1
|
Feng H, Shan J, Vargas CE, Keole SR, Rwigema JCM, Yu NY, Ding Y, Zhang L, Hu Y, Schild SE, Wong WW, Vora SA, Shen J, Liu W. Online Adaptive Proton Therapy Facilitated by Artificial Intelligence-Based Autosegmentation in Pencil Beam Scanning Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:822-831. [PMID: 39307323 DOI: 10.1016/j.ijrobp.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Revised: 07/11/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Online adaptive proton therapy (oAPT) is essential to address interfractional anatomical changes in patients receiving pencil beam scanning proton therapy. Artificial intelligence (AI)-based autosegmentation can increase the efficiency and accuracy. Linear energy transfer (LET)-based biological effect evaluation can potentially mitigate possible adverse events caused by high LET. New spot arrangement based on the verification computed tomography (vCT) can further improve the replan quality. We propose an oAPT workflow that incorporates all these functionalities and validate its clinical implementation feasibility with patients with prostate cancer. METHODS AND MATERIALS AI-based autosegmentation tool AccuContour (Manteia) was seamlessly integrated into oAPT. Initial spot arrangement tool on the vCT for reoptimization was implemented using raytracing. An LET-based biological effect evaluation tool was developed to assess the overlap region of high dose and high LET in selected organs at risk. Eleven patients with prostate cancer were retrospectively selected to verify the efficacy and efficiency of the proposed oAPT workflow. The time cost of each component in the workflow was recorded for analysis. RESULTS The verification plan showed significant degradation of the clinical target volume coverage and rectum and bladder sparing due to the interfractional anatomical changes. Reoptimization on the vCT resulted in great improvement of the plan quality. No overlap regions of high dose and high LET distributions were observed in bladder or rectum in replans. Three-dimensional γ analyses in patient-specific quality assurance confirmed the accuracy of the replan doses before delivery (γ passing rate, 99.57% ± 0.46%) and after delivery (98.59% ± 1.29%). The robustness of the replans passed all clinical requirements. The average time for the complete execution of the workflow was 9.12 ± 0.85 minutes, excluding manual intervention time. CONCLUSIONS The AI-facilitated oAPT workflow demonstrated to be both efficient and effective by generating a replan that significantly improved the plan quality in prostate cancer treated with pencil beam scanning proton therapy.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona; College of Science, China Three Gorges University, Yichang, Hubei, China; Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, China
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - JiaJian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona.
| |
Collapse
|
2
|
Vasudevan SS, Candelo E, Sharifi A, Ma DJ, Patel SH, Routman DM, Holtzman AL, Mohammadi H, Donaldson AM. Survival, Tumor Control, and Safety Outcomes of Proton Therapy in Sinonasal Cancer Population: A Systematic Review and Meta-Analysis. Head Neck 2025. [PMID: 39853705 DOI: 10.1002/hed.28082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Revised: 12/08/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND In sinonasal cancer (SNC), treatment with proton therapy (PT) provides excellent local control, especially after gross total resection. Because of the heterogeneity and rarity of this disease site, a comprehensive assessment of toxicity, survival, and control rates is lacking. Our primary objective was to assess the toxicity outcomes of PT in SNC patients, with a secondary aim of assessing survival and tumor control after PT. METHODS PubMed, Embase, EBSCO, Scopus, Science Direct, Web of Science, Ovid, Proquest, and Cochrane Library were searched from inception to August 2024 reporting PT acute and late toxicity, survival, and tumor control outcomes in SNC patients. A random-effect meta-analysis was used to assess the pooled safety, survival, and tumor control outcomes. The primary analysis was to report acute and late toxicity. The secondary aims included overall survival (OS), disease-free survival (DFS), local control (LC), regional control (RC), and distant metastasis control (DMC) rate. RESULTS Fourteen studies were included for qualitative analysis. We pooled data from 756 patients who received PT for SNC. Among acute toxicity (AT), there was a 31.9% occurrence rate of grade ≥ 3 events, whereas within late toxicity (LT), grade ≥ 3 events occurred at a rate of 35.3%. Most LT (62.1%) were classified as grade 2, with the most frequent being ocular (24.8%) or neurological (18.4%) toxicities. The most common grade ≥ 3 toxicities were mucositis (15.3%) in AT and ocular toxicity (9.6%) in LT. The pooled 5-year OS, DFS, LC, RC, and DMC were 36.8%, 34.2%, 35.6%, 28.6%, and 54.3%, respectively. CONCLUSION Our analysis demonstrates that PT-treated SNC patients experience acceptable rates of acute and LT consistent with other published outcomes with highly conformal radiation techniques. PT demonstrates favorable OS and DFS. Further prospective and comparative effectiveness research is needed to better quantify the magnitude of the benefit of PT or other forms of radiation modalities.
Collapse
Affiliation(s)
- Srivatsa Surya Vasudevan
- Department of Otolaryngology- Head and Neck Surgery, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Estephania Candelo
- Department of Otolaryngology- Head and Neck Surgery, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Alireza Sharifi
- Department of Otolaryngology- Head and Neck Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - David M Routman
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Angela M Donaldson
- Department of Otolaryngology- Head and Neck Surgery, Mayo Clinic Florida, Jacksonville, Florida, USA
| |
Collapse
|
3
|
Liu M, Pang B, Chen S, Zeng Y, Zhang Q, Quan H, Chang Y, Yang Z. Deep learning-based multiple-CT optimization: An adaptive treatment planning approach to account for anatomical changes in intensity-modulated proton therapy for head and neck cancers. Radiother Oncol 2025; 202:110650. [PMID: 39581351 DOI: 10.1016/j.radonc.2024.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUNDS Intensity-modulated proton therapy (IMPT) is particularly susceptible to range and setup uncertainties, as well as anatomical changes. PURPOSE We present a framework for IMPT planning that employs a deep learning method for dose prediction based on multiple-CT (MCT). The extra CTs are created from cone-beam CT (CBCT) using deformable registration with the primary planning CT (PCT). Our method also includes a dose mimicking algorithm. METHODS The MCT IMPT planning pipeline involves prediction of robust dose from input images using a deep learning model with a U-net architecture. Deliverable plans may then be created by solving a dose mimicking problem with the predictions as reference dose. Model training, dose prediction and plan generation are performed using a dataset of 55 patients with head and neck cancer in this retrospective study. Among them, 38 patients were used as training set, 7 patients were used as validation set, and 10 patients were reserved as test set for final evaluation. RESULTS We demonstrated that the deliverable plans generated through subsequent MCT dose mimicking exhibited greater robustness than the robust plans produced by the PCT, as well as enhanced dose sparing for organs at risk. MCT plans had lower D2% (76.1 Gy vs. 82.4 Gy), better homogeneity index (7.7% vs. 16.4%) of CTV1 and better conformity index (70.5% vs. 61.5%) of CTV2 than the robust plans produced by the primary planning CT for all test patients. CONCLUSIONS We demonstrated the feasibility and advantages of incorporating daily CBCT images into MCT optimization. This approach improves plan robustness against anatomical changes and may reduce the need for plan adaptations in head and neck cancer treatments.
Collapse
Affiliation(s)
- Muyu Liu
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Bo Pang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shuoyan Chen
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yiling Zeng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hong Quan
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Yamano A, Inoue T, Yagihashi T, Yamanaka M, Matsumoto K, Shimo T, Shirata R, Nitta K, Nagata H, Shiraishi S, Minagawa Y, Omura M, Tokuuye K, Chang W. Impact of interplay effects on spot scanning proton therapy with motion mitigation techniques for lung cancer: SFUD versus robustly optimized IMPT plans utilizing a four-dimensional dynamic dose simulation tool. Radiat Oncol 2024; 19:117. [PMID: 39252032 PMCID: PMC11385833 DOI: 10.1186/s13014-024-02518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The interaction between breathing motion and scanning beams causes interplay effects in spot-scanning proton therapy for lung cancer, resulting in compromised treatment quality. This study investigated the effects and clinical robustness of two types of spot-scanning proton therapy with motion-mitigation techniques for locally advanced non-small cell lung cancer (NSCLC) using a new simulation tool (4DCT-based dose reconstruction). METHODS Three-field single-field uniform dose (SFUD) and robustly optimized intensity-modulated proton therapy (IMPT) plans combined with gating and re-scanning techniques were created using a VQA treatment planning system for 15 patients with locally advanced NSCLC (70 GyRBE/35 fractions). In addition, gating windows of three or five phases around the end-of-expiration phase and two internal gross tumor volumes (iGTVs) were created, and a re-scanning number of four was used. First, the static dose (SD) was calculated using the end-of-expiration computed tomography (CT) images. The four-dimensional dynamic dose (4DDD) was then calculated using the SD plans, 4D-CT images, and the deformable image registration technique on end-of-expiration CT. The target coverage (V98%, V100%), homogeneity index (HI), and conformation number (CN) for the iGTVs and organ-at-risk (OAR) doses were calculated for the SD and 4DDD groups and statistically compared between the SD, 4DDD, SFUD, and IMPT treatment plans using paired t-test. RESULTS In the 3- and 5-phase SFUD, statistically significant differences between the SD and 4DDD groups were observed for V100%, HI, and CN. In addition, statistically significant differences were observed for V98%, V100%, and HI in phases 3 and 5 of IMPT. The mean V98% and V100% in both 3-phase plans were within clinical limits (> 95%) when interplay effects were considered; however, V100% decreased to 89.3% and 94.0% for the 5-phase SFUD and IMPT, respectively. Regarding the significant differences in the deterioration rates of the dose volume histogram (DVH) indices, the 3-phase SFUD plans had lower V98% and CN values and higher V100% values than the IMPT plans. In the 5-phase plans, SFUD had higher deterioration rates for V100% and HI than IMPT. CONCLUSIONS Interplay effects minimally impacted target coverage and OAR doses in SFUD and robustly optimized IMPT with 3-phase gating and re-scanning for locally advanced NSCLC. However, target coverage significantly declined with an increased gating window. Robustly optimized IMPT showed superior resilience to interplay effects, ensuring better target coverage, prescription dose adherence, and homogeneity than SFUD. TRIAL REGISTRATION None.
Collapse
Affiliation(s)
- Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Matsumoto
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takahiro Shimo
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Ryosuke Shirata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Kazunori Nitta
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Sachika Shiraishi
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Yumiko Minagawa
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Koichi Tokuuye
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Weishan Chang
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| |
Collapse
|
5
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
6
|
Zhang L, Holmes JM, Liu Z, Vora SA, Sio TT, Vargas CE, Yu NY, Keole SR, Schild SE, Bues M, Li S, Liu T, Shen J, Wong WW, Liu W. Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy. Med Phys 2024; 51:1484-1498. [PMID: 37748037 DOI: 10.1002/mp.16758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose prediction methods specifically designed for proton therapy. Successful dose prediction method for proton therapy should account for more challenging dose prediction problems in pencil beam scanning proton therapy (PBSPT) due to its sensitivity to heterogeneities. PURPOSE To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS PBSPT plans of 103 prostate cancer patients (93 for training and the other 10 for independent testing) and 83 lung cancer patients (73 for training and the other 10 for independent testing) previously treated at our institution were included in the study, each with computed tomography scans (CTs), structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine (considered as the ground truth in the model training and testing). For the ablation study, we designed three experiments corresponding to the following three methods: (1) Experiment 1, the conventional region of interest (ROI) (composed of targets and organs-at-risk [OARs]) method. (2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. (3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates with a criterion of 3%/3 mm/10%, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices (for lung cancer, CTV D98 absolute deviation: 0.74 ± 0.18 vs. 0.57 ± 0.21 vs. 0.54 ± 0.15 Gy[RBE], ROI vs. beam mask vs. sliding window methods, respectively). For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method improved the passing rates in these regions and the sliding window method further improved them (for prostate cancer, targets: 96.93% ± 0.53% vs. 98.88% ± 0.49% vs. 99.97% ± 0.07%, BODY: 86.88% ± 0.74% vs. 93.21% ± 0.56% vs. 95.17% ± 0.59%). A similar trend was also observed for the dice coefficients. This trend was especially remarkable for relatively low prescription isodose lines (for lung cancer, 10% isodose line dice: 0.871 ± 0.027 vs. 0.911 ± 0.023 vs. 0.927 ± 0.017). The dose predictions for all the testing cases were completed within 0.25 s. CONCLUSIONS An accurate and efficient deep learning-augmented proton dose prediction framework has been developed for PBSPT, which can predict accurate dose distributions not only inside but also outside ROI efficiently. The framework can potentially further reduce the initial planning and adaptive replanning workload in PBSPT.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Jason M Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Zhengliang Liu
- School of Computing, University of Georgia, Athens, Georgia, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, Georgia, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
7
|
Feng H, Holmes JM, Vora SA, Stoker JB, Bues M, Wong WW, Sio TS, Foote RL, Patel SH, Shen J, Liu W. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad0b64. [PMID: 37944480 PMCID: PMC11009986 DOI: 10.1088/1361-6560/ad0b64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Purpose. To enhance an in-house graphic-processing-unit accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS).Methods and materials. A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3 cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4 cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45 mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 c.c. with range of 0.4-43.3 c.c.). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC.Results. In the water phantoms, 3D gamma passing rate (2%/2 mm/10%) between VPMC and MCsquare was 99.71 ± 0.23%. In the patient geometries, 3D gamma passing rates (3%/2 mm/10%) between VPMC/MCsquare and RayStation MC were 97.79 ± 2.21%/97.78 ± 1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45 ± 114.08 s (MCsquare) to 8.20 ± 6.42 s (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 s and the subsequent on-the-fly 'trial-and-error' optimization procedure took only 71.4 s on average for the selected three patients.Conclusion. VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.
Collapse
Affiliation(s)
- Hongying Feng
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei 443002, People’s Republic of China
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong, 510555, People’s Republic of China
| | - Jason M Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Joshua B Stoker
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Terence S Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, United States of America
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, United States of America
| |
Collapse
|
8
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
9
|
Almhagen E, Dasu A, Johansson S, Traneus E, Ahnesjö A. Plan robustness and RBE influence for proton dose painting by numbers for head and neck cancers. Phys Med 2023; 115:103157. [PMID: 37939480 DOI: 10.1016/j.ejmp.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE To investigate the feasibility of dose painting by numbers (DPBN) with respect to robustness for proton therapy for head and neck cancers (HNC), and to study the influence of variable RBE on the TCP and OAR dose burden. METHODS AND MATERIALS Data for 19 patients who have been scanned pretreatment with PET-FDG and subsequently treated with photon therapy were used in the study. A dose response model developed for photon therapy was implemented in a TPS, allowing DPBN plans to be created. Conventional homogeneous dose and DPBN plans were created for each patient, optimized with either fixed RBE = 1.1 or a variable RBE model. Robust optimization was used to create clinically acceptable plans. To estimate the maximum potential loss in TCP due to actual SUV variations from the pre-treatment imaging, we applied a test case with randomized SUV distribution. RESULTS Regardless of the use of variable RBE for optimization or evaluation, a statistically significant increase (p < 0.001) in TCP was found for DPBN plans as compared to homogeneous dose plans. Randomizing the SUV distribution decreased the TCP for all plans. A correlation between TCP increase and variance of the SUV distribution and target volume was also found. CONCLUSION DPBN for protons and HNC is feasible and could lead to a TCP gain. Risks associated with the temporal variation of SUV distributions could be mitigated by imposing minimum doses to targets. The correlation found between TCP increase and SUV variance and target volume may be used for patient selection.
Collapse
Affiliation(s)
- Erik Almhagen
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Alexandru Dasu
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Silvia Johansson
- Divison of Oncology, Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
10
|
Ding Y, Feng H, Yang Y, Holmes J, Liu Z, Liu D, Wong WW, Yu NY, Sio TT, Schild SE, Li B, Liu W. Deep-learning based fast and accurate 3D CT deformable image registration in lung cancer. Med Phys 2023; 50:6864-6880. [PMID: 37289193 PMCID: PMC10704004 DOI: 10.1002/mp.16548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Deformable Image Registration (DIR) is an essential technique required in many applications of radiation oncology. However, conventional DIR approaches typically take several minutes to register one pair of 3D CT images and the resulting deformable vector fields (DVFs) are only specific to the pair of images used, making it less appealing for clinical application. PURPOSE A deep-learning-based DIR method using CT images is proposed for lung cancer patients to address the common drawbacks of the conventional DIR approaches and in turn can accelerate the speed of related applications, such as contour propagation, dose deformation, adaptive radiotherapy (ART), etc. METHODS: A deep neural network based on VoxelMorph was developed to generate DVFs using CT images collected from 114 lung cancer patients. Two models were trained with the weighted mean absolute error (wMAE) loss and structural similarity index matrix (SSIM) loss (optional) (i.e., the MAE model and the M+S model). In total, 192 pairs of initial CT (iCT) and verification CT (vCT) were included as a training dataset and the other independent 10 pairs of CTs were included as a testing dataset. The vCTs usually were taken 2 weeks after the iCTs. The synthetic CTs (sCTs) were generated by warping the vCTs according to the DVFs generated by the pre-trained model. The image quality of the synthetic CTs was evaluated by measuring the similarity between the iCTs and the sCTs generated by the proposed methods and the conventional DIR approaches, respectively. Per-voxel absolute CT-number-difference volume histogram (CDVH) and MAE were used as the evaluation metrics. The time to generate the sCTs was also recorded and compared quantitatively. Contours were propagated using the derived DVFs and evaluated with SSIM. Forward dose calculations were done on the sCTs and the corresponding iCTs. Dose volume histograms (DVHs) were generated based on dose distributions on both iCTs and sCTs generated by two models, respectively. The clinically relevant DVH indices were derived for comparison. The resulted dose distributions were also compared using 3D Gamma analysis with thresholds of 3 mm/3%/10% and 2 mm/2%/10%, respectively. RESULTS The two models (wMAE and M+S) achieved a speed of 263.7±163 / 265.8±190 ms and a MAE of 13.15±3.8 / 17.52±5.8 HU for the testing dataset, respectively. The average SSIM scores of 0.987±0.006 and 0.988±0.004 were achieved by the two proposed models, respectively. For both models, CDVH of a typical patient showed that less than 5% of the voxels had a per-voxel absolute CT-number-difference larger than 55 HU. The dose distribution calculated based on a typical sCT showed differences of ≤2cGy[RBE] for clinical target volume (CTV) D95 and D5 , within ±0.06% for total lung V5 , ≤1.5cGy[RBE] for heart and esophagus Dmean , and ≤6cGy[RBE] for cord Dmax compared to the dose distribution calculated based on the iCT. The good average 3D Gamma passing rates (> 96% for 3 mm/3%/10% and > 94% for 2 mm/2%/10%, respectively) were also observed. CONCLUSION A deep neural network-based DIR approach was proposed and has been shown to be reasonably accurate and efficient to register the initial CTs and verification CTs in lung cancer.
Collapse
Affiliation(s)
- Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - David Liu
- Athens Academy, Athens, GA 30602, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Baoxin Li
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, USA 85281
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
11
|
Abstract
Advances in proton therapy have garnered much attention and speculation in recent years as the indications for proton therapy have grown beyond pediatric, prostate, spine, and ocular tumors. To achieve and maintain consistent access to this cancer treatment and to ensure the future viability and availability of proton centers in the United States, a call for evidence has been heard and answered by proton radiation oncologists. Answers provided in this review include the evolution of proton therapy research, rationale for proton clinical trial design, challenges in and barriers to the conduct of proton therapy research, and other unique considerations for the study of proton therapy.
Collapse
Affiliation(s)
- J Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.; New York Proton Center, New York, NY..
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.; New York Proton Center, New York, NY
| | - Alicia Lozano
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Roanoke, VA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Sethi S, O'Neil M, Jensen E, Smart G, Poirier B. Toxicity with proton therapy for oral and/or oropharyngeal cancers: A scoping review. J Oral Pathol Med 2023; 52:567-574. [PMID: 36871197 DOI: 10.1111/jop.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Oral and/or oropharyngeal cancers account for approximately 2% of all malignancies, with variation across age groups, genders, and geographic locations. Treatments for oral and/or oropharyngeal cancers usually consist of a combination of surgical excision most commonly followed by radiotherapy ± chemotherapy and/or immunotherapy/biotherapy depending on the nature of the malignancy. The significant morbidity caused by high-dose radiotherapy to the head and neck region is widely observed. Proton therapy is a promising treatment option that localises a proton beam to direct radiation at a specific target, with reduced irradiation to adjacent structures. METHOD The objective was to explore the toxicity associated with proton therapy for adults with oral and/or oropharyngeal cancer. Eligibility criteria included full-text articles, English articles, published between up till 7 January 2023. Databases included PubMed, Scopus, Web of Science, Embase, and Scopus. RESULTS The systematic search identified 345 studies and a total of 18 studies were included after two independent reviewers completed title, abstract, and full-text screening. Included studies were from four countries, and median participant age range was 53.3 to 66 years. The most commonly reported acute toxic effects included dysphagia, radiation dermatitis, oral mucositis, dysgeusia, and alopecia. CONCLUSION Proton therapy is an evolving cancer treatment technique that has diverse advantages over conventional radiotherapy and chemotherapy. This review provides evidence that supports that proton therapy has an improved acute toxicity profile compared to radiotherapy to treat oral and/or oropharyngeal cancer individuals.
Collapse
Affiliation(s)
- Sneha Sethi
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - Mitchel O'Neil
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - Emilija Jensen
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Paediatric Dentistry, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Gabrielle Smart
- Department of Paediatric Dentistry, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Brianna Poirier
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Feng H, Holmes JM, Vora SA, Stoker JB, Bues M, Wong WW, Sio TS, Foote RL, Patel SH, Shen J, Liu W. Modelling small block aperture in an in-house developed GPU-accelerated Monte Carlo-based dose engine for pencil beam scanning proton therapy. ARXIV 2023:arXiv:2307.01416v1. [PMID: 37461414 PMCID: PMC10350098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 07/22/2023]
Abstract
Purpose To enhance an in-house graphic-processing-unit (GPU) accelerated virtual particle (VP)-based Monte Carlo (MC) proton dose engine (VPMC) to model aperture blocks in both dose calculation and optimization for pencil beam scanning proton therapy (PBSPT)-based stereotactic radiosurgery (SRS). Methods and Materials A module to simulate VPs passing through patient-specific aperture blocks was developed and integrated in VPMC based on simulation results of realistic particles (primary protons and their secondaries). To validate the aperture block module, VPMC was first validated by an opensource MC code, MCsquare, in eight water phantom simulations with 3cm thick brass apertures: four were with aperture openings of 1, 2, 3, and 4cm without a range shifter, while the other four were with same aperture opening configurations with a range shifter of 45mm water equivalent thickness. Then, VPMC was benchmarked with MCsquare and RayStation MC for 10 patients with small targets (average volume 8.4 cc with range of 0.4 - 43.3 cc). Finally, 3 typical patients were selected for robust optimization with aperture blocks using VPMC. Results In the water phantoms, 3D gamma passing rate (2%/2mm/10%) between VPMC and MCsquare was 99.71±0.23%. In the patient geometries, 3D gamma passing rates (3%/2mm/10%) between VPMC/MCsquare and RayStation MC were 97.79±2.21%/97.78±1.97%, respectively. Meanwhile, the calculation time was drastically decreased from 112.45±114.08 seconds (MCsquare) to 8.20±6.42 seconds (VPMC) with the same statistical uncertainties of ~0.5%. The robustly optimized plans met all the dose-volume-constraints (DVCs) for the targets and OARs per our institutional protocols. The mean calculation time for 13 influence matrices in robust optimization by VPMC was 41.6 seconds and the subsequent on-the-fly "trial-and-error" optimization procedure took only 71.4 seconds on average for the selected three patients. Conclusion VPMC has been successfully enhanced to model aperture blocks in dose calculation and optimization for the PBSPT-based SRS.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jason M. Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | | | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | - Terence S. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
14
|
Zhang L, Holmes JM, Liu Z, Vora SA, Sio TT, Vargas CE, Yu NY, Keole SR, Schild SE, Bues M, Li S, Liu T, Shen J, Wong WW, Liu W. Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy. ARXIV 2023:arXiv:2305.18572v1. [PMID: 37396612 PMCID: PMC10312803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 07/04/2023]
Abstract
PURPOSE To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method. 2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. 3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices. For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method can improve the passing rates in these regions and the sliding window method further improved them. A similar trend was also observed for the dice coefficients. In fact, this trend was especially remarkable for relatively low prescription isodose lines. The dose predictions for all the testing cases were completed within 0.25s.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jason M. Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Sujay A. Vora
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Carlos E. Vargas
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Sheng Li
- Department of Data Science, University of Virginia, Charlottesville, VA 22903, USA
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
15
|
Ding Y, Feng H, Yang Y, Holmes J, Liu Z, Liu D, Wong WW, Yu NY, Sio TT, Schild SE, Li B, Liu W. Deep-Learning-based Fast and Accurate 3D CT Deformable Image Registration in Lung Cancer. ARXIV 2023:arXiv:2304.11135v1. [PMID: 37131881 PMCID: PMC10153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
PURPOSE In some proton therapy facilities, patient alignment relies on two 2D orthogonal kV images, taken at fixed, oblique angles, as no 3D on-the-bed imaging is available. The visibility of the tumor in kV images is limited since the patient's 3D anatomy is projected onto a 2D plane, especially when the tumor is behind high-density structures such as bones. This can lead to large patient setup errors. A solution is to reconstruct the 3D CT image from the kV images obtained at the treatment isocenter in the treatment position. METHODS An asymmetric autoencoder-like network built with vision-transformer blocks was developed. The data was collected from 1 head and neck patient: 2 orthogonal kV images (1024x1024 voxels), 1 3D CT with padding (512x512x512) acquired from the in-room CT-on-rails before kVs were taken and 2 digitally-reconstructed-radiograph (DRR) images (512x512) based on the CT. We resampled kV images every 8 voxels and DRR and CT every 4 voxels, thus formed a dataset consisting of 262,144 samples, in which the images have a dimension of 128 for each direction. In training, both kV and DRR images were utilized, and the encoder was encouraged to learn the jointed feature map from both kV and DRR images. In testing, only independent kV images were used. The full-size synthetic CT (sCT) was achieved by concatenating the sCTs generated by the model according to their spatial information. The image quality of the synthetic CT (sCT) was evaluated using mean absolute error (MAE) and per-voxel-absolute-CT-number-difference volume histogram (CDVH). RESULTS The model achieved a speed of 2.1s and a MAE of <40HU. The CDVH showed that <5% of the voxels had a per-voxel-absolute-CT-number-difference larger than 185 HU. CONCLUSION A patient-specific vision-transformer-based network was developed and shown to be accurate and efficient to reconstruct 3D CT images from kV images.
Collapse
Affiliation(s)
- Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - David Liu
- Athens Academy, Athens, GA 30602, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Nathan Y. Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Baoxin Li
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, USA 85281
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
16
|
Svajdova M, Dubinsky P, Kazda T, Jeremic B. Human Papillomavirus-Related Non-Metastatic Oropharyngeal Carcinoma: Current Local Treatment Options and Future Perspectives. Cancers (Basel) 2022; 14:5385. [PMID: 36358801 PMCID: PMC9658535 DOI: 10.3390/cancers14215385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Over the last two decades, human papillomavirus (HPV) has caused a new pandemic of cancer in many urban areas across the world. The new entity, HPV-associated oropharyngeal squamous cell carcinoma (OPSCC), has been at the center of scientific attention ever since, not only due to its distinct biological behavior, but also because of its significantly better prognosis than observed in its HPV-negative counterpart. The very good treatment outcomes of the disease after primary therapy (minimally-invasive surgery, radiation therapy with or without chemotherapy) resulted in the creation of a separate staging system, reflecting this excellent prognosis. A substantial proportion of newly diagnosed HPV-driven OPSCC is diagnosed in stage I or II, where long-term survival is observed worldwide. Deintensification of the primary therapeutic methods, aiming at a reduction of long-term toxicity in survivors, has emerged, and the quality of life of the patient after treatment has become a key-point in many clinical trials. Current treatment recommendations for the treatment of HPV-driven OPSCC do not differ significantly from HPV-negative OPSCC; however, the results of randomized trials are eagerly awaited and deemed necessary, in order to include deintensification into standard clinical practice.
Collapse
Affiliation(s)
- Michaela Svajdova
- Department of Radiation and Clinical Oncology, General Hospital Rimavska Sobota, 979 01 Rimavska Sobota, Slovakia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 602 00 Brno, Czech Republic
| | - Pavol Dubinsky
- Department of Radiation Oncology, East Slovakia Oncology Institute, 040 01 Kosice, Slovakia
- Faculty of Health, Catholic University Ruzomberok, 034 01 Ruzomberok, Slovakia
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 602 00 Brno, Czech Republic
| | - Branislav Jeremic
- School of Medicine, University of Kragujevac, 340 00 Kragujevac, Serbia
| |
Collapse
|
17
|
Biswal NC, Rodrigues DB, Yao W, Molitoris JK, Witek ME, Chen S. Evaluation of intrafraction couch shifts for proton treatment delivery in head-and-neck cancer patients: Toward optimal imaging frequency. J Appl Clin Med Phys 2022; 23:e13795. [PMID: 36239306 PMCID: PMC9797163 DOI: 10.1002/acm2.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2021] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Treatment planning for head-and-neck (H&N) cancer, in particular oropharynx, nasopharynx, and paranasal sinus cases, at our center requires noncoplanar proton beams due to the complexity of the anatomy and target location. Targeting accuracy for all beams is carefully evaluated by using image guidance before delivering proton beam therapy (PBT). In this study, we analyzed couch shifts to evaluate whether imaging is required before delivering each field with different couch angles. METHODS After the Institutional Review Board approval, a retrospective analysis was performed on data from 28 H&N patients treated with PBT. Each plan was made with two-to-three noncoplanar and two-to-three coplanar fields. Cone-beam computed tomography and orthogonal kilovoltage (kV) images were acquired for setup and before delivering each field, respectively. The Cartesian (longitudinal, vertical, and lateral) and angular (pitch and roll) shifts for each field were recorded from the treatment summary on the first two fractions and every subsequent fifth fraction. A net magnitude of the three-dimensional (3D) shift in Cartesian coordinates was calculated, and a 3D vector was created from the 6 degrees of freedom coordinates for transforming couch shifts in the system coordinate to the beam's-eye view. RESULTS A total of 3219 Cartesian and 2146 angular shift values were recorded for 28 patients. Of the Cartesian shifts, 2069 were zero (64.3%), and 1150 (35.7%) were nonzero (range, -7 to 11 mm). Of the angular shifts, 1034 (48.2%) were zero, and 1112 (51.8%) were nonzero (range, -3.0° to 3.2°). For 17 patients, the couch shifts increased toward the end of the treatment course. We also found that patients with higher body mass index (BMI) presented increased net couch shifts (p < 0.001). With BMI < 27, all overall net shift averages were <2 mm, and overall maximum net shifts were <6 mm. CONCLUSIONS These results confirm the need for orthogonal kV imaging before delivering each field of H&N PBT at our center, where a couch rotation is involved.
Collapse
Affiliation(s)
- Nrusingh C. Biswal
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Dario B. Rodrigues
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Weiguang Yao
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Jason K. Molitoris
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Matthew E. Witek
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Shifeng Chen
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
18
|
Shan J, Feng H, Morales DH, Patel SH, Wong WW, Fatyga M, Bues M, Schild SE, Foote RL, Liu W. Virtual particle Monte Carlo: A new concept to avoid simulating secondary particles in proton therapy dose calculation. Med Phys 2022; 49:6666-6683. [PMID: 35960865 PMCID: PMC9588716 DOI: 10.1002/mp.15913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In proton therapy dose calculation, Monte Carlo (MC) simulations are superior in accuracy but more time consuming, compared to analytical calculations. Graphic processing units (GPUs) are effective in accelerating MC simulations but may suffer thread divergence and racing condition in GPU threads that degrades the computing performance due to the generation of secondary particles during nuclear reactions. PURPOSE A novel concept of virtual particle (VP) MC (VPMC) is proposed to avoid simulating secondary particles in GPU-accelerated proton MC dose calculation and take full advantage of the computing power of GPU. METHODS Neutrons and gamma rays were ignored as escaping from the human body; doses of electrons, heavy ions, and nuclear fragments were locally deposited; the tracks of deuterons were converted into tracks of protons. These particles, together with primary and secondary protons, are considered to be the realistic particles. Histories of primary and secondary protons were replaced by histories of multiple VPs. Each VP corresponded to one proton (either primary or secondary). A continuous-slowing-down-approximation model, an ionization model, and a large angle scattering event model corresponding to nuclear interactions were developed for VPs by generating probability distribution functions (PDFs) based on simulation results of realistic particles using MCsquare. For efficient calculations, these PDFs were stored in the Compute Unified Device Architecture textures. VPMC was benchmarked with TOPAS and MCsquare in phantoms and with MCsquare in 13 representative patient geometries. Comparisons between the VPMC calculated dose and dose measured in water during patient-specific quality assurance (PSQA) of the selected 13 patients were also carried out. Gamma analysis was used to compare the doses derived from different methods and calculation efficiencies were also compared. RESULTS Integrated depth dose and lateral dose profiles in both homogeneous and inhomogeneous phantoms all matched well among VPMC, TOPAS, and MCsquare calculations. The 3D-3D gamma passing rates with a criterion of 2%/2 mm and a threshold of 10% was 98.49% between MCsquare and TOPAS and 98.31% between VPMC and TOPAS in homogeneous phantoms, and 99.18% between MCsquare and TOPAS and 98.49% between VPMC and TOPAS in inhomogeneous phantoms, respectively. In patient geometries, the 3D-3D gamma passing rates with 2%/2 mm/10% between dose distributions from VPMC and MCsquare were 98.56 ± 1.09% in patient geometries. The 2D-3D gamma analysis with 3%/2 mm/10% between the VPMC calculated dose distributions and the 2D measured planar dose distributions during PSQA was 98.91 ± 0.88%. VPMC calculation was highly efficient and took 2.84 ± 2.44 s to finish for the selected 13 patients running on four NVIDIA Ampere GPUs in patient geometries. CONCLUSION VPMC was found to achieve high accuracy and efficiency in proton therapy dose calculation.
Collapse
Affiliation(s)
- Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | | | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
19
|
Bin-Alamer O, Haider AS, Chaudhary A, Balasubramanian K, Breeding T, Palmisciano P, Haider M, Cohen-Gadol AA, Ahmadieh TYE, Yu K. Adenoid Cystic Carcinoma (ACC) Infiltrating the Skull Base: A Systematic Review of Clinical Characteristics and Management Strategies. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:503-511. [PMID: 36060029 PMCID: PMC9425585 DOI: 10.21873/cdp.10134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/03/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM To systematically review the patient characteristics and management approaches of adenoid cystic carcinoma (ACC) infiltrating the skull base. MATERIALS AND METHODS According to PRISMA guidelines, PubMed, Scopus, and Cochrane were searched to retrieve studies reporting management protocols and survival outcomes of patients with skull base ACCs. Patient characteristics, management strategies, and outcomes were investigated. RESULTS The review encompassed 17 studies involving 171 patients, with a female predominance (57.9%) and a mean age of 49±7.12 years. ACCs mostly infiltrated the paranasal sinus (22.2%), cavernous sinus (8.8%), and nasopharynx (7.1%). Perineural invasion was reported in 6.4% of cases. Facial pain, nasal obstruction, and facial paresthesia were the most common symptoms. Surgical resection (45.6%) was favored over biopsy (12.2%). Employing the free flap technique (4.7%), surgical reconstruction of the bony defect after resection was performed using abdominal and anterior thigh muscle grafts in 1.8% of patients each. As adjuvant management, 22.8% of cases had radiotherapy and 14.6% received chemotherapy. Recurrence of skull base ACCs occurred in 26.9% of cases during a mean follow up-time of 30.8±1.8 months. CONCLUSION Skull base ACCs pose a surgical challenge mainly due to their proximity to critical neurovascular structures and aggressive behavior. Surgical resection and radiotherapy are shown to be safe and effective treatment modalities. The dismal prognosis and limited data on non-surgical strategies highlight the need for further evaluation of the current management paradigm and upraising innovative therapies to improve patient mortality and quality of life.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ali S Haider
- Texas A&M University College of Medicine, Houston, TX, U.S.A
| | - Adhiraj Chaudhary
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | - Tessa Breeding
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, U.S.A
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Maryam Haider
- Department of Radiology, Baylor College of Medicine, Houston, TX, U.S.A
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| | - Tarek Y El Ahmadieh
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, U.S.A
| | - Kenny Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, U.S.A
| |
Collapse
|
20
|
Yang Y, Patel SH, Bridhikitti J, Wong WW, Halyard MY, McGee LA, Rwigema JCM, Schild SE, Vora SA, Liu T, Bues M, Fatyga M, Foote RL, Liu W. Exploratory study of seed spots analysis to characterize dose and linear energy transfer effect in adverse event initialization of pencil beam scanning proton therapy. Med Phys 2022; 49:6237-6252. [PMID: 35820062 DOI: 10.1002/mp.15859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Both dose and linear-energy-transfer (LET) could play a substantial role in adverse event (AE) initialization of cancer patients treated with pencil-beam-scanning proton therapy (PBS). However, not all the voxels within the AE regions are directly induced from the dose and LET effect. It is important to study the synergistic effect of dose and LET in AE initialization by only including a subset of voxels that are dosimetrically important. PURPOSE To perform exploratory investigation of the dose and LET effects upon AE initialization in PBS using seed spots analysis. METHODS 113 head and neck (H&N) cancer patients receiving curative PBS were included. Among them, 20 patients experienced unanticipated CTCAEv4.0 grade≥3 AEs (AE group) and 93 patients did not (control group). Within the AE group, 13 AE patients were included in the seed spot analysis to derive the descriptive features of AE initialization and the remaining 7 mandible osteoradionecrosis patients and 93 control patients were used to derive the feature-based volume constraint of mandible osteoradionecrosis. The AE regions were contoured and the corresponding dose-LET volume histograms (DLVHs) of AE regions were generated for all patients in the AE group. We selected high LET voxels (the highest 5% of each dose bin) with a range of moderate to high dose (≥∼40 Gy[RBE]) as critical voxels. Critical voxels which were contiguous with each other were grouped into clusters. Each cluster was considered as a potential independent seed spot for AE initialization. Seed spots were displayed in a 2D dose-LET plane based on their mean dose and LET to derive the descriptive features of AE initialization. A volume constraint of mandible osteoradionecrosis was then established based on the extracted features using a receiver operating characteristic curve. RESULTS The product of dose and LET (xBD) was found to be a descriptive feature of seed spots leading to AE initialization in this preliminary study. The derived xBD volume constraint for mandible osteoradionecrosis showed good performance with an area-under-curve of 0.87 (sensitivity of 0.714 and specificity of 0.807 in the leave-one-out cross validation) for the very limited patient data included in this study. CONCLUSION Our exploratory study showed that both dose and LET were observed to be important in AE initializations. The derived xBD volume constraint could predict mandible osteoradionecrosis reasonably well in the very limited H&N cancer patient data treated with PBS included in this study. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Jidapa Bridhikitti
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michele Y Halyard
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
21
|
De Felice F. FLASH radiotherapy in head and neck cancer: Myth or reality? Oral Oncol 2022; 131:105953. [PMID: 35667292 DOI: 10.1016/j.oraloncology.2022.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Viale Regina Elena 326, 00161 Rome, Italy.
| |
Collapse
|
22
|
Kaderka R, Liu KC, Liu L, VanderStraeten R, Liu TL, Lee KM, Tu YCE, MacEwan I, Simpson D, Urbanic J, Chang C. Toward automatic beam angle selection for pencil-beam scanning proton liver Treatments: A deep learning-based approach. Med Phys 2022; 49:4293-4304. [PMID: 35488864 DOI: 10.1002/mp.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning however poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods. PURPOSE A deep learning-based approach to automatic beam angle selection is proposed for proton pencil-beam scanning treatment planning of liver lesions. METHODS We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning. RESULTS For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20 degrees (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10 degrees of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing. CONCLUSIONS This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Kaderka
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,Department of Radiation Oncology, University of Miami, Miami, FL, 33136
| | | | - Lawrence Liu
- California Protons Cancer Therapy Center, San Diego, CA, 92121
| | | | | | | | | | - Iain MacEwan
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Daniel Simpson
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121
| | - James Urbanic
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Chang Chang
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| |
Collapse
|
23
|
Mohan R. A review of proton therapy – Current status and future directions. PRECISION RADIATION ONCOLOGY 2022; 6:164-176. [DOI: 10.1002/pro6.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Radhe Mohan
- Department of Radiation Physics, MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
24
|
Feng H, Patel SH, Wong WW, Younkin JE, Penoncello GP, Morales DH, Stoker JB, Robertson DG, Fatyga M, Bues M, Schild SE, Foote RL, Liu W. GPU-accelerated Monte Carlo-based online adaptive proton therapy - a feasibility study. Med Phys 2022; 49:3550-3563. [PMID: 35443080 DOI: 10.1002/mp.15678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop an online Graphic-Processing-Unit (GPU)-accelerated Monte-Carlo-based adaptive radiation therapy (ART) workflow for pencil beam scanning (PBS) proton therapy to address inter-fraction anatomical changes in patients treated with PBS. METHODS AND MATERIALS A four-step workflow was developed using our in-house developed GPU-accelerated Monte-Carlo-based treatment planning system to implement online Monte-Carlo-based ART for PBS. The first step conducts diffeomorphic demon-based deformable image registration (DIR) to propagate contours on the initial planning CT (pCT) to the verification CT (vCT) to form a new structure set. The second step performs forward dose calculation of the initial plan on the vCT with the propagated contours after manual approval (possible modifications involved). The third step triggers a re-optimization of the plan depending on whether the verification dose meets the clinical requirements or not. A robust evaluation will be done for both the verification plan in the second step and the re-opotimized plan in the third step. The fourth step involves a two-stage (before and after delivery) patient specific quality assurance (PSQA) of the re-optimized plan. The before-delivery PSQA is to compare the plan dose to the dose calculated using an independent fast open-source Monte Carlo code, MCsquare. The after-delivery PSQA is to compare the plan dose to the dose re-calculated using the log file (spot MU, spot position, and spot energy) collected during the delivery. Jaccard index (JI), Dice similarity coefficients (DSCs), and Hausdorff distance (HD) were used to assess the quality of the propagated contours in the first step. A commercial plan evaluation software, ClearCheck™, was integrated into the workflow to carry out efficient plan evaluation. 3D Gamma analysis was used during the fourth step to ensure the accuracy of the plan dose from re-optimization. Three patients with three different disease sites were chosen to evaluate the feasibility of the online ART workflow for PBS. RESULTS For all three patients, the propagated contours were found to have good volume conformance [JI (lowest-highest: 0.833-0.983) and DSC (0.909-0.992)] but sub-optimal boundary coincidence [HD (2.37-20.76 mm)] for organs at risk (OARs). The verification dose evaluated by ClearCheck™ showed significant degradation of the target coverage due to the inter-fractional anatomical changes. Re-optimization on the vCT resulted in great improvement of the plan quality to a clinically acceptable level. 3D Gamma analyses of PSQA confirmed the accuracy of the plan dose before delivery (mean Gamma index = 98.74% with a threshold of 2%/2 mm/10%), and after delivery based on the log files (mean Gamma index = 99.05% with a threshold of 2%/2 mm/10%). The average time cost for the complete execution of the workflow was around 858 seconds, excluding the time for manual intervention. CONCLUSION The proposed online ART workflow for PBS was demonstrated to be efficient and effective by generating a re-optimized plan that significantly improved the plan quality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - James E Younkin
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | | | | | - Joshua B Stoker
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | | | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
25
|
Choi MG, Law M, Djeng SK, Kim MS, Shin HB, Choe BY, Yoon DK, Suh TS. Daily adaptive proton therapy: Feasibility study of detection of tumor variations based on tomographic imaging of prompt gamma emission from proton–boron fusion reaction. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
26
|
Panek A, Miszczyk J. ATM and RAD51 Repair Pathways in Human Lymphocytes Irradiated with 70 MeV Therapeutic Proton Beam. Radiat Res 2021; 197:396-402. [PMID: 34958667 DOI: 10.1667/rade-21-00109.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
The repair of radiation-induced DNA damage is a key factor differentiating patients in terms of the therapeutic efficacy and toxicity to surrounding normal tissue. Proton energy substantially determines the types of cancers that can be treated. The present work investigated the DNA double-strand break repair systems, represented by phosphorylated ATM and Rad51. The status of proton therapy energy used to treat major types of cancer is summarized. Here, human lymphocytes from eight healthy donors (male and female) were irradiated with a spread-out Bragg peak using a therapeutic 70 MeV proton beam or with reference X rays. For both types of radiation, the kinetics of pATM and Rad51 repair protein activation (0-24 h) were estimated as determinants of homologous and non-homologous double-strand break repair. Additionally, γ-H2AX was used as the gold standard marker of double-strand breaks. Our results showed that at 30 min postirradiation there was significantly greater accumulation of γ-H2AX (0.6-fold), pATM (2.0-fold), and Rad51 (0.6-fold) in the proton-irradiated cells compared with the X-ray-treated cells. At 24 h post irradiation, for both types of radiation and all investigated proteins, the foci number was still significantly higher when compared with control. Furthermore, the mean value of pATM and Rad51 repair effectiveness was higher in cells exposed to protons than in cells exposed to X rays; however, the difference was significant only for pATM. The largest inter-individual differences in the repair capabilities were noted for Rad51. The association between the frequency of repair protein foci and the frequency of lymphocyte viability at 1 h post irradiation showed a positive correlation for protons but a negative correlation for X rays. These findings indicate that the accumulation of radiation-induced repair protein foci after proton versus X-ray irradiation differs between patients, consequently affecting the cellular responses to particle therapy and conventional radiation therapy.
Collapse
Affiliation(s)
- Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| |
Collapse
|
27
|
Hedrick SG, Petro S, Ward A, Morris B. Validation of automated complex head and neck treatment planning with pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 23:e13510. [PMID: 34936205 PMCID: PMC8833278 DOI: 10.1002/acm2.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pencil beam scanning (PBS) proton therapy offers dosimetric advantages for several treatment sites, including head and neck (H&N). However, to achieve the optimal target coverage and robustness, these plans can be complex and time consuming to develop and optimize. Automating the treatment planning process can ensure a high‐quality and standardized plan, reduce burden to the planner, and decrease time‐to‐treatment. We utilized in‐house scripting to automate a four‐field multi‐field optimization (MFO) H&N planning technique. Methods and materials Ten bilateral H&N patients were planned in RayStation v6 with a four‐field modified‐X beam configuration using MFO planning. Automation included creation of avoidance structures to control spot placement and development of standardized beams, PBS spot settings, robust optimization objectives, and patient‐specific predicted planning constraints. Each patient was planned both with and without automation to evaluate differences in planning time, perceived effort and plan quality, plan robustness, and OAR sparing. Results On average, scripted plans required 3.2 h, compared to 4.3 h without the script. There was no difference in target coverage or plan robustness with or without automation. Automation significantly reduced mean dose to the oral cavity, parotids, esophagus, trachea, and larynx. Perceived effort was scaled from 1 (minimum effort) to 100 (maximum effort), and automation reduced perceived effort by 42% (p < 0.05). Two non‐scripted plans required re‐planning due to errors. Conclusions Automation of this multi‐beam, the MFO proton planning process reduced planning time and improved OAR sparing compared to the same planning process without scripting. Scripting generation of complex structures and planning objectives reduced burden on the planner. With most current treatment planning software, this automation is simple to implement and can standardize quality of care across all treatment planners.
Collapse
Affiliation(s)
| | - Scott Petro
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Alex Ward
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Bart Morris
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| |
Collapse
|
28
|
Feng H, Shan J, Anderson JD, Wong WW, Schild SE, Foote RL, Patrick CL, Tinnon KB, Fatyga M, Bues M, Patel SH, Liu W. Per-voxel constraints to minimize hot spots in linear energy transfer-guided robust optimization for base of skull head and neck cancer patients in IMPT. Med Phys 2021; 49:632-647. [PMID: 34843119 DOI: 10.1002/mp.15384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Due to the employment of quadratic programming using soft constraints to implement dose volume constraints and the "trial-and-error" procedure needed to achieve a clinically acceptable plan, conventional dose volume constraints (upper limit) are not adequately effective in controlling small and isolated hot spots in the dose/linear energy transfer (LET) distribution. Such hot spots can lead to adverse events. In order to mitigate the risk of brain necrosis, one of the most clinically significant adverse events in patients receiving intensity-modulated proton therapy (IMPT) for base of skull (BOS) cancer, we propose per-voxel constraints to minimize hot spots in LET-guided robust optimization. METHODS AND MATERIALS Ten BOS cancer patients treated with IMPT were carefully selected by meeting one of the following conditions: (1) diagnosis of brain necrosis during follow-up; and (2) considered high risk for brain necrosis by not meeting dose constraints to the brain. An optimizing structure (BrainOPT) and an evaluating structure (BrainROI) that both contained the aforementioned hot dose regions in the brain were generated for optimization and evaluation, respectively. Two plans were generated for every patient: one using conventional dose-only robust optimization, the other using LET-guided robust optimization. The impact of LET was integrated into the optimization via a term of extra biological dose (xBD). A novel optimization tool of per-voxel constraints to control small and isolated hot spots in either the dose, LET, or combined (dose/LET) distribution was developed and used to minimize dose/LET hot spots of the selected structures. Indices from dose-volume histogram (DVH) and xBD dose-volume histogram (xBDVH) were used in the plan evaluation. A newly developed tool of the dose-LET-volume histogram (DLVH) was also adopted to illustrate the underlying mechanism. Wilcoxon signed-rank test was used for statistical comparison of the DVH and xBDVH indices between the conventional dose-only and the LET-guided robustly optimized plans. RESULTS Per-voxel constraints effectively and efficiently minimized dose hot spots in both dose-only and LET-guided robust optimization and LET hot spots in LET-guided robust optimization. Compared to the conventional dose-only robust optimization, the LET-guided robust optimization could generate plans with statistically lower xBD hot spots in BrainROI (VxBD,50 Gy[RBE], p = 0.009; VxBD,60 Gy[RBE], p = 0.025; xBD1cc, p = 0.017; xBD2cc, p = 0.022) with comparable dose coverage, dose hot spots in the target, and dose hot spots in BrainROI. DLVH analysis indicated that LET-guided robust optimization could either reduce LET at the same dose level or redistribute high LET from high dose regions to low dose regions. CONCLUSION Per-voxel constraint is a powerful tool to minimize dose/LET hot spots in IMPT. The LET-guided robustly optimized plans outperformed the conventional dose-only robustly optimized plans in terms of xBD hot spots control.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Justin D Anderson
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kathryn B Tinnon
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
29
|
Gordon KB, Smyk DI, Gulidov IA. Proton Therapy in Head and Neck Cancer Treatment: State of the Problem and Development Prospects (Review). Sovrem Tekhnologii Med 2021; 13:70-80. [PMID: 34603766 PMCID: PMC8482826 DOI: 10.17691/stm2021.13.4.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Proton therapy (PT) due to dosimetric characteristics (Bragg peak formation, sharp dose slowdown) is currently one of the most high-tech techniques of radiation therapy exceeding the standards of photon methods. In recent decades, PT has traditionally been used, primarily, for head and neck cancers (HNC) including skull base tumors. Regardless of the fact that recently PT application area has significantly expanded, HNC still remain a leading indication for proton radiation since PT’s physic-dosimetric and radiobiological advantages enable to achieve the best treatment results in these tumors. The present review is devoted to PT usage in HNC treatment in the world and Russian medicine, the prospects for further technique development, the assessment of PT’s radiobiological features, a physical and dosimetric comparison of protons photons distribution. The paper shows PT’s capabilities in the treatment of skull base tumors, HNC (nasal cavity, paranasal sinuses, nasopharynx, oropharynx, and laryngopharynx, etc.), eye tumors, sialomas. The authors analyze the studies on repeated radiation and provide recent experimental data on favorable profile of proton radiation compared to the conventional radiation therapy. The review enables to conclude that currently PT is a dynamic radiation technique opening up new opportunities for improving therapy of oncology patients, especially those with HNC.
Collapse
Affiliation(s)
- K B Gordon
- Senior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - D I Smyk
- Junior Researcher, Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| | - I A Gulidov
- Professor, Head of the Proton Therapy Department; A. Tsyb Medical Radiological Research Centre - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Kaluga Region, Obninsk, 249036, Russia
| |
Collapse
|
30
|
Chua KLM, Chu PL, Tng DJH, Soo KC, Chua MLK. Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clin Oncol (R Coll Radiol) 2021; 33:e469-e481. [PMID: 34509347 DOI: 10.1016/j.clon.2021.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Despite improvements in radiotherapy, radioresistance remains an important clinical challenge. Radioresistance can be mediated through enhanced DNA damage response mechanisms within the tumour or through selective pressures exerted by the tumour microenvironment (TME). The effects of the TME have in recent times gained increased attention, in part due to the success of immune modulating strategies, but also through improved understanding of the downstream effects of hypoxia and dysregulated wound healing processes on mediating radioresistance. Although we have a better appreciation of these molecular mechanisms, efforts to address them through novel combination approaches have been scarce, owing to limitations of photon therapy and concerns over toxicity. At the same time, proton beam therapy (PBT) represents an advancement in radiotherapy technologies. However, early clinical results have been mixed and the clinical strategies around optimal use and patient selection for PBT remain unclear. Here we highlight the role that PBT can play in addressing radioresistance, through better patient selection, and by providing an improved toxicity profile for integration with novel agents. We will also describe the developments around FLASH PBT. Through close examination of its normal tissue-sparing effects, we will highlight how FLASH PBT can facilitate combination strategies to tackle radioresistance by further improving toxicity profiles and by directly mediating the mechanisms of radioresistance.
Collapse
Affiliation(s)
- K L M Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - P L Chu
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - D J H Tng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - K C Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Surgical Oncology, National Cancer Centre Singapore, Singapore
| | - M L K Chua
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore; Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
31
|
Zhang X. A Review of the Robust Optimization Process and Advances with Monte Carlo in the Proton Therapy Management of Head and Neck Tumors. Int J Part Ther 2021; 8:14-24. [PMID: 34285932 PMCID: PMC8270090 DOI: 10.14338/ijpt-20-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
In intensity-modulated proton therapy, robust optimization processes have been developed to manage uncertainties associated with (1) range, (2) setup, (3) anatomic changes, (4) dose calculation, and (5) biological effects. Here we review our experience using a robust optimization technique that directly incorporates range and setup uncertainties into the optimization process to manage those sources of uncertainty. We also review procedures for implementing adaptive planning to manage the anatomic uncertainties. Finally, we share some early experiences regarding the impact of uncertainties in dose calculation and biological effects, along with techniques to manage and potentially reduce these uncertainties.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Yang Y, Vargas CE, Bhangoo RS, Wong WW, Schild SE, Daniels TB, Keole SR, Rwigema JCM, Glass JL, Shen J, DeWees TA, Liu T, Bues M, Fatyga M, Liu W. Exploratory Investigation of Dose-Linear Energy Transfer (LET) Volume Histogram (DLVH) for Adverse Events Study in Intensity Modulated Proton Therapy (IMPT). Int J Radiat Oncol Biol Phys 2021; 110:1189-1199. [PMID: 33621660 DOI: 10.1016/j.ijrobp.2021.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE We proposed a novel tool-a dose linear energy transfer (LET)-volume histogram (DLVH)-and performed an exploratory study to investigate rectal bleeding in prostate cancer treated with intensity modulated proton therapy. METHODS AND MATERIALS The DLVH was constructed with dose and LET as 2 axes, and the normalized volume of the structure was contoured in the dose-LET plane as isovolume lines. We defined the DLVH index, DLv%(d,l) (ie, v% of the structure) to have a dose of ≥d Gy and an LET of ≥l keV/μm, similar to the dose-volume histogram index Dv%. Nine patients with prostate cancer with rectal bleeding (Common Terminology Criteria for Adverse Events grade ≥2) were included as the adverse event group, and 48 patients with no complications were considered the control group. A P value map was constructed by comparison of the DLVH indices of all patients between the 2 groups using the Mann-Whitney U test. Dose-LET volume constraints (DLVCs) were derived based on the P value map with a manual selection procedure facilitated by Spearman's correlation tests. The obtained DLVCs were further cross-validated using a multivariate support vector machine (SVM)-based normal tissue complication probability (NTCP) model with an independent testing data set composed of 8 adverse event and 13 control patients. RESULTS We extracted 2 DLVC constraints. One DLVC was obtained, Vdose/LETboundary:2.5keVμmat 75 Gy to 3.2keVμmat8.65Gy <1.27% (DLVC1), revealing a high LET volume effect. The second DLVC, V(72.2Gy,0keVμm) < 2.23% (DVLC2), revealed a high dose volume effect. The SVM-based NTCP model with 2 DLVCs provided slightly superior performance than using dose only, with an area under the curve of 0.798 versus 0.779 for the testing data set. CONCLUSIONS Our results demonstrated the importance of rectal "hot spots" in both high LET (DLVC1) and high dose (DLVC2) in inducing rectal bleeding. The SVM-based NTCP model confirmed the derived DLVCs as good predictors for rectal bleeding when intensity modulated proton therapy is used to treat prostate cancer.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Thomas B Daniels
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | | | - Jennifer L Glass
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Todd A DeWees
- Division of Biostatics, Mayo Clinic Arizona, Phoenix, Arizona
| | - Tianming Liu
- Department of Computer Science, the University of Georgia, Athens, Georgia
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
33
|
Thaker NG, Boyce-Fappiano D, Ning MS, Pasalic D, Guzman A, Smith G, Holliday EB, Incalcaterra J, Garden AS, Shaitelman SF, Gunn GB, Fuller CD, Blanchard P, Feeley TW, Kaplan RS, Frank SJ. Activity-Based Costing of Intensity-Modulated Proton versus Photon Therapy for Oropharyngeal Cancer. Int J Part Ther 2021; 8:374-382. [PMID: 34285963 PMCID: PMC8270081 DOI: 10.14338/ijpt-20-00042.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE In value-based health care delivery, radiation oncologists need to compare empiric costs of care delivery with advanced technologies, such as intensity-modulated proton therapy (IMPT) and intensity-modulated radiation therapy (IMRT). We used time-driven activity-based costing (TDABC) to compare the costs of delivering IMPT and IMRT in a case-matched pilot study of patients with newly diagnosed oropharyngeal (OPC) cancer. MATERIALS AND METHODS We used clinicopathologic factors to match 25 patients with OPC who received IMPT in 2011-12 with 25 patients with OPC treated with IMRT in 2000-09. Process maps were created for each multidisciplinary clinical activity (including chemotherapy and ancillary services) from initial consultation through 1 month of follow-up. Resource costs and times were determined for each activity. Each patient-specific activity was linked with a process map and TDABC over the full cycle of care. All calculated costs were normalized to the lowest-cost IMRT patient. RESULTS TDABC costs for IMRT were 1.00 to 3.33 times that of the lowest-cost IMRT patient (mean ± SD: 1.65 ± 0.56), while costs for IMPT were 1.88 to 4.32 times that of the lowest-cost IMRT patient (2.58 ± 0.39) (P < .05). Although single-fraction costs were 2.79 times higher for IMPT than for IMRT (owing to higher equipment costs), average full cycle cost of IMPT was 1.53 times higher than IMRT, suggesting that the initial cost increase is partly mitigated by reductions in costs for other, non-RT supportive health care services. CONCLUSIONS In this matched sample, although IMPT was on average more costly than IMRT primarily owing to higher equipment costs, a subset of IMRT patients had similar costs to IMPT patients, owing to greater use of supportive care resources. Multidimensional patient outcomes and TDABC provide vital methodology for defining the value of radiation therapy modalities.
Collapse
Affiliation(s)
- Nikhil G. Thaker
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Arizona Oncology, The US Oncology Network, Tucson, AZ, USA
| | - David Boyce-Fappiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dario Pasalic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexis Guzman
- The Institute for Cancer Care Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Smith
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emma B. Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Incalcaterra
- The Institute for Cancer Care Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S. Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simona F. Shaitelman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G. Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C. David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierre Blanchard
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Leach K, Tang S, Sturgeon J, Lee AK, Grover R, Sanghvi P, Urbanic J, Chang C. Beam-Specific Spot Guidance and Optimization for PBS Proton Treatment of Bilateral Head and Neck Cancers. Int J Part Ther 2021; 8:50-61. [PMID: 34285935 PMCID: PMC8270101 DOI: 10.14338/ijpt-20-00060.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2020] [Accepted: 02/19/2021] [Indexed: 12/05/2022] Open
Abstract
PURPOSE A multi-field optimization (MFO) technique that uses beam-specific spot placement volumes (SPVs) and spot avoidance volumes (SAVs) is introduced for bilateral head and neck (H&N) cancers. These beam-specific volumes are used to guide the optimizer to consistently achieve optimal organ-at-risk (OAR) sparing with target coverage and plan robustness. MATERIALS AND METHODS Implementation of this technique using a 4-beam, 5-beam, and variant 5-beam arrangement is discussed. The generation of beam-specific SPVs and SAVs derived from target and OARs are shown. The SPVs for select fields are further partitioned into optimization volumes for uniform dose distributions that resemble those of single-field optimization (SFO). A conventional MFO plan that does not use beam-specific spot placement guidance (MFOcon) and an MFO plan that uses only beam-specific SPV (MFOspv) are compared with current technique (MFOspv/sav), using both simulated scenarios and forward-calculated plans on weekly verification computed tomography (VFCT) scans. RESULTS Dose distribution characteristics of the 4-beam, 5-beam, and variant 5-beam technique are demonstrated with discussion on OAR sparing. When comparing the MFOcon, MFOspv, and MFOspv/sav, the MFOspv/sav is shown to have superior OAR sparing in 9 of the 14 OARs examined. It also shows clinical plan robustness when evaluated by using both simulated uncertainty scenarios and forward-calculated weekly VFCTs throughout the 7-week treatment course. CONCLUSION The MFOspv/sav technique is a systematic approach using SPVs and SAVs to guide the optimizer to consistently reach desired OAR dose values and plan robustness.
Collapse
Affiliation(s)
- Karla Leach
- California Protons Cancer Therapy Center, San Diego, CA, USA
- Texas Center for Proton Therapy, Irving, TX, USA
| | - Shikui Tang
- Texas Center for Proton Therapy, Irving, TX, USA
| | | | | | - Ryan Grover
- California Protons Cancer Therapy Center, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - Parag Sanghvi
- California Protons Cancer Therapy Center, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - James Urbanic
- California Protons Cancer Therapy Center, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - Chang Chang
- California Protons Cancer Therapy Center, San Diego, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
35
|
Lin A, Chang JHC, Grover RS, Hoebers FJP, Parvathaneni U, Patel SH, Thariat J, Thomson DJ, Langendijk JA, Frank SJ. PTCOG Head and Neck Subcommittee Consensus Guidelines on Particle Therapy for the Management of Head and Neck Tumors. Int J Part Ther 2021; 8:84-94. [PMID: 34285938 PMCID: PMC8270078 DOI: 10.14338/ijpt-20-00071.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Radiation therapy is a standard modality in the treatment for cancers of the head and neck, but is associated with significant short- and long-term side effects. Proton therapy, with its unique physical characteristics, can deliver less dose to normal tissues, resulting in fewer side effects. Proton therapy is currently being used for the treatment of head and neck cancer, with increasing clinical evidence supporting its use. However, barriers to wider adoption include access, cost, and the need for higher-level evidence. Methods The clinical evidence for the use of proton therapy in the treatment of head and neck cancer are reviewed here, including indications, advantages, and challenges. Results The Particle Therapy Cooperative Group Head and Neck Subcommittee task group provides consensus guidelines for the use of proton therapy for head and neck cancer. Conclusion This report can be used as a guide for clinical use, to understand clinical trials, and to inform future research efforts.
Collapse
Affiliation(s)
| | | | - Ryan S Grover
- University of California-San Diego, San Diego, CA, USA
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Juliette Thariat
- Radiation Oncology Department, François Baclesse Center/ARCHADE, Normandy University, Caen, France
| | - David J Thomson
- The Christie NHS Foundation Trust, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven J Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Hanania AN, Zhang X, Gunn GB, Rosenthal DI, Garden AS, Fuller CD, Phan J, Reddy JP, Moreno A, Chronowski G, Shah S, Ausat N, Hanna E, Ferrarotto R, Frank SJ. Proton Therapy for Major Salivary Gland Cancer: Clinical Outcomes. Int J Part Ther 2021; 8:261-272. [PMID: 34285952 PMCID: PMC8270094 DOI: 10.14338/ijpt-20-00044.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose To report clinical outcomes in terms of disease control and toxicity in patients with major salivary gland cancers (SGCs) treated with proton beam therapy. Materials and Methods Clinical and dosimetric characteristics of patients with SGCs treated from August 2011 to February 2020 on an observational, prospective, single-institution protocol were abstracted. Local control and overall survival were calculated by the Kaplan-Meier method. During radiation, weekly assessments of toxicity were obtained, and for patients with ≥ 90 days of follow-up, late toxicity was assessed. Results Seventy-two patients were identified. Median age was 54 years (range, 23-87 years). Sixty-three patients (88%) received postoperative therapy, and nine patients (12%) were treated definitively. Twenty-six patients (36%) received concurrent chemotherapy. Nine patients (12%) had received prior radiation. All (99%) but one patient received unilateral treatment with a median dose of 64 GyRBE (relative biological effectiveness) (interquartile range [IQR], 60-66), and 53 patients (74%) received intensity-modulated proton therapy with either single-field or multifield optimization. The median follow-up time was 30 months. Two-year local control and overall survival rates were 96% (95% confidence interval [CI] 85%-99%) and 89% (95% CI 76%-95%], respectively. Radiation dermatitis was the predominant grade-3 toxicity (seen in 21% [n = 15] of the patients), and grade ≥ 2 mucositis was rare (14%; n = 10 patients). No late-grade ≥ 3 toxicities were reported. Conclusion Proton beam therapy for treatment of major SGCs manifests in low rates of acute mucosal toxicity. In addition, the current data suggest a high rate of local control and minimal late toxicity.
Collapse
Affiliation(s)
- Alexander N Hanania
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jay P Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory Chronowski
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shalin Shah
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Noveen Ausat
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Hanna
- Department of Head and Neck Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Spiotto MT, McGovern SL, Gunn GB, Grosshans D, McAleer MF, Frank SJ, Paulino AC. Proton Radiotherapy to Reduce Late Complications in Childhood Head and Neck Cancers. Int J Part Ther 2021; 8:155-167. [PMID: 34285943 PMCID: PMC8270100 DOI: 10.14338/ijpt-20-00069.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
In most childhood head and neck cancers, radiotherapy is an essential component of treatment; however, it can be associated with problematic long-term complications. Proton beam therapy is accepted as a preferred radiation modality in pediatric cancers to minimize the late radiation side effects. Given that childhood cancers are a rare and heterogeneous disease, the support for proton therapy comes from risk modeling and a limited number of cohort series. Here, we discuss the role of proton radiotherapy in pediatric head and neck cancers with a focus on reducing radiation toxicities. First, we compare the efficacy and expected toxicities in proton and photon radiotherapy for childhood cancers. Second, we review the benefit of proton radiotherapy in reducing acute and late radiation toxicities, including risks for secondary cancers, craniofacial development, vision, and cognition. Finally, we review the cost effectiveness for proton radiotherapy in pediatric head and neck cancers. This review highlights the benefits of particle radiotherapy for pediatric head and neck cancers to improve the quality of life in cancer survivors, to reduce radiation morbidities, and to maximize efficient health care use.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Lee A, Kitpanit S, Chilov M, Langendijk JA, Lu J, Lee NY. A Systematic Review of Proton Therapy for the Management of Nasopharyngeal Cancer. Int J Part Ther 2021; 8:119-130. [PMID: 34285941 PMCID: PMC8270076 DOI: 10.14338/ijpt-20-00082.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2020] [Accepted: 11/27/2020] [Indexed: 12/05/2022] Open
Abstract
Purpose With improved technology, more patients with nasopharyngeal cancer (NPC) are receiving definitive treatment with proton therapy, which allows greater sparing of dose to normal tissues without compromising efficacy. As there is no randomized data, the purpose of this study was to systematically review the available literature on proton therapy in this setting, focusing on the toxicity endpoints. Materials and Methods A systematic search using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was conducted in 5 databases: PubMed, Embase, SCOPUS, Web of Science, and the Cochrane Central Register of Controlled Trials. A total of 491 studies were found on the topic of NPC and proton therapy. Following independent study selection by 2 investigators, 9 studies were found to have sufficient focus and relevance to be incorporated into the systematic review. Results All 9 studies were retrospective and examined only NPC patients except for one that also included paranasal sinus cancer. One study was a reirradiation study. Four studies used 3D or double scatter technique, while all others used intensity-modulated proton therapy. Oncologic outcomes were similar to intensity-modulated radiation therapy (IMRT) rates, with 2-year local and regional progression-free survival (LRFS) ranging from 84% to 100%, 2-year progression-free survival (PFS) ranging from 75% to 88.9%, and 2-year overall survival (OS) ranging from 88% to 95% in the up-front setting. Four comparison studies with IMRT found significantly lower feeding tube rates (20% versus 65%, P = .015; and 14% versus 85%, P < .001) with proton therapy as well as lower mucositis (G2 46% versus 70%, P = .019; and G3 11% versus 76%, P = .0002). All other acute and late effects were largely improved with proton therapy but not statistically significant. Conclusions NPC patients receiving proton therapy maintain good outcomes with improved toxicity profile, likely due to sparing of dose to normal structures. Prospective studies are ongoing to better quantify the magnitude.
Collapse
Affiliation(s)
- Anna Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarin Kitpanit
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Marina Chilov
- Medical Library, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jiade Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
39
|
Gunn GB, Garden AS, Ye R, Ausat N, Dahlstrom KR, Morrison WH, Fuller CD, Phan J, Reddy JP, Shah SJ, Mayo LL, Chun SG, Chronowski GM, Moreno AC, Myers JN, Hanna EY, Esmaeli B, Gillison ML, Ferrarotto R, Hutcheson KA, Chambers MS, Ginsberg LE, El-Naggar AK, Rosenthal DI, Zhu XR, Frank SJ. Proton Therapy for Head and Neck Cancer: A 12-Year, Single-Institution Experience. Int J Part Ther 2021; 8:108-118. [PMID: 34285940 PMCID: PMC8270083 DOI: 10.14338/ijpt-20-00065.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To characterize our experience and the disease control and toxicity of proton therapy (PT) for patients with head and neck cancer (HNC). PATIENTS AND METHODS Clinical outcomes for patients with HNC treated with PT at our institution were prospectively collected in 2 institutional review board-approved prospective studies. Descriptive statistics were used to summarize patient characteristics and outcomes. Overall survival, local-regional control, and disease-free survival were estimated by the Kaplan-Meier method. Treatment-related toxicities were recorded according to the Common Terminology Criteria for Adverse Events (version 4.03) scale. RESULTS The cohort consisted of 573 patients treated from February 2006 to June 2018. Median patient age was 61 years. Oropharynx (33.3%; n = 191), paranasal sinus (11%; n = 63), and periorbital tissues (11%; n = 62) were the most common primary sites. Patients with T3/T4 or recurrent disease comprised 46% (n = 262) of the cohort. The intent of PT was definitive in 53% (n = 303), postoperative in 37% (n = 211), and reirradiation in 10% (n = 59). Median dose was 66 Gy (radiobiological equivalent). Regarding systemic therapy, 43% had received concurrent (n = 244), 3% induction (n = 19), and 15% (n = 86) had both. At a median follow-up of 2.4 years, 88 patients (15%) had died and 127 (22%) developed disease recurrence. The overall survival, local-regional control, and disease-free survival at 2 and 5 years were, respectively, 87% and 75%, 87% and 78%, and 74% and 63%. Maximum toxicity (acute or late) was grade 3 in 293 patients (51%), grade 2 in 234 patients (41%), and grade 1 in 31 patients (5%). There were 381 acute grade 3 and 190 late grade 3 unique toxicities across 212 (37%) and 150 (26%) patients, respectively. There were 3 late-grade 4 events across 2 patients (0.3%), 2 (0.3%) acute-grade 5, and no (0%) late-grade 5 events. CONCLUSIONS The overall results from this prospective study of our initial decade of experience with PT for HNC show favorable disease control and toxicity outcomes in a multidisease-site cohort and provide a reference benchmark for future comparison and study.
Collapse
Affiliation(s)
- G. Brandon Gunn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S. Garden
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rong Ye
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Noveen Ausat
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristina R. Dahlstrom
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William H. Morrison
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C. David Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jay P. Reddy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shalin J. Shah
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren L. Mayo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G. Chun
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory M. Chronowski
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffery N. Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Y. Hanna
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bita Esmaeli
- Ophthalmic Plastic Surgery, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L. Gillison
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A. Hutcheson
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark S. Chambers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence E. Ginsberg
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K. El-Naggar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David I. Rosenthal
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorong Ronald Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J. Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Yu NY, Khurana A, Ma DJ, Neben-Wittich MA, Golafshar MA, McGee LA, Rwigema JCM, Foote RL, Patel SH. Initial Experience with Proton Beam Therapy for Differentiated Thyroid Cancer. Int J Part Ther 2021; 8:311-318. [PMID: 34285957 PMCID: PMC8270099 DOI: 10.14338/ijpt-d-20-00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose External beam radiotherapy is used in a subset of high-risk patients with differentiated thyroid cancer (DTC). Recurrent, radioactive iodine (RAI)-refractory DTC carries a poor prognosis. We report our initial experience of intensity-modulated proton therapy (IMPT) for recurrent, RAI-refractory DTC. Patients and Methods Fourteen patients with recurrent, RAI-refractory DTC were consecutively treated with IMPT from November 2016 to March 2020 at our multisite institution. Patient, tumor, and treatment characteristics were recorded. Overall survival and local-regional recurrence-free survival were recorded and estimated using the Kaplan-Meier method. Acute and late treatment-related toxicities were recorded based on the Common Terminology Criteria for Adverse Events version 5.0. Patients completed the European Organization for Research and Treatment of Cancer Quality of Life Head and Neck Module at baseline and after IMPT. Eleven patients were included in the final analysis. Results Median follow-up was 8 months (range, 3-40) for all patients. Median age at treatment with IMPT was 64 years (range, 40-77), and the majority were men (64%). Recurrent histologies included papillary (55%), Hurthle cell (36%), and poorly differentiated (9%) carcinoma; 1 patient had tall cell variant. Concurrent chemotherapy was not administered for any patient in this cohort. At 8 months, all patients were alive without local-regional failure. Acute grade 3 toxicities were limited to 1 patient with dysphagia, requiring feeding tube placement. Two patients experienced late grade 3 esophageal stenosis requiring dilation. There were no grade 4 or 5 toxicities. There were no differences in pretreatment versus posttreatment patient-reported outcomes in terms of dysphagia or hoarseness. Conclusion In our early experience, IMPT provided promising local-regional control for recurrent, RAI-refractory DTC. Further study is warranted to evaluate the long-term efficacy and safety of IMPT in this patient population.
Collapse
Affiliation(s)
- Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Aditya Khurana
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
41
|
Gamez ME, Ma DJ. Deintensification Strategies Using Proton Beam Therapy for HPV-Related Oropharyngeal Cancer. Int J Part Ther 2021; 8:223-233. [PMID: 34285949 PMCID: PMC8270104 DOI: 10.14338/ijpt-20-00073.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Oropharyngeal cancers related to the human papillomavirus are a growing segment of head and neck cancers throughout the world. These cancers are biologically and demographically unique with patients presenting at younger ages and with more curable disease. This combination of factors heightens the importance of normal tissue sparing because patients will live a long time with treatment sequelae. Proton therapy has demonstrated benefits in reducing normal tissue exposure, which may lead to less toxicity, a higher quality of life, less immunologic suppression, and lower cost. Research investigating deintensified radiation volumes and doses are also underway. These deintensification studies synergize well with the beam characteristics of proton beam therapy and can decrease that already reduced normal tissue exposure enabled by proton therapy. Future studies should refine patient selection to best allow for volume and dose reduction paired with proton therapy.
Collapse
Affiliation(s)
- Mauricio E. Gamez
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Daniel J. Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Sherry AD, Pasalic D, Gunn GB, Fuller CD, Phan J, Rosenthal DI, Morrison WH, Sturgis EM, Gross ND, Gillison ML, Ferrarotto R, El-Naggar AK, Garden AS, Frank SJ. Proton Beam Therapy for Head and Neck Carcinoma of Unknown Primary: Toxicity and Quality of Life. Int J Part Ther 2021; 8:234-247. [PMID: 34285950 PMCID: PMC8270080 DOI: 10.14338/ijpt-20-00034.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Proton radiation therapy (PRT) may offer dosimetric and clinical benefit in the treatment of head and neck carcinoma of unknown primary (HNCUP). We sought to describe toxicity and quality of life (QOL) in patients with HNCUP treated with PRT. Patients and Methods Toxicity and QOL were prospectively tracked in patients with HNCUP from 2011 to 2019 after institutional review board approval. Patients received PRT to the mucosa of the nasopharynx, oropharynx, and bilateral cervical lymph nodes with sparing of the larynx and hypopharynx. Patient-reported outcomes were tracked with the MD Anderson Symptom Inventory–Head and Neck Module, the Functional Assessment of Cancer Therapy–Head and Neck, the MD Anderson Dysphagia Inventory, and the Xerostomia-Related QOL Scale. Primary study endpoints were the incidence of grade ≥ 3 (G3) toxicity and QOL patterns. Results Fourteen patients (median follow-up, 2 years) were evaluated. Most patients presented with human papillomavirus–positive disease (n = 12, 86%). Rates of G3 oral mucositis, xerostomia, and dermatitis were 7% (n = 1), 21% (n = 3), and 36% (n = 5), respectively. None required a gastrostomy. During PRT, QOL was reduced relative to baseline and recovered shortly after PRT. At 2 years after PRT, the local regional control, disease-free survival, and overall survival were 100% (among 7 patients at risk), 79% (among 6 patients at risk), and 90% (among 7 patients at risk), respectively. Conclusion Therefore, PRT for HNCUP was associated with highly favorable dosimetric and clinical outcomes, including minimal oral mucositis, xerostomia, and dysphagia. Toxicity and QOL may be superior with PRT compared with conventional radiation therapy and PRT maintains equivalent oncologic control. Further prospective studies are needed to evaluate late effects and cost-effectiveness.
Collapse
Affiliation(s)
| | - Dario Pasalic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David I Rosenthal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William H Morrison
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Feng H, Shan J, Ashman JB, Rule WG, Bhangoo RS, Yu NY, Chiang J, Fatyga M, Wong WW, Schild SE, Sio TT, Liu W. Technical Note: 4D robust optimization in small spot intensity-modulated proton therapy (IMPT) for distal esophageal carcinoma. Med Phys 2021; 48:4636-4647. [PMID: 34058026 DOI: 10.1002/mp.15003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To compare the dosimetric performances of small-spot three-dimensional (3D) and four-dimensional (4D) robustly optimized intensity-modulated proton (IMPT) plans in the presence of uncertainties and interplay effect simultaneously for distal esophageal carcinoma. METHOD AND MATERIALS Thirteen (13) patients were selected and re-planned with small-spot ( σ ~ 2-6 mm) 3D and 4D robust optimization in IMPT, respectively. The internal clinical target volumes (CTVhigh3d , CTVlow3d ) were used in 3D robust optimization. Different CTVs (CTVhigh4d , CTVlow4d ) were generated by subtracting an inner margin of the motion amplitudes in three cardinal directions from the internal CTVs and used in 4D robust optimization. All patients were prescribed the same dose to CTVs (50 Gy[RBE] for CTVhigh3d /CTVhigh4d and 45 Gy[RBE] for CTVlow3d /CTVlow4d ). Dose-volume histogram (DVH) indices were calculated to assess plan quality. Comprehensive plan robustness evaluations that consisted of 300 perturbed scenarios (10 different motion patterns to consider irregular motion (sampled from a Gaussian distribution) and 30 different uncertainties scenarios (sampled from a 4D uniform distribution) combined), were performed to quantify robustness to uncertainties and interplay effect simultaneously. Wilcoxon signed-rank test was used for statistical analysis. RESULTS Compared to 3D robustly optimized plans, 4D robustly optimized plans had statistically improved target coverage and better sparing of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) in the nominal scenario. 4D robustly optimized plans had better robustness in target dose coverage (CTVhigh4d V100% , P = 0.002) and the protection of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) when uncertainties and interplay effect were considered simultaneously. CONCLUSIONS Even with small spots in IMPT, 4D robust optimization outperformed 3D robust optimization in terms of normal tissue protection and robustness to uncertainties and interplay effect simultaneously. Our findings support the use of 4D robust optimization to treat distal esophageal carcinoma with small spots in IMPT.
Collapse
Affiliation(s)
- Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Jie Shan
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Ronik S Bhangoo
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Jennifer Chiang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| |
Collapse
|
44
|
Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: a De-Intensification Strategy. Curr Treat Options Oncol 2021; 22:54. [PMID: 34086150 PMCID: PMC8178129 DOI: 10.1007/s11864-021-00847-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/16/2021] [Indexed: 12/02/2022]
Abstract
The rise in the incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPC), the relatively young age at which it is diagnosed, and its favorable prognosis necessitate the use of treatment techniques that reduce the likelihood of side effects during and after curative treatment. Intensity-modulated proton therapy (IMPT) is a form of radiotherapy that de-intensifies treatment through dose de-escalation to normal tissues without compromising dose to the primary tumor and involved, regional lymph nodes. Preclinical studies have demonstrated that HPV-positive squamous cell carcinoma is more sensitive to proton radiation than is HPV-negative squamous cell carcinoma. Retrospective studies comparing intensity-modulated photon (X-ray) radiotherapy to IMPT for OPC suggest comparable rates of disease control and lower rates of pain, xerostomia, dysphagia, dysgeusia, gastrostomy tube dependence, and osteoradionecrosis with IMPT—all of which meaningfully affect the quality of life of patients treated for HPV-associated OPC. Two phase III trials currently underway—the “Randomized Trial of IMPT versus IMRT for the Treatment of Oropharyngeal Cancer of the Head and Neck” and the “TOxicity Reduction using Proton bEam therapy for Oropharyngeal cancer (TORPEdO)” trial—are expected to provide prospective, level I evidence regarding the effectiveness of IMPT for such patients.
Collapse
|
45
|
Li P, Wang J, Axier A, Zhou K, Yun J, Wang H, Zhang T, Li S. Proton therapy for craniopharyngioma in adults: a protocol for systematic review and meta-analysis. BMJ Open 2021; 11:e046043. [PMID: 34078637 PMCID: PMC8173282 DOI: 10.1136/bmjopen-2020-046043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Craniopharyngioma is the most challenging to treat brain tumour with high recurrence rates, which can be effectively reduced by adjuvant radiotherapy. In recent years, proton therapy (PT), with its physical properties of heavy ion beam, that is, Prague peak phenomenon, has been more frequently used in patients with craniopharyngioma. Compared with conventional X-ray beam radiotherapy, PT can reduce the damage to normal tissues and enlarge the damage to tumours. Some studies have shown that PT has advantages in the treatment of craniopharyngioma in adults. However, the optimal management of craniopharyngioma remains controversial. The purpose of this study was to evaluate the efficacy and safety of PT for craniopharyngioma in adults. METHODS AND ANALYSIS We will search six databases (MEDLINE, EMBASE, Web of Science, the Cochrane Library, Amed, Scopus), clinical research registration websites and grey literature, aiming to identify randomised controlled trials (RCTs) on PT for craniopharyngioma in adults between 1 January 1954 and 28 September 2021. In the RCTs, PT will be used as the intervention group, and conventional X-ray beam radiotherapy will be used as the comparator group. Tumour recurrence and survival will be the primary outcome, and treatment-related toxicity will be the secondary outcome. The study selection, data extraction, bias risk and quality evaluation will be operated by two to four researchers independently. We will use Review Manager V.5.2 (RevMan V.5.2) for data analysis. If there is significant heterogeneity, we will identify the source of heterogeneity by subgroup analysis. ETHICS AND DISSEMINATION Our study is based on existing RCTs and does not require ethical approval. The results of the study will be published in a peer-reviewed journal or at a related conference. PROSPERO REGISTRATION NUMBER CRD42020200909.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jialing Wang
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aximujiang Axier
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kai Zhou
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jingwei Yun
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huayi Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingrong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaoshan Li
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
46
|
van Marlen P, Dahele M, Folkerts M, Abel E, Slotman BJ, Verbakel W. Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers (Basel) 2021; 13:cancers13081859. [PMID: 33924627 PMCID: PMC8070061 DOI: 10.3390/cancers13081859] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Standard intensity-modulated proton therapy (IMPT) places the Bragg-peak in the target. However, it is also possible to use high energy proton transmission beams (TBs), where the Bragg-peak is placed outside the patient, irradiating with the beam section proximal to the Bragg-peak. TBs use only one energy, increase robustness, are insensitive to density changes and have sharper penumbras. TBs can also be delivered at ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is one of the requirements for the FLASH-effect. The aim of this work was twofold: (1) comparison of TB-plan quality to IMPT and photon volumetric-modulated arc therapy (VMAT) for conventionally fractionated head-and-neck cancer; (2) analysis of TB-plan UHDR-metrics. We showed that TB-plan quality was comparable to IMPT for contoured organs at risk and better than VMAT. Any potential FLASH-effect would only further improve plan quality. TB plans can also be delivered quickly, which might facilitate higher patient through-put and enhance patient comfort. Abstract Transmission beam (TB) proton therapy (PT) uses single, high energy beams with Bragg-peak behind the target, sharp penumbras and simplified planning/delivery. TB facilitates ultra-high dose-rates (UHDRs, e.g., ≥40 Gy/s), which is a requirement for the FLASH-effect. We investigated (1) plan quality for conventionally-fractionated head-and-neck cancer treatment using spot-scanning proton TBs, intensity-modulated PT (IMPT) and photon volumetric-modulated arc therapy (VMAT); (2) UHDR-metrics. VMAT, 3-field IMPT and 10-field TB-plans, delivering 70/54.25 Gy in 35 fractions to boost/elective volumes, were compared (n = 10 patients). To increase spot peak dose-rates (SPDRs), TB-plans were split into three subplans, with varying spot monitor units and different gantry currents. Average TB-plan organs-at-risk (OAR) sparing was comparable to IMPT: mean oral cavity/body dose were 4.1/2.5 Gy higher (9.3/2.0 Gy lower than VMAT); most other OAR mean doses differed by <2 Gy. Average percentage of dose delivered at UHDRs was 46%/12% for split/non-split TB-plans and mean dose-averaged dose-rate 46/21 Gy/s. Average total beam-on irradiation time was 1.9/3.8 s for split/non-split plans and overall time including scanning 8.9/7.6 s. Conventionally-fractionated proton TB-plans achieved comparable OAR-sparing to IMPT and better than VMAT, with total beam-on irradiation times <10s. If a FLASH-effect can be demonstrated at conventional dose/fraction, this would further improve plan quality and TB-protons would be a suitable delivery system.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
- Correspondence:
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Michael Folkerts
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Eric Abel
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, CA 94304, USA; (M.F.); (E.A.)
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| | - Wilko Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands; (M.D.); (B.J.S.); (W.V.)
| |
Collapse
|
47
|
Intensity-modulated proton therapy for oropharyngeal cancer reduces rates of late xerostomia. Radiother Oncol 2021; 160:32-39. [PMID: 33839202 DOI: 10.1016/j.radonc.2021.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE To determine rates of xerostomia after intensity-modulated radiotherapy (IMRT) or intensity-modulated proton therapy (IMPT) for oropharyngeal cancer (OPC) and identify dosimetric factors associated with xerostomia risk. MATERIALS AND METHODS Patients with OPC who received IMRT (n = 429) or IMPT (n = 103) from January 2011 through June 2015 at a single institution were studied retrospectively. Every 3 months after treatment, each patient completed an eight-item self-reported xerostomia-specific questionnaire (XQ; summary XQ score, 0-100). An XQ score of 50 was selected as the demarcation value for moderate-severe (XQs ≥ 50) and no-mild (XQs < 50) xerostomia. The mean doses and percent volumes of organs at risk receiving various doses (V5-V70) were extracted from the initial treatment plans. The dosimetric variables and xerostomia risk were compared using an independent-sample t-test or chi-square test. RESULTS The median follow-up time was 36.2 months. The proportions of patients with moderate-severe xerostomia were similar in the two treatment groups up to 18 months after treatment. However, moderate-severe xerostomia was less common in the IMPT group than in the IMRT group at 18-24 months (6% vs. 20%; p = 0.025) and 24-36 months (6% vs. 20%; p = 0.01). During the late xerostomia period (24-36 months), high dose/volume exposures (V25-V70) in the oral cavity were associated with high proportions of patients with moderate-severe xerostomia (all p < 0.05), but dosimetric variables regarding the salivary glands were not associated with late xerostomia. CONCLUSION IMPT was associated with less late xerostomia than was IMRT in OPC patients. Oral cavity dosimetric variables were related to the occurrence of late xerostomia.
Collapse
|
48
|
Nesteruk KP, Bolsi A, Lomax AJ, Meer D, van de Water S, Schippers JM. A static beam delivery device for fast scanning proton arc-therapy. Phys Med Biol 2021; 66:055018. [PMID: 33498040 DOI: 10.1088/1361-6560/abe02b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
Arc-therapy is a dose delivery technique regularly applied in photon radiation therapy, and is currently subject of great interest for proton therapy as well. In this technique, proton beams are aimed at a tumor from different continuous ranges of incident directions (so called 'arcs'). This technique can potentially yield a better dose conformity around the tumor and a very low dose in the surrounding healthy tissue. Currently, proton-arc therapy is performed by rotating a proton gantry around the patient, adapting the normally used dose-delivery method to the arc-specific motion of the gantry. Here we present first results from a feasibility study of the conceptual design of a new static fast beam delivery device/system for proton-arc therapy, which could be used instead of a gantry. In this novel concept, the incident angle of proton beams can be set rapidly by only changing field strengths of small magnets. This device eliminates the motion of the heavy gantry and related hardware. Therefore, a reduction of the total treatment time is expected. In the feasibility study presented here, we concentrate on the concept of the beam transport. Based on several simple, but realistic assumptions and approximations, proton tracking calculations were performed in a 3D magnetic field map, to calculate the beam transport in this device and to investigate and address several beam-optics challenges. We propose and simulate corresponding solutions and discuss their outcomes. To enable the implementation of some usually applied techniques in proton therapy, such as pencil beam scanning, energy modulation and beam shaping, we present and discuss our proposals. Here we present the concept of a new idea to perform fast proton arc-scanning and we report on first results of a feasibility study. Based on these results, we propose several options and next steps in the design.
Collapse
Affiliation(s)
- K P Nesteruk
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - A Bolsi
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - A J Lomax
- Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - D Meer
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | | | | |
Collapse
|
49
|
Crary MA. Dysphagia and Head and Neck Cancer. Dysphagia 2021. [DOI: 10.1016/b978-0-323-63648-3.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
50
|
Minatogawa H, Yasuda K, Dekura Y, Takao S, Matsuura T, Yoshimura T, Suzuki R, Yokota I, Fujima N, Onimaru R, Shimizu S, Aoyama H, Shirato H. Potential benefits of adaptive intensity-modulated proton therapy in nasopharyngeal carcinomas. J Appl Clin Med Phys 2020; 22:174-183. [PMID: 33338323 PMCID: PMC7856494 DOI: 10.1002/acm2.13128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose To investigate potential advantages of adaptive intensity‐modulated proton beam therapy (A‐IMPT) by comparing it to adaptive intensity‐modulated X‐ray therapy (A‐IMXT) for nasopharyngeal carcinomas (NPC). Methods Ten patients with NPC treated with A‐IMXT (step and shoot approach) and concomitant chemotherapy between 2014 and 2016 were selected. In the actual treatment, 46 Gy in 23 fractions (46Gy/23Fx.) was prescribed using the initial plan and 24Gy/12Fx was prescribed using an adapted plan thereafter. New treatment planning of A‐IMPT was made for the same patients using equivalent dose fractionation schedule and dose constraints. The dose volume statistics based on deformable images and dose accumulation was used in the comparison of A‐IMXT with A‐IMPT. Results The means of the Dmean of the right parotid gland (P < 0.001), right TM joint (P < 0.001), left TM joint (P < 0.001), oral cavity (P < 0.001), supraglottic larynx (P = 0.001), glottic larynx (P < 0.001), , middle PCM (P = 0.0371), interior PCM (P < 0.001), cricopharyngeal muscle (P = 0.03643), and thyroid gland (P = 0.00216), in A‐IMPT are lower than those of A‐IMXT, with statistical significance. The means of, D0.03cc, and Dmean of each sub portion of auditory apparatus and D30% for Eustachian tube and D0.5cc for mastoid volume in A‐IMPT are significantly lower than those of A‐IMXT. The mean doses to the oral cavity, supraglottic larynx, and glottic larynx were all reduced by more than 20 Gy (RBE = 1.1). Conclusions An adaptive approach is suggested to enhance the potential benefit of IMPT compared to IMXT to reduce adverse effects for patients with NPC.
Collapse
Affiliation(s)
- Hideki Minatogawa
- Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yasuhiro Dekura
- Department of Radiation Oncology, Hokkaido University Hospital, Sapporo, Japan
| | - Seishin Takao
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Takaaki Yoshimura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Radiology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Rikiya Onimaru
- Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|