1
|
Leangcharoensap S, Thephamongkhol K, Chanwichu P, Treechairusame T, Suntornpong N, Rongthong W. Comparison of dosimetric parameters for predicting radiation-induced cataract in paediatric patients. J Med Imaging Radiat Oncol 2024; 68:835-842. [PMID: 39208296 DOI: 10.1111/1754-9485.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION This study compared the predictive ability of radiation-induced cataract between maximum point dose of the lens (Lens Dmax) ≥7 Gy, mean lens dose (Lens Dmean) ≥7 Gy, Lens Dmax ≥10 Gy, and Lens Dmean ≥10 Gy. METHODS Patients aged 3-18 years received cranial irradiation or radiation therapy at head and neck area between January 2010 and December 2019 at our institute were included. Patients without baseline and/or follow-up eye examination were excluded. Receiver operating characteristic (ROC) curves identified potential predictors and Cox regression analysed correlations between potential factors and cataract occurrence. RESULTS Sixty-three patients (122 eyes) were analysed. Cataracts were detected in 14 eyes (11.5%). Median follow-up time was 4 years (range 0.5-10 years), with cataract developing in a median of 2.5 years (range 0.3-7 years). Three patients (21.4%) developed grade ≥3 cataract. Lens Dmean ≥10 Gy was associated with cataract formation. CONCLUSION Lens Dmean ≥10 Gy showed the highest ability for predicting radiation-induced cataract in paediatric patients. Net reclassification improvement (NRI) suggested that changing lens dose constraint from Dmax <7 Gy to Dmean <10 Gy would miss 7% of cataract cases but avoid 28% of unnecessary restrictions. Adopting a mean lens dose <10 Gy was suggested as a constraint for lens dose.
Collapse
Affiliation(s)
- Siriphan Leangcharoensap
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Kullathorn Thephamongkhol
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Putthipong Chanwichu
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Teeradon Treechairusame
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Nan Suntornpong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Warissara Rongthong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
Shen CJ, Kry SF, Buchsbaum JC, Milano MT, Inskip PD, Ulin K, Francis JH, Wilson MW, Whelan KF, Mayo CS, Olch AJ, Constine LS, Terezakis SA, Vogelius IR. Retinopathy, Optic Neuropathy, and Cataract in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:431-445. [PMID: 37565958 DOI: 10.1016/j.ijrobp.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Few reports describe the risks of late ocular toxicities after radiation therapy (RT) for childhood cancers despite their effect on quality of life. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) ocular task force aims to quantify the radiation dose dependence of select late ocular adverse effects. Here, we report results concerning retinopathy, optic neuropathy, and cataract in childhood cancer survivors who received cranial RT. METHODS AND MATERIALS A systematic literature search was performed using the PubMed, MEDLINE, and Cochrane Library databases for peer-reviewed studies published from 1980 to 2021 related to childhood cancer, RT, and ocular endpoints including dry eye, keratitis/corneal injury, conjunctival injury, cataract, retinopathy, and optic neuropathy. This initial search yielded abstracts for 2947 references, 269 of which were selected as potentially having useful outcomes and RT data. Data permitting, treatment and outcome data were used to generate normal tissue complication probability models. RESULTS We identified sufficient RT data to generate normal tissue complication probability models for 3 endpoints: retinopathy, optic neuropathy, and cataract formation. Based on limited data, the model for development of retinopathy suggests 5% and 50% risk of toxicity at 42 and 62 Gy, respectively. The model for development of optic neuropathy suggests 5% and 50% risk of toxicity at 57 and 64 Gy, respectively. More extensive data were available to evaluate the risk of cataract, separated into self-reported versus ophthalmologist-diagnosed cataract. The models suggest 5% and 50% risk of self-reported cataract at 12 and >40 Gy, respectively, and 50% risk of ophthalmologist-diagnosed cataract at 9 Gy (>5% long-term risk at 0 Gy in patients treated with chemotherapy only). CONCLUSIONS Radiation dose effects in the eye are inadequately studied in the pediatric population. Based on limited published data, this PENTEC comprehensive review establishes relationships between RT dose and subsequent risks of retinopathy, optic neuropathy, and cataract formation.
Collapse
Affiliation(s)
- Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Stephen F Kry
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | | | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Peter D Inskip
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kenneth Ulin
- Imaging and Radiation Oncology Rhode Island QA Center, Lincoln, Rhode Island
| | - Jasmine H Francis
- Ophthalmic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew W Wilson
- Division of Ophthalmology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kimberly F Whelan
- Pediatric Hematology/Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Charles S Mayo
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California/Children's Hospital Los Angeles, Los Angeles, California
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Stephanie A Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ladbury C, Hao C, Yang D, Hui S, Han C, Liu A, Salhotra A, Nakamura R, Rosenthal J, Stein A, Wong J, Dandapani S. Long-term follow up of patients with hematological malignancies treated with total body irradiation using intensity modulated radiation therapy. Front Oncol 2022; 12:1044539. [PMID: 36531001 PMCID: PMC9755353 DOI: 10.3389/fonc.2022.1044539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND With the advent of modern radiation treatment technologies such as intensity modulated radiation therapy (IMRT), there has been increasing interest in its use for total body irradiation (TBI) conditioning regimens for hematopoietic cell transplantation (HCT) to achieve lower doses to critical organs such as the lungs and kidneys. Although this has been reported on in early studies, long-term safety and efficacy data is limited. METHODS We performed a single institution matched-pair retrospective analysis of patients treated with IMRT TBI and standard TBI between 2010 and 2020 to provide data on long-term outcomes. Patients with hematologic malignancies, who could not tolerate standing for traditional TBI or who received prior radiation received IMRT TBI. Patients were matched based on age, diagnosis, disease status, and year of transplant, and were matched 2:1 to the standard TBI and IMRT TBI cohorts. Patient and treatment characteristics, toxicity, graft-versus-host disease (GVHD), dosimetry, and outcomes were evaluated for each cohort. RESULTS A total of 13 patients met inclusion criteria for the IMRT cohort, leading to 26 patients in the standard TBI cohort. There was no significant difference in relevant clinical factors between the cohorts. Reasons for using IMRT over conventional TBI included being unable to stand (n=5), prior radiation (n=5), and pediatric patient requiring anesthesia (n=3). Among living patients, median follow-up for all patients was 5.1 years in the IMRT TBI cohort and 5.5 years in the standard TBI cohort. The 5-yr estimate of OS was 68% in the IMRT TBI cohort and 60% in the standard TBI cohort (p=0.706). The 5-yr estimate of RFS was 54% in the IMRT TBI cohort and 60% in the standard TBI cohort (p=0.529). There was no clinically significant pneumonitis, nephritis, hypothyroidism, or cataracts reported in the IMRT TBI cohort. 41.7% of patients in the IMRT TBI cohort and 79.2% of patients in the standard TBI cohort experienced Grade II-IV acute GVHD (p=0.023). CONCLUSIONS IMRT TBI appears to lead to favorable long-term outcome and dosimetry, and therefore potentially improved long-term toxicity profile compared to conventional TBI. IMRT TBI warrants further investigation as part of larger prospective trials.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Claire Hao
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Dongyun Yang
- Division of Biostatistics, City of Hope National Medical Center, Duarte, CA, United States
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Joseph Rosenthal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Savita Dandapani
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
4
|
Abraham U, Romaguera T, Tolakanahalli R, Gutierrez AN, Hall M. Fractionated Total Body Irradiation on an Infant Using Tomotherapy. Cureus 2022; 14:e28143. [PMID: 36148186 PMCID: PMC9482450 DOI: 10.7759/cureus.28143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Total body irradiation (TBI) is used with chemotherapy to induce immunosuppression for hematopoietic cell transplantation and is often administered using lead blocks to minimize lung dose in adults and children. This technique is challenging in infants and young children. A 13-month-old female with acute lymphoblastic leukemia (ALL) was treated with fractionated TBI to a dose of 12 Gy in eight fractions delivered twice daily. Multiple TBI techniques for delivering treatment were considered. Ultimately, treatment using helical tomotherapy was selected in order to spare and accurately quantify the dose to the lung, meet lung dose constraints, and ensure adequate TBI dose coverage. With anesthesia, this technique provided a comfortable and reproducible set-up for the young child. The treatment plan was delivered with intensity-modulated radiotherapy, where 96.4% of the target volume received a prescription dose with a total beam-on time of 16.8 minutes. The mean lung dose was 7.7 Gy for a total lung volume of 245cc. This report describes the challenges faced during the treatment planning and delivery, and how they were resolved.
Collapse
|
5
|
Hoeben BAW, Pazos M, Seravalli E, Bosman ME, Losert C, Albert MH, Boterberg T, Ospovat I, Mico Milla S, Demiroz Abakay C, Engellau J, Jóhannesson V, Kos G, Supiot S, Llagostera C, Bierings M, Scarzello G, Seiersen K, Smith E, Ocanto A, Ferrer C, Bentzen SM, Kobyzeva DA, Loginova AA, Janssens GO. ESTRO ACROP and SIOPE recommendations for myeloablative Total Body Irradiation in children. Radiother Oncol 2022; 173:119-133. [PMID: 35661674 DOI: 10.1016/j.radonc.2022.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE Myeloablative Total Body Irradiation (TBI) is an important modality in conditioning for allogeneic hematopoietic stem cell transplantation (HSCT), especially in children with high-risk acute lymphoblastic leukemia (ALL). TBI practices are heterogeneous and institution-specific. Since TBI is associated with multiple late adverse effects, recommendations may help to standardize practices and improve the outcome versus toxicity ratio for children. MATERIAL AND METHODS The European Society for Paediatric Oncology (SIOPE) Radiotherapy TBI Working Group together with ESTRO experts conducted a literature search and evaluation regarding myeloablative TBI techniques and toxicities in children. Findings were discussed in bimonthly virtual meetings and consensus recommendations were established. RESULTS Myeloablative TBI in HSCT conditioning is mostly performed for high-risk ALL patients or patients with recurring hematologic malignancies. TBI is discouraged in children <3-4 years old because of increased toxicity risk. Publications regarding TBI are mostly retrospective studies with level III-IV evidence. Preferential TBI dose in children is 12-14.4 Gy in 1.6-2 Gy fractions b.i.d. Dose reduction should be considered for the lungs to <8 Gy, for the kidneys to ≤10 Gy, and for the lenses to <12 Gy, for dose rates ≥6 cGy/min. Highly conformal techniques i.e. TomoTherapy and VMAT TBI or Total Marrow (and/or Lymphoid) Irradiation as implemented in several centers, improve dose homogeneity and organ sparing, and should be evaluated in studies. CONCLUSIONS These ESTRO ACROP SIOPE recommendations provide expert consensus for conventional and highly conformal myeloablative TBI in children, as well as a supporting literature overview of TBI techniques and toxicities.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Montserrat Pazos
- Dept. of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Enrica Seravalli
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Mirjam E Bosman
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Christoph Losert
- Dept. of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Michael H Albert
- Dept. of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Tom Boterberg
- Dept. of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Inna Ospovat
- Dept. of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Soraya Mico Milla
- Dept. of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Candan Demiroz Abakay
- Dept. of Radiation Oncology, Uludag University Faculty of Medicine Hospital, Bursa, Turkey
| | - Jacob Engellau
- Dept. of Radiation Oncology, Skåne University Hospital, Lund, Sweden
| | | | - Gregor Kos
- Dept. of Radiation Oncology, Institute of Oncology Ljubljana, Slovenia
| | - Stéphane Supiot
- Dept. of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes St. Herblain, France
| | - Camille Llagostera
- Dept. of Medical Physics, Institut de Cancérologie de l'Ouest, Nantes St. Herblain, France
| | - Marc Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Giovanni Scarzello
- Dept. of Radiation Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | | | - Ed Smith
- Dept. of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Abrahams Ocanto
- Dept. of Radiation Oncology, La Paz University Hospital, Madrid, Spain
| | - Carlos Ferrer
- Dept. of Medical Physics and Radiation Protection, La Paz University Hospital, Madrid, Spain
| | - Søren M Bentzen
- Dept. of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, United States
| | - Daria A Kobyzeva
- Dept. of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna A Loginova
- Dept. of Radiation Oncology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Geert O Janssens
- Dept. of Radiation Oncology, University Medical Center Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
Hoeben BAW, Wong JYC, Fog LS, Losert C, Filippi AR, Bentzen SM, Balduzzi A, Specht L. Total Body Irradiation in Haematopoietic Stem Cell Transplantation for Paediatric Acute Lymphoblastic Leukaemia: Review of the Literature and Future Directions. Front Pediatr 2021; 9:774348. [PMID: 34926349 PMCID: PMC8678472 DOI: 10.3389/fped.2021.774348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Total body irradiation (TBI) has been a pivotal component of the conditioning regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children and young adults. The myeloablative conditioning regimen has two aims: (1) to eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression of the recipient's immune system. Radiotherapy has the advantage of achieving an adequate dose effect in sanctuary sites and in areas with poor blood supply. However, radiotherapy is subject to radiobiological trade-offs between ALL cell destruction, immune and haematopoietic stem cell survival, and various adverse effects in normal tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken place. However, HSCT and TBI are still associated with multiple late sequelae, leaving room for improvement. This review discusses the past developments of TBI and considerations for dose, fractionation and dose-rate, as well as issues regarding TBI setup performance, limitations and possibilities for improvement. TBI is typically delivered using conventional irradiation techniques and centres have locally developed heterogeneous treatment methods and ways to achieve reduced doses in several organs. There are, however, limitations in options to shield organs at risk without compromising the anti-leukaemic and immunosuppressive effects of conventional TBI. Technological improvements in radiotherapy planning and delivery with highly conformal TBI or total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of the superiority of TBI compared with chemotherapy-only conditioning regimens for event-free and overall survival in the randomised For Omitting Radiation Under Majority age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of TBI delivery mandatory. Standardisation and comprehensive reporting of conventional TBI techniques as well as cooperation between radiotherapy centres may help to increase the ratio between treatment outcomes and toxicity, and future studies must determine potential added benefit of innovative conformal techniques to ultimately improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT.
Collapse
Affiliation(s)
- Bianca A. W. Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, United States
| | - Lotte S. Fog
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrea R. Filippi
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Søren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adriana Balduzzi
- Stem Cell Transplantation Unit, Clinica Paediatrica Università degli Studi di Milano Bicocca, Monza, Italy
| | - Lena Specht
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Kim YJ, Lee WJ, Ko BW, Lim HW, Yeon Y, Ahn SJ, Lee BR. Investigation of MicroRNA Expression in Anterior Lens Capsules of Senile Cataract Patients and MicroRNA Differences According to the Cataract Type. Transl Vis Sci Technol 2021; 10:14. [PMID: 34003899 PMCID: PMC7888284 DOI: 10.1167/tvst.10.2.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purpose We investigated the microRNAs (miRNAs) expression in the anterior lens capsules of patients with senile cataract and compared it to that in the anterior lens capsules of healthy controls. Moreover, we compared the differences in miRNAs expression according to the types of cataracts. Methods Individual lens epithelium samples were collected from 33 senile patients and 10 controls. The cataract patients were classified into cortical, nuclear, posterior and anterior subcapsular and mixed. The expression of 12 different miRNAs in lens epithelium was measured using real-time polymerase chain reaction and compared between the senile cataract patients and controls. The differences of miRNA levels according to cataract type were analyzed. Results The expression levels of let-7g-5p, miR-23a-3p, miR-23b-3p, and miR-125a-5p were significantly upregulated in patients with senile cataract when compared with those in the control group (P < 0.05). The expressions of let-7a-5p, let-7d-5p, miR-16-5p and miR-22-3p were significantly downregulated in the senile cataracts (P < 0.05). Let-7a-5p, let-7d-5p, let-7g-5p and mir-23b-3p had significant difference in expression between nuclear and anterior subcapsular cataracts. Conclusions The eight differentially expressed miRNAs may be involved in the pathogenesis of senile cataract, in particular, related to oxidative stress and autophagy. Translational Relevance We infer that several miRNAs in lens epithelial cells are promising candidate biomarkers of senile cataracts.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Byung Ro Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Bilateral retinal detachment after chimeric antigen receptor T-cell therapy. Blood Adv 2021; 4:2158-2162. [PMID: 32428218 DOI: 10.1182/bloodadvances.2020001450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Key Points
CAR T-cell targeting of leukemic infiltrates in the optic nerve and retina caused retinal detachment as a presentation of pseudoprogression. Treatment of this intraocular inflammation with intravitreal triamcinolone and orbital radiation led to marked improvement in visual acuity.
Collapse
|
9
|
Diesch-Furlanetto T, Gabriel M, Zajac-Spychala O, Cattoni A, Hoeben BAW, Balduzzi A. Late Effects After Haematopoietic Stem Cell Transplantation in ALL, Long-Term Follow-Up and Transition: A Step Into Adult Life. Front Pediatr 2021; 9:773895. [PMID: 34900873 PMCID: PMC8652149 DOI: 10.3389/fped.2021.773895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Haematopoietic stem cell transplant (HSCT) can be a curative treatment for children and adolescents with very-high-risk acute lymphoblastic leukaemia (ALL). Improvements in supportive care and transplant techniques have led to increasing numbers of long-term survivors worldwide. However, conditioning regimens as well as transplant-related complications are associated with severe sequelae, impacting patients' quality of life. It is widely recognised that paediatric HSCT survivors must have timely access to life-long care and surveillance in order to prevent, ameliorate and manage all possible adverse late effects of HSCT. This is fundamentally important because it can both prevent ill health and optimise the quality and experience of survival following HSCT. Furthermore, it reduces the impact of preventable chronic illness on already under-resourced health services. In addition to late effects, survivors of paediatric ALL also have to deal with unique challenges associated with transition to adult services. In this review, we: (1) provide an overview of the potential late effects following HSCT for ALL in childhood and adolescence; (2) focus on the unique challenges of transition from paediatric care to adult services; and (3) provide a framework for long-term surveillance and medical care for survivors of paediatric ALL who have undergone HSCT.
Collapse
Affiliation(s)
- Tamara Diesch-Furlanetto
- Division of Pediatric Oncology/Hematology, University Children's Hospital Basel (UKB), University of Basel, Basel, Switzerland
| | - Melissa Gabriel
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Olga Zajac-Spychala
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznań, Poland
| | - Alessandro Cattoni
- Clinica Pediatrica, University degli Studi di Milano-Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), San Gerardo Hospital, Monza, Italy
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Adriana Balduzzi
- Clinica Pediatrica, University degli Studi di Milano-Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
10
|
Garrett J, Valluri S, Mendonca MS, Bigsby RM, Lopez J, Caperell-Grant A, Nees J, Dynlacht JR. The Protective Effect of Estrogen Against Radiation Cataractogenesis is Dependent Upon the Type of Radiation. Radiat Res 2020; 194:557-565. [PMID: 33045089 DOI: 10.1667/rade-20-00015.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/11/2020] [Indexed: 11/03/2022]
Abstract
Astronauts participating in prolonged space missions constitute a population of individuals who are at an increased risk for cataractogenesis due to exposure to densely ionizing charged particles. Using a rat model, we have previously shown that after irradiation of eyes with either low-linear energy transfer (LET) 60Co γ rays or high-LET 56Fe particles, the rate of progression of anterior and posterior subcapsular cataracts was significantly greater in ovariectomized females implanted with 17-β-estradiol (E2) compared to ovariectomized or intact rats. However, our additional low-LET studies indicated that cataractogenesis may be a modifiable late effect, since we have shown that the modulation of cataractogenesis is dependent upon the timing of administration of E2. Interestingly, we found that E2 protected against cataractogenesis induced by low-LET radiation, but only if administered after the exposure; if administered prior to and after irradiation, for the entire period of observation, then E2 enhanced progression and incidence of cataracts. Since most radioprotectors tested to date are unsuccessful in protecting against the effects of high-LET radiation, we wished to determine whether the protection mediated by E2 against radiation cataractogenesis induced by low-LET radiation would also be observed after high-LET irradiation. Female 56-day-old Sprague-Dawley rats were treated with E2 at various times relative to the time of single-eye irradiation with 2 Gy of 56Fe ions. We found that administration of E2 before irradiation and throughout the lifetime of the rat enhanced cataractogenesis compared to ovariectomized animals. The enhancing effect was slightly reduced when estrogen was removed after irradiation. However, in contrast to what we observed after γ-ray irradiation, there was no inhibition of cataractogenesis if E2 was administered only after 56Fe-ion irradiation. We conclude that protection against cataractogenesis by estrogen is dependent upon the type and ionization density of radiation that the lens was exposed to. The lack of inhibition of radiation cataractogenesis in rats that receive E2 treatment after high-LET irradiation may be attributed to the qualitative differences in the types of DNA damage induced with high-LET radiation compared to low-LET radiation or how damage may be modified at the DNA or tissue level after irradiation.
Collapse
Affiliation(s)
- Joy Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shailaja Valluri
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Robert M Bigsby
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jennifer Lopez
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andrea Caperell-Grant
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jessica Nees
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
11
|
Weinstein O, Yitshak Sade M, Shelef I, Novack V, Abu Tailakh M, Levy J. The association between exposure to radiation and the incidence of cataract. Int Ophthalmol 2020; 41:237-242. [PMID: 32852647 DOI: 10.1007/s10792-020-01572-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the association between exposure to radiation from computed tomography (CT) studies and the incidence of cataract. METHODS In a nested case-control study, all cataract cases and their matched controls were sampled from a retrospective cohort of Israeli residents who underwent CT scans or ultrasonic tests in Soroka Medical Center, Beer-Sheva, Israel, between the years 1996 and 2014. The risk of cataract associated with head, neck or the rest of the body CT was assessed using Poisson survival analysis. RESULTS The nested matched sample included 3841 cataract cases and their age- and sex-matched controls (n = 228,743). CT radiation exposure was more frequent in the cataract group, with 9.7% head CT, 1.2% neck CT and 6.6% other CT, compared to 5%, 0.7% and 3.7% among person-years without cataract (p < 0.001). In a multivariate analysis, a similar increased risk of cataract associated with head (hazard ratio (HR): 1.24, 95% confidence interval (CI): 1.11; 1.38) and other CT (HR: 1.25, 95% CI: 1.10; 1.43) was found. No association with neck CT (HR: 1.07, 95% CI: 0.80; 1.43) was observed. CONCLUSION In our study population, a similar risk of cataract with head, neck or the rest of the body CT was detected.
Collapse
Affiliation(s)
- Orly Weinstein
- Ophthalmology Department, Soroka University Medical Center, Beer-Sheva, Israel.,Ministry of Health, Jerusalem, Israel.,Recanati School for Community Health Professions, Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Yitshak Sade
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel.,Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ilan Shelef
- Radiological Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Victor Novack
- Recanati School for Community Health Professions, Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Muhammad Abu Tailakh
- Recanati School for Community Health Professions, Department of Nursing, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Jaime Levy
- Department of Ophthalmology, Hadassah Medical Center, P.O. Box 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
12
|
Radiation-Related Toxicities Using Organ Sparing Total Marrow Irradiation Transplant Conditioning Regimens. Int J Radiat Oncol Biol Phys 2019; 105:1025-1033. [DOI: 10.1016/j.ijrobp.2019.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
|
13
|
Nguyen SM, Sison J, Jones M, Berry JL, Kim JW, Murphree AL, Salinas V, Olch AJ, Chang EL, Wong KK. Lens Dose-Response Prediction Modeling and Cataract Incidence in Patients With Retinoblastoma After Lens-Sparing or Whole-Eye Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 103:1143-1150. [PMID: 30537543 DOI: 10.1016/j.ijrobp.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE We retrospectively assessed the incidence of cataracts in patients with retinoblastoma (Rb) treated with either lens-sparing radiation therapy (LSRT) or whole-eye radiation therapy (WERT). A secondary aim of this study was to model the dose-response risk of cataract. METHODS AND MATERIALS We reviewed 65 patients with Rb treated with radiation therapy (RT) at Children's Hospital, Los Angeles from 1997 to 2015. Eyes that were enucleated before RT or lacked follow-up eye examinations were excluded. All patients underwent computed tomography simulation, and mean lens dose data were collected. Follow-up ophthalmologic examinations and intraocular lens implant history were reviewed for cataracts. The primary event-free survival (EFS) outcome was cataract development. Eyes without cataracts were censored on the last date of eye examination or post-RT enucleation, if applicable. Kaplan-Meier estimates were used to compare EFS outcomes, and dose response was projected with Cox regression and logistic regression models. RESULTS Sixty-one patients (94 eyes) were analyzed with a median follow-up of 51.8 months. For eyes treated with WERT, cataracts developed in 71.7% versus 35.3% for LSRT. Median EFS for WERT and LSRT were 20.8 and 67.9 months, respectively. Compared with WERT, a significant EFS benefit was demonstrated for LSRT (P < .001). Mean lens dose had a significant effect on cataracts in both Cox regression and logistic regression models (P < .01). The mean lens dose of 7 Gy was projected to have a 5-year cataract incidence of 20% and 25% with the logistic and Cox regression models, respectively. CONCLUSIONS We report the first clinical data demonstrating significantly improved EFS in patients with Rb treated with LSRT. Through lens dose-response modeling, we validate a mean lens dose threshold of 7 Gy to keep cataract risk below 25%. Although RT is used less often for Rb owing to advances in chemotherapy delivery options, these findings are relevant for refining lens dose constraints, particularly in children who have received radiation dose near the orbit.
Collapse
Affiliation(s)
- Steven M Nguyen
- University of Central Florida College of Medicine, Orlando, Florida
| | - Julian Sison
- Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | - Jesse L Berry
- Department of Ophthalmology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California
| | - Jonathan W Kim
- Department of Ophthalmology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California
| | - A Linn Murphree
- Department of Ophthalmology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California
| | - Vanessa Salinas
- Division of Hematology/Oncology, City of Hope, Duarte, California
| | - Arthur J Olch
- Department of Radiation Oncology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California
| | - Kenneth K Wong
- Department of Radiation Oncology, Keck School of Medicine of USC and Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiother Oncol 2018; 128:26-36. [PMID: 29779919 DOI: 10.1016/j.radonc.2018.05.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE For unbiased comparison of different radiation modalities and techniques, consensus on delineation of radiation sensitive organs at risk (OARs) and on their dose constraints is warranted. Following the publication of a digital, online atlas for OAR delineation in neuro-oncology by the same group, we assessed the brain OAR-dose constraints in a follow-up study. METHODS We performed a comprehensive search to identify the current papers on OAR dose constraints for normofractionated photon and particle therapy in PubMed, Ovid Medline, Cochrane Library, Embase and Web of Science. Moreover, the included articles' reference lists were cross-checked for potential studies that met the inclusion criteria. Consensus was reached among 20 radiation oncology experts in the field of neuro-oncology. RESULTS For the OARs published in the neuro-oncology literature, we summarized the available literature and recommended dose constraints associated with certain levels of normal tissue complication probability (NTCP) according to the recent ICRU recommendations. For those OARs with lacking or insufficient NTCP data, a proposal for effective and efficient data collection is given. CONCLUSION The use of the European Particle Therapy Network-consensus OAR dose constraints summarized in this article is recommended for the model-based approach comparing photon and proton beam irradiation as well as for prospective clinical trials including novel radiation techniques and/or modalities.
Collapse
|
15
|
Dauer LT, Yorke E, Williamson M, Gao Y, Dauer ZL, Miller DL, Vañó E. Radiotherapeutic implications of the updated ICRP thresholds for tissue reactions related to cataracts and circulatory diseases. Ann ICRP 2018; 47:196-213. [PMID: 29741403 DOI: 10.1177/0146645318759622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation therapy of cancer patients involves a trade-off between a sufficient tumour dose for a high probability of local control and dose to organs at risk that is low enough to lead to a clinically acceptable probability of toxicity. The International Commission on Radiological Protection (ICRP) reviewed epidemiological evidence and provided updated estimates of 'practical' threshold doses for tissue injury, as defined at the level of 1% incidence, in ICRP Publication 118. Particular attention was paid to cataracts and circulatory diseases. ICRP recommended nominal absorbed dose threshold for these outcomes as low as 0.5 Gy. Threshold doses for tissue reactions can be reached in some patients during radiation therapy. Modern treatment planning systems do not account for such low doses accurately, and doses to therapy patients from associated imaging procedures are not generally accounted for. While local control is paramount, the observations of ICRP Publication 118 suggest that radiation therapy plans and processes should be examined with particular care. The research needs are discussed in this paper.
Collapse
Affiliation(s)
- L T Dauer
- a Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,b Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA
| | - E Yorke
- a Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - M Williamson
- a Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Y Gao
- a Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | - E Vañó
- e Compultense University, Spain
| |
Collapse
|
16
|
Whelan RJ, Saccomano B, King R, Dorris K, Hemenway M, Hankinson TC, Liu AK. Radiation-induced Cataracts in Children With Brain Tumors Receiving Craniospinal Irradiation. J Pediatr Hematol Oncol 2018; 40:304-305. [PMID: 29621062 DOI: 10.1097/mph.0000000000001142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Radiation is a well-known cause of the development of cataracts. For children with brain tumors, craniospinal irradiation (CSI) would be expected to result in a significant risk of cataract development. We reviewed the incidence of cataracts in children with brain tumors who received CSI at our institution. Of 45 children who received CSI and had ophthalmologic examinations, 13 developed cataracts. The median time to develop cataracts was 27.6 months. Seven children underwent surgery for cataract. Given this high incidence of cataracts, we suggest routine eye examinations for all children receiving CSI.
Collapse
Affiliation(s)
| | | | | | - Kathleen Dorris
- Department of Pediatrics, Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Children's Hospital Colorado, Aurora, CO
| | - Molly Hemenway
- Department of Pediatrics, Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Children's Hospital Colorado, Aurora, CO
| | | | - Arthur K Liu
- Radiation Oncology, University of Colorado School of Medicine
| |
Collapse
|
17
|
Karatasakis A, Brilakis HS, Danek BA, Karacsonyi J, Martinez-Parachini JR, Nguyen-Trong PKJ, Alame AJ, Roesle MK, Rangan BV, Rosenfield K, Mehran R, Mahmud E, Chambers CE, Banerjee S, Brilakis ES. Radiation-associated lens changes in the cardiac catheterization laboratory: Results from the IC-CATARACT (CATaracts Attributed to RAdiation in the CaTh lab) study. Catheter Cardiovasc Interv 2017; 91:647-654. [PMID: 28707381 DOI: 10.1002/ccd.27173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the relationship between occupational exposure to ionizing radiation and the prevalence of lens changes in interventional cardiologists (ICs) and catheterization laboratory ("cath-lab") staff. BACKGROUND Exposure to ionizing radiation is associated with the development of lens opacities. ICs and cath-lab staff can receive high doses of ionizing radiation without protection, and may thus be at risk for lens opacity formation. METHODS We conducted a cross-sectional study at an interventional cardiology conference. Study participants completed a questionnaire pertaining to occupational exposure to radiation and potential confounders for the development of cataracts, followed by slit-lamp examination and grading of lens findings. RESULTS A total of 117 attendees participated in the study, including 99 (85%; 49 ± 11 years-old; 82% male) with occupational exposure to ionizing radiation and 18 (15%; 39 ± 12 years-old; 61% male) unexposed controls. The prevalence of overall cortical and posterior subcapsular lens changes (including subclinical findings) was higher in exposed participants compared with controls (47 vs. 17%, P = 0.015). Occupational exposure and age over 60 were independent predictors of lens changes (odds ratio [95% CI]: 6.07 [1.38-43.45] and 7.72 [1.60-43.34], respectively). The prevalence of frank opacities was low and similar between the two groups (14 vs. 6%, P = 0.461). Most lens findings consisted of subclinical changes in the periphery of the lens without impact on visual acuity. CONCLUSIONS Compared with unexposed controls, ICs and cath-lab staff had a higher prevalence of lens changes that may be attributable to ionizing radiation exposure. While most of these changes were subclinical, they are important due to the potential to progress to clinical symptoms, highlighting the importance of minimizing staff radiation exposure.
Collapse
Affiliation(s)
- Aris Karatasakis
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Barbara A Danek
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Judit Karacsonyi
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jose Roberto Martinez-Parachini
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Phuong-Khanh J Nguyen-Trong
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aya J Alame
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michele K Roesle
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bavana V Rangan
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Rosenfield
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Roxana Mehran
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ehtisham Mahmud
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California
| | - Charles E Chambers
- Heart and Vascular Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Subhash Banerjee
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emmanouil S Brilakis
- Department of Cardiology, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, Texas.,Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, Minnesota
| |
Collapse
|
18
|
Shore RE. Radiation and cataract risk: Impact of recent epidemiologic studies on ICRP judgments. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:231-237. [DOI: 10.1016/j.mrrev.2016.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
|