carballo AM, Dearnaley DP, Peleteiro P, Gulliford SL, Hall E, Michailidou K, Carracedo Á, Sia M, Stock R, Stone NN, Sydes MR, Tyrer JP, Ahmed S, Parliament M, Ostrer H, Rosenstein BS, Vega A, Burnet NG, Dunning AM, Barnett GC, West CML. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine 2016; 10:150-63. [PMID: 27515689 PMCID: PMC5036513 DOI: 10.1016/j.ebiom.2016.07.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leila Dorling
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Laura Fachal
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK; Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Søren Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, Baltimore, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ana M Carballo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - David P Dearnaley
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5NG, UK
| | - Paula Peleteiro
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Sarah L Gulliford
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5NG, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Spain
| | - Michael Sia
- Department of Radiation Oncology, Tom Baker Cancer Center, University of Calgary, Calgary, Canada
| | - Richard Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson N Stone
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew R Sydes
- Cancer and Other Non-Infectious Diseases, MRC Clinical Trials Unit, London WC2B 6NH, UK
| | - Jonathan P Tyrer
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Shahana Ahmed
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthew Parliament
- Division of Radiation Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA
| | - Ana Vega
- Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Department of Radiation Oncology, Tom Baker Cancer Center, University of Calgary, Calgary, Canada
| | - Neil G Burnet
- University of Cambridge, Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Gillian C Barnett
- Department of Oncology, Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK; Department of Oncology, Box 193, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB0 0QQ, UK
| | - Catharine M L West
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester M20 4BX, UK.
| |
Collapse
|
35
|
Ahmed M, Dorling L, Kerns S, Fachal L, Elliott R, Partliament M, Rosenstein BS, Vega A, Gómez-Caamaño A, Barnett G, Dearnaley DP, Hall E, Sydes M, Burnet N, Pharoah PDP, Eeles R, West CML. Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity. Br J Cancer 2016; 114:1165-74. [PMID: 27070714 PMCID: PMC4865979 DOI: 10.1038/bjc.2016.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous germline single-nucleotide polymorphisms increase susceptibility to prostate cancer, some lying near genes involved in cellular radiation response. This study investigated whether prostate cancer patients with a high genetic risk have increased toxicity following radiotherapy. METHODS The study included 1560 prostate cancer patients from four radiotherapy cohorts: RAPPER (n=533), RADIOGEN (n=597), GenePARE (n=290) and CCI (n=150). Data from genome-wide association studies were imputed with the 1000 Genomes reference panel. Individuals were genetically similar with a European ancestry based on principal component analysis. Genetic risks were quantified using polygenic risk scores. Regression models tested associations between risk scores and 2-year toxicity (overall, urinary frequency, decreased stream, rectal bleeding). Results were combined across studies using standard inverse-variance fixed effects meta-analysis methods. RESULTS A total of 75 variants were genotyped/imputed successfully. Neither non-weighted nor weighted polygenic risk scores were associated with late radiation toxicity in individual studies (P>0.11) or after meta-analysis (P>0.24). No individual variant was associated with 2-year toxicity. CONCLUSION Patients with a high polygenic susceptibility for prostate cancer have no increased risk for developing late radiotherapy toxicity. These findings suggest that patients with a genetic predisposition for prostate cancer, inferred by common variants, can be safely treated using current standard radiotherapy regimens.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, 123 Old Brompton Road, London SW7 3RP, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Sarah Kerns
- Department of Radiation Oncology, University of Rochester Medical Centre, Saunders Research Building, 265 Crittenden Boulevard, Rochester, NY 14620, USA
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
- Genomic Medicine Group, CIBERER, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rebecca Elliott
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
| | | | - Barry S Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, IDIS, CIBERER, Santiago de Compostela 15706, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Gill Barnett
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - David P Dearnaley
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, 123 Old Brompton Road, London SW7 3RP, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Matt Sydes
- Clinical Trials Unit (CTU), Medical Research Council, London WC2B 6NH, UK
| | - Neil Burnet
- Department of Oncology, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Ros Eeles
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, 123 Old Brompton Road, London SW7 3RP, UK
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
36
|
Dorling L, Barnett GC, Michailidou K, Coles CE, Burnet NG, Yarnold J, Elliott RM, Dunning AM, Pharoah PDP, West CM. Patients with a High Polygenic Risk of Breast Cancer do not have An Increased Risk of Radiotherapy Toxicity. Clin Cancer Res 2016; 22:1413-20. [PMID: 26510858 PMCID: PMC4751620 DOI: 10.1158/1078-0432.ccr-15-1080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE It has been hypothesized that increased predisposition to breast cancer may correlate with radiosensitivity, and thus increased risk of toxicity following breast irradiation. This study investigated the relationship between common breast cancer risk variants and radiotherapy toxicity. EXPERIMENTAL DESIGN SNP genotypes were determined in female breast cancer patients from the RAPPER (Radiogenomics: Assessment of polymorphisms for predicting the effects of radiotherapy) study using the Illumina CytoSNP12 genome-wide array. A further 15,582,449 genotypes were imputed using the 1000 Genomes Project reference panel. Patient (n = 1,160) polygenic risk scores were generated by summing risk-allele dosages, both unweighted and weighted by published effect sizes for breast cancer risk. Regression models were used to test associations of individual variants and polygenic risk scores with acute and late toxicity phenotypes (telangiectasia, breast edema, photographically assessed shrinkage, induration, pigmentation, breast pain, breast sensitivity, and overall toxicity). RESULTS Genotypes of 90 confirmed breast cancer risk variants were accurately determined and polygenic risk scores were approximately normally distributed. Variant rs6964587 was associated with increased breast edema 5 years following radiotherapy (Beta, 0.22; 95% confidence interval, 0.09-0.34; P = 7 × 10(-4)). No other associations were found between individual variants or the unweighted (P > 0.17) or weighted (P > 0.13) polygenic risk score and radiotherapy toxicity. This study had >87% power to detect an association between the polygenic risk score (relative risk > 1.1) and toxicity. CONCLUSIONS Cancer patients with a high polygenic predisposition to breast cancer do not have an increased risk of radiotherapy toxicity up to 5 years following radiotherapy but individual variants may increase risk.
Collapse
Affiliation(s)
- Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom.
| | - Gillian C Barnett
- Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom. Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Charlotte E Coles
- Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Neil G Burnet
- University of Cambridge Department of Oncology, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - John Yarnold
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Rebecca M Elliott
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Catharine M West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
37
|
Bouffler SD. Evidence for variation in human radiosensitivity and its potential impact on radiological protection. Ann ICRP 2016; 45:280-9. [PMID: 26956676 DOI: 10.1177/0146645315623158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Radiological protection standards generally assume that all members of the population are equally sensitive to the adverse health effects associated with radiation exposure, recognising the age- and sex-related differences in sensitivity to radiation-induced cancer. It has become very clear over recent years that genetic and lifestyle factors can play important roles in the susceptibility of individuals to a range of diseases; as such, the same may apply to radiation-associated diseases. Evidence is accumulating from studies at many levels of biological organisation - cells, experimental organisms, and humans - that a range of radiosensitivity exists between individuals in the population. Consideration of improvements in radiological protection practices to take account of such differences will require the availability of robust and accurate ways to assess the sensitivity of an individual or population subgroup. In addition, there will need to be careful consideration of the ethical aspects relating to use of individual sensitivity information. These ethical considerations are very likely to be exposure context dependent, and require careful risk-benefit balance consideration before practical application.
Collapse
Affiliation(s)
- S D Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK
| |
Collapse
|
38
|
Barnett GC, Kerns SL, Noble DJ, Dunning AM, West CML, Burnet NG. Incorporating Genetic Biomarkers into Predictive Models of Normal Tissue Toxicity. Clin Oncol (R Coll Radiol) 2015; 27:579-87. [PMID: 26166774 DOI: 10.1016/j.clon.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
There is considerable variation in the level of toxicity patients experience for a given dose of radiotherapy, which is associated with differences in underlying individual normal tissue radiosensitivity. A number of syndromes have a large effect on clinical radiosensitivity, but these are rare. Among non-syndromic patients, variation is less extreme, but equivalent to a ±20% variation in dose. Thus, if individual normal tissue radiosensitivity could be measured, it should be possible to optimise schedules for individual patients. Early investigations of in vitro cellular radiosensitivity supported a link with tissue response, but individual studies were equivocal. A lymphocyte apoptosis assay has potential, and is currently under prospective validation. The investigation of underlying genetic variation also has potential. Although early candidate gene studies were inconclusive, more recent genome-wide association studies are revealing definite associations between genotype and toxicity and highlighting the potential for future genetic testing. Genetic testing and individualised dose prescriptions could reduce toxicity in radiosensitive patients, and permit isotoxic dose escalation to increase local control in radioresistant individuals. The approach could improve outcomes for half the patients requiring radical radiotherapy. As a number of patient- and treatment-related factors also affect the risk of toxicity for a given dose, genetic testing data will need to be incorporated into models that combine patient, treatment and genetic data.
Collapse
Affiliation(s)
- G C Barnett
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S L Kerns
- Rubin Center for Cancer Survivorship, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
39
|
Seibold P, Behrens S, Schmezer P, Helmbold I, Barnett G, Coles C, Yarnold J, Talbot CJ, Imai T, Azria D, Koch CA, Dunning AM, Burnet N, Bliss JM, Symonds RP, Rattay T, Suga T, Kerns SL, Bourgier C, Vallis KA, Sautter-Bihl ML, Claßen J, Debus J, Schnabel T, Rosenstein BS, Wenz F, West CM, Popanda O, Chang-Claude J. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients. Int J Radiat Oncol Biol Phys 2015; 92:1084-1092. [PMID: 26072091 DOI: 10.1016/j.ijrobp.2015.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 12/27/2022]
Abstract
PURPOSE To identify single-nucleotide polymorphisms (SNPs) in oxidative stress-related genes associated with risk of late toxicities in breast cancer patients receiving radiation therapy. METHODS AND MATERIALS Using a 2-stage design, 305 SNPs in 59 candidate genes were investigated in the discovery phase in 753 breast cancer patients from 2 prospective cohorts from Germany. The 10 most promising SNPs in 4 genes were evaluated in the replication phase in up to 1883 breast cancer patients from 6 cohorts identified through the Radiogenomics Consortium. Outcomes of interest were late skin toxicity and fibrosis of the breast, as well as an overall toxicity score (Standardized Total Average Toxicity). Multivariable logistic and linear regression models were used to assess associations between SNPs and late toxicity. A meta-analysis approach was used to summarize evidence. RESULTS The association of a genetic variant in the base excision repair gene XRCC1, rs2682585, with normal tissue late radiation toxicity was replicated in all tested studies. In the combined analysis of discovery and replication cohorts, carrying the rare allele was associated with a significantly lower risk of skin toxicities (multivariate odds ratio 0.77, 95% confidence interval 0.61-0.96, P=.02) and a decrease in Standardized Total Average Toxicity scores (-0.08, 95% confidence interval -0.15 to -0.02, P=.016). CONCLUSIONS Using a stage design with replication, we identified a variant allele in the base excision repair gene XRCC1 that could be used in combination with additional variants for developing a test to predict late toxicities after radiation therapy in breast cancer patients.
Collapse
Affiliation(s)
- Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Irmgard Helmbold
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Gillian Barnett
- Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, United Kingdom (UK)
| | - Charlotte Coles
- Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, United Kingdom (UK)
| | - John Yarnold
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | | | - Takashi Imai
- Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba, Japan
| | - David Azria
- Department of Radiation Oncology and Medical Physics, I.C.M. - Institut regional du Cancer Montpellier, Montpellier, France
| | - C Anne Koch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Neil Burnet
- Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, University of Cambridge, Cambridge, UK
| | - Judith M Bliss
- The Institute of Cancer Research, Clinical Trials and Statistics Unit, Sutton, UK
| | - R Paul Symonds
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Tim Rattay
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Tomo Suga
- Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba, Japan
| | - Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NH
| | - Celine Bourgier
- Department of Radiation Oncology and Medical Physics, I.C.M. - Institut regional du Cancer Montpellier, Montpellier, France
| | - Katherine A Vallis
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Oxford University, Oxford, UK
| | | | - Johannes Claßen
- Clinic for Radiation Therapy and Radiation Oncology, St. Vincentius-Kliniken gAG, Karlsruhe, Germany
| | - Juergen Debus
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schnabel
- Clinic for Radiotherapy and Radiation Oncology, Klinikum Ludwigshafen, Ludwigshafen am Rhein, Germany
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NH
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catharine M West
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
40
|
Dong L, Cui J, Tang F, Cong X, Han F. Ataxia telangiectasia-mutated gene polymorphisms and acute normal tissue injuries in cancer patients after radiation therapy: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 2015; 91:1090-8. [PMID: 25832699 DOI: 10.1016/j.ijrobp.2014.12.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE Studies of the association between ataxia telangiectasia-mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. METHODS AND MATERIALS Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. RESULTS The meta-analysis was conducted on the ATM polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. CONCLUSIONS Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was dependent on the incidence of the injury. These support the evidence of an association between the rs1801516 polymorphism and acute radiation injuries, encouraging further research of this topic.
Collapse
Affiliation(s)
- Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jingkun Cui
- Department of Internal Medicine, Nanling School District Hospital of Jilin University; Changchun, China
| | - Fengjiao Tang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaofeng Cong
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
41
|
Kodiyan J, Amber KT. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions. Antioxidants (Basel) 2015; 4:293-303. [PMID: 26783706 PMCID: PMC4665477 DOI: 10.3390/antiox4020293] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
Abstract
Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula's mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion.
Collapse
Affiliation(s)
- Joyson Kodiyan
- Miller School of Medicine, University of Miami, 1600 Northwest 10th Avenue, Miami, FL 33136, USA.
| | - Kyle T Amber
- Department of Medical Education, Macneal Hospital, 3231 South Euclid Avenue, Suite 203 Berwyn, IL 60402, USA.
| |
Collapse
|
42
|
van der Laan HP, Bijl HP, Steenbakkers RJHM, van der Schaaf A, Chouvalova O, Vemer-van den Hoek JGM, Gawryszuk A, van der Laan BFAM, Oosting SF, Roodenburg JLN, Wopken K, Langendijk JA. Acute symptoms during the course of head and neck radiotherapy or chemoradiation are strong predictors of late dysphagia. Radiother Oncol 2015; 115:56-62. [PMID: 25792467 DOI: 10.1016/j.radonc.2015.01.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/17/2014] [Accepted: 01/16/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine if acute symptoms during definitive radiotherapy (RT) or chemoradiation (CHRT) are prognostic factors for late dysphagia in head and neck cancer (HNC). MATERIAL AND METHODS This prospective cohort study consisted of 260 HNC patients who received definitive RT or CHRT. The primary endpoint was grade 2-4 swallowing dysfunction at 6 months after completing RT (SWALM6). During treatment, acute symptoms, including oral mucositis, xerostomia and dysphagia, were scored, and the scores were accumulated weekly and entered into an existing reference model for SWALM6 that consisted of dose-volume variables only. RESULTS Both acute xerostomia and dysphagia were strong prognostic factors for SWALM6. When acute scores were added as variables to the reference model, model performance increased as the course of treatment progressed: the AUC rose from 0.78 at the baseline to 0.85 in week 6. New models built for weeks 3-6 were significantly better able to identify patients with and without late dysphagia. CONCLUSION Acute xerostomia and dysphagia during the course of RT are strong prognostic factors for late dysphagia. Including accumulated acute symptom scores on a weekly basis in prediction models for late dysphagia significantly improves the identification of high-risk and low-risk patients at an early stage during treatment and might facilitate individualized treatment adaptation.
Collapse
Affiliation(s)
- Hans Paul van der Laan
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Hendrik P Bijl
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Arjen van der Schaaf
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Olga Chouvalova
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | - Agata Gawryszuk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jan L N Roodenburg
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Kim Wopken
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
43
|
Guo Z, Shu Y, Zhou H, Zhang W, Wang H. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis 2015; 36:307-17. [PMID: 25604391 DOI: 10.1093/carcin/bgv007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radiogenomics is the whole genome application of radiogenetics, which focuses on uncovering the underlying genetic causes of individual variation in sensitivity to radiation. There is a growing consensus that radiosensitivity is a complex, inherited polygenic trait, dependent on the interaction of many genes involved in multiple cell processes. An understanding of the genes involved in processes such as DNA damage response and oxidative stress response, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Many experimental approaches, such as candidate SNP association studies, genome-wide association studies and massively parallel sequencing are being proposed to address these questions. We present a review focusing on recent advances in association studies of SNPs to radiotherapy response and discuss challenges and opportunities for further studies. We also highlight the clinical perspective of radiogenomics in the future of personalized treatment in radiation oncology.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA and
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, P.R. China;
| | - Hui Wang
- Department of Radiation Oncology, Hunan Provincial Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, P.R. China
| |
Collapse
|
44
|
Kerns SL, West CML, Andreassen CN, Barnett GC, Bentzen SM, Burnet NG, Dekker A, De Ruysscher D, Dunning A, Parliament M, Talbot C, Vega A, Rosenstein BS. Radiogenomics: the search for genetic predictors of radiotherapy response. Future Oncol 2014; 10:2391-406. [PMID: 25525847 DOI: 10.2217/fon.14.173] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
'Radiogenomics' is the study of genetic variation associated with response to radiotherapy. Radiogenomics aims to uncover the genes and biologic pathways responsible for radiotherapy toxicity that could be targeted with radioprotective agents and; identify genetic markers that can be used in risk prediction models in the clinic. The long-term goal of the field is to develop single nucleotide polymorphism-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. The field has evolved over the last two decades in parallel with advances in genomics, moving from narrowly focused candidate gene studies to large, collaborative genome-wide association studies. Several confirmed genetic variants have been identified and the field is making progress toward clinical translation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wright JL, Takita C, Reis IM, Zhao W, Lee E, Hu JJ. Racial Variations in Radiation-Induced Skin Toxicity Severity: Data From a Prospective Cohort Receiving Postmastectomy Radiation. Int J Radiat Oncol Biol Phys 2014; 90:335-43. [DOI: 10.1016/j.ijrobp.2014.06.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 10/24/2022]
|
46
|
Fachal L, Gómez-Caamaño A, Barnett GC, Peleteiro P, Carballo AM, Calvo-Crespo P, Kerns SL, Sánchez-García M, Lobato-Busto R, Dorling L, Elliott RM, Dearnaley DP, Sydes MR, Hall E, Burnet NG, Carracedo Á, Rosenstein BS, West CML, Dunning AM, Vega A. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat Genet 2014; 46:891-4. [PMID: 24974847 DOI: 10.1038/ng.3020] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/05/2014] [Indexed: 12/11/2022]
Abstract
There is increasing evidence supporting the role of genetic variants in the development of radiation-induced toxicity. However, previous candidate gene association studies failed to elucidate the common genetic variation underlying this phenotype, which could emerge years after the completion of treatment. We performed a genome-wide association study on a Spanish cohort of 741 individuals with prostate cancer treated with external beam radiotherapy (EBRT). The replication cohorts consisted of 633 cases from the UK and 368 cases from North America. One locus comprising TANC1 (lowest unadjusted P value for overall late toxicity=6.85×10(-9), odds ratio (OR)=6.61, 95% confidence interval (CI)=2.23-19.63) was replicated in the second stage (lowest unadjusted P value for overall late toxicity=2.08×10(-4), OR=6.17, 95% CI=2.25-16.95; Pcombined=4.16×10(-10)). The inclusion of the third cohort gave unadjusted Pcombined=4.64×10(-11). These results, together with the role of TANC1 in regenerating damaged muscle, suggest that the TANC1 locus influences the development of late radiation-induced damage.
Collapse
Affiliation(s)
- Laura Fachal
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Gillian C Barnett
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Paula Peleteiro
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Ana M Carballo
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Department of Radiation Oncology, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Sarah L Kerns
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manuel Sánchez-García
- Department of Medical Physics, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Ramón Lobato-Busto
- Department of Medical Physics, USC University Hospital Complex, SERGAS, Santiago de Compostela, Spain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Rebecca M Elliott
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - David P Dearnaley
- Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, UK
| | - Matthew R Sydes
- Cancer and Other Non-Infectious Diseases, Medical Research Council (MRC) Clinical Trials Unit, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London, UK
| | - Neil G Burnet
- Department of Oncology, University of Cambridge, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ángel Carracedo
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain. [3] Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ana Vega
- 1] Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain. [2] Grupo de Medicina Xenómica, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
47
|
Barnett GC, Thompson D, Fachal L, Kerns S, Talbot C, Elliott RM, Dorling L, Coles CE, Dearnaley DP, Rosenstein BS, Vega A, Symonds P, Yarnold J, Baynes C, Michailidou K, Dennis J, Tyrer JP, Wilkinson JS, Gómez-Caamaño A, Tanteles GA, Platte R, Mayes R, Conroy D, Maranian M, Luccarini C, Gulliford SL, Sydes MR, Hall E, Haviland J, Misra V, Titley J, Bentzen SM, Pharoah PDP, Burnet NG, Dunning AM, West CML. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother Oncol 2014; 111:178-85. [PMID: 24785509 DOI: 10.1016/j.radonc.2014.02.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/30/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE This study was designed to identify common single nucleotide polymorphisms (SNPs) associated with toxicity 2years after radiotherapy. MATERIALS AND METHODS A genome wide association study was performed in 1850 patients from the RAPPER study: 1217 received adjuvant breast radiotherapy and 633 had radical prostate radiotherapy. Genotype associations with both overall and individual endpoints of toxicity were tested via univariable and multivariable regression. Replication of potentially associated SNPs was carried out in three independent patient cohorts who had radiotherapy for prostate (516 RADIOGEN and 862 Gene-PARE) or breast (355 LeND) cancer. RESULTS Quantile-quantile plots show more associations at the P<5×10(-7) level than expected by chance (164 vs. 9 for the prostate cases and 29 vs. 4 for breast cases), providing evidence that common genetic variants are associated with risk of toxicity. Strongest associations were for individual endpoints rather than an overall measure of toxicity in all patients. However, in general, significant associations were not validated at a nominal 0.05 level in the replication cohorts. CONCLUSIONS This largest GWAS to date provides evidence of true association between common genetic variants and toxicity. Associations with toxicity appeared to be tumour site-specific. Future GWAS require higher statistical power, in particular in the validation stage, to test clinically relevant effect sizes of SNP associations with individual endpoints, but the required sample sizes are achievable.
Collapse
Affiliation(s)
- Gillian C Barnett
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK; University of Cambridge, Department of Oncology, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, UK.
| | - Deborah Thompson
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Sarah Kerns
- Department of Radiation Oncology, Icahn Mount Sinai School of Medicine, NY, USA
| | - Chris Talbot
- Department of Genetics, University of Leicester, UK
| | - Rebecca M Elliott
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, UK
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Charlotte E Coles
- Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, UK
| | - David P Dearnaley
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn Mount Sinai School of Medicine, NY, USA
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Paul Symonds
- Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, UK
| | - John Yarnold
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | | | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | | | - Radka Platte
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Rebecca Mayes
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Don Conroy
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Mel Maranian
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Sarah L Gulliford
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Matthew R Sydes
- Cancer and Other Non-Infectious Diseases, MRC Clinical Trials Unit, London, UK
| | - Emma Hall
- Institute of Cancer Research-Clinical Trials and Statistics Unit, Sutton, UK
| | - Joanne Haviland
- Institute of Cancer Research-Clinical Trials and Statistics Unit, Sutton, UK
| | - Vivek Misra
- Department of Clinical Oncology, Christie Hospital, Manchester, UK
| | - Jennifer Titley
- Institute of Cancer Research-Clinical Trials and Statistics Unit, Sutton, UK
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Greenebaum Cancer Center; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Neil G Burnet
- University of Cambridge, Department of Oncology, Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, UK
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, UK
| |
Collapse
|
48
|
Fachal L, Mosquera-Miguel A, Gómez-Caamaño A, Sánchez-García M, Calvo P, Lobato-Busto R, Salas A, Vega A. Evaluating the role of mitochondrial DNA variation to the genetic predisposition to radiation-induced toxicity. Radiother Oncol 2014; 111:199-205. [PMID: 24746576 DOI: 10.1016/j.radonc.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 01/24/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial DNA common variants have been reported to be associated with the development of radiation-induced toxicity. Using a large cohort of patients, we aimed to validate these findings by investigating the potential role of common European mitochondrial DNA SNPs (mtSNPs) to the development of radio-toxicity. MATERIAL AND METHODS Overall acute and late toxicity data were assessed in a cohort of 606 prostate cancer patients by means of Standardized Total Average Toxicity (STAT) score. We carried out association tests between radiation toxicity and a selection of 15 mtSNPs (and the haplogroups defined by them). RESULTS Statistically significant association between mtSNPs and haplogroups with toxicity could not be validated in our Spanish cohort. CONCLUSIONS The present study suggests that the mtDNA common variants analyzed are not associated with clinically relevant increases in risk of overall radiation-induced toxicity in prostate cancer patients.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Manuel Sánchez-García
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Patricia Calvo
- Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain.
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Cheuk IWY, Yip SP, Kwong DLW, Wu VWC. Association of XRCC1 and XRCC3 gene haplotypes with the development of radiation-induced fibrosis in patients with nasopharyngeal carcinoma. Mol Clin Oncol 2014; 2:553-558. [PMID: 24940494 DOI: 10.3892/mco.2014.276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/07/2014] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced fibrosis is one of the late complications of radiotherapy (RT) for nasopharyngeal carcinoma (NPC). The aim of this study was to investigate the association between X-ray repair cross-complementing protein 1 and 3 (XRCC1 and XRCC3, respectively) gene haplotypes and radiation-induced fibrosis in NPC patients. Genomic DNA was extracted from blood samples of 120 NPC patients previously treated with RT. In total, 12 tag single-nucleotide polymorphisms (SNPs) were selected from the XRCC1 and XRCC3 genes and were genotyped using restriction fragment length polymorphism analysis or unlabeled probe melting analysis. Single-marker and haplotype analyses were performed using multivariate logistic regression analysis. The functional variant rs861539 of XRCC3 may be associated with radiation-induced fibrosis [asymptotic P-value (Pasym)<0.05]. No significant association was observed between radiation-induced fibrosis and any of the tag SNPs of XRCC1 and XRCC3 in either single-marker or haplotype analysis after 10,000 permutations [empirical P-value (Pemp)>0.05]. Our preliminary results indicated that the rs861539 variant of XRCC3 may be associated with an increased risk of radiation-induced fibrosis; however, a large-scale study is required to confirm this result.
Collapse
Affiliation(s)
- Isabella Wai Yin Cheuk
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| | - Dora Lai Wan Kwong
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR, P.R. China
| | - Vincent Wing Cheung Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| |
Collapse
|
50
|
Finding the genetic determinants of adverse reactions to radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:301-8. [PMID: 24702740 DOI: 10.1016/j.clon.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/21/2022]
Abstract
Individual variation in radiosensitivity is thought to be at least partly determined by genetic factors. The remaining difference between individuals is caused by comorbidities, variation in treatment, body habitus and stochastic factors. Evidence for the heritability of radiosensitivity comes from rare genetic disorders and from cell-based studies. To what extent common and rare genetic variants might explain the genetic component of radiosensitivity has not been fully elucidated. If the genetic variants accounting for this heritability were to be determined, they could be incorporated into any future predictive statistical model of adverse reactions to radiotherapy. With the evolution of DNA sequencing and bioinformatics, radiogenomics has emerged as a new research field with the aim of finding the genetic determinants of adverse reactions to radiotherapy. Similar to the investigation of other complex genetic disease traits, early studies in radiogenomics involved candidate gene association studies--many plagued by false associations caused by low sample sizes and problematic experimental design. More recently, some promising genetic associations (e.g. with tumour necrosis factor) have emerged from large multi-institutional cohorts with built-in replication. At the same time, several small- to medium-sized genome-wide association studies (GWAS) have been or are about to be published. These studies will probably lead to an increasing number of genetic polymorphisms that may predict adverse reactions to radiotherapy. The future of the field is to create large patient cohorts for multiple cancer types, to validate the genetic loci and build reliable predictive models. For example, the REQUITE project involves multiple groups in Europe and North America. For further discovery studies, larger GWAS will be necessary to include rare sequence variants through next generation sequencing. Ultimately, radiogenomics seeks to predict which cancer patients will show radiosensitivity or radioresistance, so oncologists and surgeons can alter treatment accordingly to lower adverse reactions or increase the efficacy of radiotherapy.
Collapse
|