1
|
Zhong AY, Lui AJ, Kuznetsova S, Kallis K, Conlin C, Do DD, Domingo MR, Manger R, Hua P, Karunamuni R, Kuperman J, Dale AM, Rakow-Penner R, Hahn ME, van der Heide UA, Ray X, Seibert TM. Clinical Impact of Contouring Variability for Prostate Cancer Tumor Boost. Int J Radiat Oncol Biol Phys 2024; 120:1024-1031. [PMID: 38925224 DOI: 10.1016/j.ijrobp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE The focal radiation therapy (RT) boost technique was shown in a phase III randomized controlled trial (RCT) to improve prostate cancer outcomes without increasing toxicity. This technique relies on the accurate delineation of prostate tumors on MRI. A recent prospective study evaluated radiation oncologists' accuracy when asked to delineate prostate tumors on MRI and demonstrated high variability in tumor contours. We sought to evaluate the impact of contour variability and inaccuracy on predicted clinical outcomes. We hypothesized that radiation oncologists' contour inaccuracies would yield meaningfully worse clinical outcomes. METHODS AND MATERIALS Forty-five radiation oncologists and 2 expert radiologists contoured prostate tumors on 30 patient cases. Of these cases, those with CT simulation or diagnostic CT available were selected for analysis. A knowledge-based planning model was developed to generate focal RT boost plans for each contour per the RCT protocol. The probability of biochemical failure (BF) was determined using a model from the RCT. The primary metric evaluated was delta BF (DBF = Participant BF - Expert BF). An absolute increase in BF ≥5% was considered clinically meaningful. RESULTS Eight patient cases and 394 target volumes for focal RT boost planning were included in this analysis. In general, participant plans were associated with worse predicted clinical outcomes compared to the expert plan, with an average absolute increase in BF of 4.3%. Of participant plans, 37% were noted to have an absolute increase in BF of 5% or more. CONCLUSIONS Radiation oncologists' attempts to contour tumor targets for focal RT boost are frequently inaccurate enough to yield meaningfully inferior clinical outcomes for patients.
Collapse
Affiliation(s)
- Allison Y Zhong
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Asona J Lui
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Svetlana Kuznetsova
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Christopher Conlin
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Deondre D Do
- Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Mariluz Rojo Domingo
- Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Ryan Manger
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Patricia Hua
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Joshua Kuperman
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Anders M Dale
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Neurosciences, UC San Diego School of Medicine, La Jolla, California; Halıcıoğlu Data Science Institute, UC San Diego School of Medicine, La Jolla, California
| | - Rebecca Rakow-Penner
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California
| | - Michael E Hahn
- Department of Radiology, UC San Diego School of Medicine, La Jolla, California
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California; Department of Radiology, UC San Diego School of Medicine, La Jolla, California; Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, California.
| |
Collapse
|
2
|
Chung CV, Khan MS, Olanrewaju A, Pham M, Nguyen QT, Patel T, Das P, O'Reilly MS, Reed VK, Jhingran A, Simonds H, Ludmir EB, Hoffman KE, Naidoo K, Parkes J, Aggarwal A, Mayo LL, Shah SJ, Tang C, Beadle BM, Wetter J, Walker G, Hughes S, Mullassery V, Skett S, Thomas C, Zhang L, Nguyen S, Mumme RP, Douglas RJ, Baroudi H, Court LE. Knowledge-based planning for fully automated radiation therapy treatment planning of 10 different cancer sites. Radiother Oncol 2024:110609. [PMID: 39486482 DOI: 10.1016/j.radonc.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Radiation treatment planning is highly complex and can have significant inter- and intra-planner inconsistency, as well as variability in planning time and plan quality. Knowledge-based planning (KBP) is a tool that can be used to efficiently produce high-quality, consistent, clinically acceptable plans, independent of planner skills and experience. In this study, we created and validated multiple clinically acceptable and fully automatable KBP models, with the goal of creating VMAT plans without user intervention. METHODS Ten KBP models were configured using high quality clinical plans from a single institution. They were then honed to be part of a fully automatable system by incorporating scriptable planning structures, plan creation, and plan optimization. These models were verified and validated using quantitative (model statistics) and qualitative (dose-volume histogram estimation review) analysis. The resulting KBP-generated plans were reviewed by physicians and rated for clinical acceptability. RESULTS Autoplanning models were created for anorectal, bladder, breast/chest wall, cervix, esophagus, head and neck, liver, lung/mediastinum, prostate, and prostate with nodes treatment sites. All models were successfully created to be part of a fully automated system without the need for human intervention to create a fully optimized plan. The physician review indicated that, on average, 88% of all KBP-generated plans were "acceptable as is" and 98% were "acceptable after minor edits." CONCLUSION KBP models for multiple treatment sites were used as a basis to generate fully automatable, efficient, consistent, high-quality, and clinically acceptable plans. These plans do not require human intervention, demonstrating the potential this work has to significantly impact treatment planning workflows.
Collapse
Affiliation(s)
- Christine V Chung
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Meena S Khan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adenike Olanrewaju
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Pham
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quyen T Nguyen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Patel
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Prajnan Das
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S O'Reilly
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie K Reed
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah Simonds
- Division of Radiation Oncology, Stellenbosch University, Stellenbosch, South Africa
| | - Ethan B Ludmir
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen E Hoffman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Komeela Naidoo
- Division of Radiation Oncology, Stellenbosch University, Stellenbosch, South Africa
| | - Jeannette Parkes
- Division of Radiation Oncology, University of Cape Town, Cape Town, South Africa
| | - Ajay Aggarwal
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lauren L Mayo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shalin J Shah
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Julie Wetter
- Division of Radiation Oncology, University of Cape Town, Cape Town, South Africa
| | - Gary Walker
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Simon Hughes
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vinod Mullassery
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stephen Skett
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Christopher Thomas
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lifei Zhang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Son Nguyen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raymond P Mumme
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael J Douglas
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hana Baroudi
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Laurence E Court
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Moore LC, Nematollahi F, Li L, Meyers SM, Kisling K. Improving 3D dose prediction for breast radiotherapy using novel glowing masks and gradient-weighted loss functions. Med Phys 2024; 51:7453-7463. [PMID: 39088756 PMCID: PMC11479821 DOI: 10.1002/mp.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND The quality of treatment plans for breast cancer can vary greatly. This variation could be reduced by using dose prediction to automate treatment planning. Our work investigates novel methods for training deep-learning models that are capable of producing high-quality dose predictions for breast cancer treatment planning. PURPOSE The goal of this work was to compare the performance impact of two novel techniques for deep learning dose prediction models for tangent field treatments for breast cancer. The first technique, a "glowing" mask algorithm, encodes the distance from a contour into each voxel in a mask. The second, a gradient-weighted mean squared error (MSE) loss function, emphasizes the error in high-dose gradient regions in the predicted image. METHODS Four 3D U-Net deep learning models were trained using the planning CT and contours of the heart, lung, and tumor bed as inputs. The dataset consisted of 305 treatment plans split into 213/46/46 training/validation/test sets using a 70/15/15% split. We compared the impact of novel "glowing" anatomical mask inputs and a novel gradient-weighted MSE loss function to their standard counterparts, binary anatomical masks, and MSE loss, using an ablation study methodology. To assess performance, we examined the mean error and mean absolute error (ME/MAE) in dose across all within-body voxels, the error in mean dose to heart, ipsilateral lung, and tumor bed, dice similarity coefficient (DSC) across isodose volumes defined by 0%-100% prescribed dose thresholds, and gamma analysis (3%/3 mm). RESULTS The combination of novel glowing masks and gradient weighted loss function yielded the best-performing model in this study. This model resulted in a mean ME of 0.40%, MAE of 2.70%, an error in mean dose to heart and lung of -0.10 and 0.01 Gy, and an error in mean dose to the tumor bed of -0.01%. The median DSC at 50/95/100% isodose levels were 0.91/0.87/0.82. The mean 3D gamma pass rate (3%/3 mm) was 93%. CONCLUSIONS This study found the combination of novel anatomical mask inputs and loss function for dose prediction resulted in superior performance to their standard counterparts. These results have important implications for the field of radiotherapy dose prediction, as the methods used here can be easily incorporated into many other dose prediction models for other treatment sites. Additionally, this dose prediction model for breast radiotherapy has sufficient performance to be used in an automated planning pipeline for tangent field radiotherapy and has the major benefit of not requiring a PTV for accurate dose prediction.
Collapse
Affiliation(s)
- Lance C Moore
- Radiation Medicine and Applied Sciences, University of California, La Jolla, San Diego, California, USA
| | - Fatemeh Nematollahi
- Radiation Medicine and Applied Sciences, University of California, La Jolla, San Diego, California, USA
| | - Lingyi Li
- Radiation Medicine and Applied Sciences, University of California, La Jolla, San Diego, California, USA
| | - Sandra M Meyers
- Radiation Medicine and Applied Sciences, University of California, La Jolla, San Diego, California, USA
| | - Kelly Kisling
- Radiation Medicine and Applied Sciences, University of California, La Jolla, San Diego, California, USA
| |
Collapse
|
4
|
Fu Q, Chen X, Liu Y, Zhang J, Xu Y, Yang X, Huang M, Men K, Dai J. Improvement of accumulated dose distribution in combined cervical cancer radiotherapy with deep learning-based dose prediction. Front Oncol 2024; 14:1407016. [PMID: 39040460 PMCID: PMC11260613 DOI: 10.3389/fonc.2024.1407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Difficulties remain in dose optimization and evaluation of cervical cancer radiotherapy that combines external beam radiotherapy (EBRT) and brachytherapy (BT). This study estimates and improves the accumulated dose distribution of EBRT and BT with deep learning-based dose prediction. Materials and methods A total of 30 patients treated with combined cervical cancer radiotherapy were enrolled in this study. The dose distributions of EBRT and BT plans were accumulated using commercial deformable image registration. A ResNet-101-based deep learning model was trained to predict pixel-wise dose distributions. To test the role of the predicted accumulated dose in clinic, each EBRT plan was designed using conventional method and then redesigned referencing the predicted accumulated dose distribution. Bladder and rectum dosimetric parameters and normal tissue complication probability (NTCP) values were calculated and compared between the conventional and redesigned accumulated doses. Results The redesigned accumulated doses showed a decrease in mean values of V50, V60, and D2cc for the bladder (-3.02%, -1.71%, and -1.19 Gy, respectively) and rectum (-4.82%, -1.97%, and -4.13 Gy, respectively). The mean NTCP values for the bladder and rectum were also decreased by 0.02‰ and 0.98%, respectively. All values had statistically significant differences (p < 0.01), except for the bladder D2cc (p = 0.112). Conclusion This study realized accumulated dose prediction for combined cervical cancer radiotherapy without knowing the BT dose. The predicted dose served as a reference for EBRT treatment planning, leading to a superior accumulated dose distribution and lower NTCP values.
Collapse
Affiliation(s)
- Qi Fu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Xinyuan Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Yuxiang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Jingbo Zhang
- Department of Radiotherapy Technology, The Cancer and Tuberculosis Hospital, Jiamusi, China
| | - Yingjie Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Xi Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Manni Huang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medial Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Wang D, Geng H, Gondi V, Lee NY, Tsien CI, Xia P, Chenevert TL, Michalski JM, Gilbert MR, Le QT, Omuro AM, Men K, Aldape KD, Cao Y, Srinivasan A, Barani IJ, Sachdev S, Huang J, Choi S, Shi W, Battiste JD, Wardak Z, Chan MD, Mehta MP, Xiao Y. Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach. Cancers (Basel) 2024; 16:2007. [PMID: 38893130 PMCID: PMC11171017 DOI: 10.3390/cancers16112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of radiation therapy (RT) treatment plans directly affects the outcomes of clinical trials. KBP solutions have been utilized in RT plan quality assurance (QA). In this study, we evaluated the quality of RT plans for brain and head/neck cancers enrolled in multi-institutional clinical trials utilizing a KBP approach. The evaluation was conducted on 203 glioblastoma (GBM) patients enrolled in NRG-BN001 and 70 nasopharyngeal carcinoma (NPC) patients enrolled in NRG-HN001. For each trial, fifty high-quality photon plans were utilized to build a KBP photon model. A KBP proton model was generated using intensity-modulated proton therapy (IMPT) plans generated on 50 patients originally treated with photon RT. These models were then applied to generate KBP plans for the remaining patients, which were compared against the submitted plans for quality evaluation, including in terms of protocol compliance, target coverage, and organ-at-risk (OAR) doses. RT plans generated by the KBP models were demonstrated to have superior quality compared to the submitted plans. KBP IMPT plans can decrease the variation of proton plan quality and could possibly be used as a tool for developing improved plans in the future. Additionally, the KBP tool proved to be an effective instrument for RT plan QA in multi-center clinical trials.
Collapse
Affiliation(s)
- Du Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | - Huaizhi Geng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | - Vinai Gondi
- Northwestern Medicine Cancer Center Warrenville, Warrenville, IL 60555, USA
| | - Nancy Y. Lee
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ping Xia
- Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Thomas L. Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Jeff M. Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Quynh-Thu Le
- Stanford Cancer Institute, Stanford, CA 94305, USA; (Q.-T.L.)
| | | | - Kuo Men
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| | | | - Yue Cao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (T.L.C.)
| | - Igor J. Barani
- Saint Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Sean Sachdev
- Northwestern Medicine Cancer Center Warrenville, Warrenville, IL 60555, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Serah Choi
- UPMC-Shadyside Hospital, Case Western Reserve University, Pittsburgh, PA 15232, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - James D. Battiste
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zabi Wardak
- UT Southwestern, Simmons Cancer Center, Dallas, TX 75235, USA
| | - Michael D. Chan
- Baptist Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA (Y.X.)
| |
Collapse
|
6
|
Scaggion A, Cavinato S, Dusi F, El Khouzai B, Guida F, Paronetto C, Rossato MA, Sapignoli S, Scott ASA, Sepulcri M, Paiusco M. On the necessity of specialized knowledge-based models for SBRT prostate treatments plans. Phys Med 2024; 121:103364. [PMID: 38701626 DOI: 10.1016/j.ejmp.2024.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
PURPOSE Test whether a well-grounded KBP model trained on moderately hypo-fractionated prostate treatments can be used to satisfactorily drive the optimization of SBRT prostate treatments. MATERIALS AND METHODS A KBP model (SBRT-model) was developed, trained and validated using the first forty-seven clinically treated VMAT SBRT prostate plans (42.7 Gy/7fx or 36.25 Gy/5fx). The performance and robustness of this model were compared against a high-quality KBP-model (ST-model) that was already clinically adopted for hypo-fractionated (70 Gy/28fx and 60 Gy/20fx) prostate treatments. The two models were compared in terms of their predictions robustness, and the quality of their outcomes were evaluated against a set of reference clinical SBRT plans. Plan quality was assessed using DVH metrics, blinded clinical ranking, and a dedicated Plan Quality Metric algorithm. RESULTS The plan libraries of the two models were found to share a high degree of anatomical similarity. The overall quality (APQM%) of the plans obtained both with the ST- and SBRT-models was compatible with that of the original clinical plans, namely (93.7 ± 4.1)% and (91.6 ± 3.9)% vs (92.8.9 ± 3.6)%. Plans obtained with the ST-model showed significantly higher target coverage (PTV V95%): (97.9 ± 0.8)% vs (97.1 ± 0.9)% (p < 0.05). Conversely, plans optimized following the SBRT-model showed a small but not-clinically relevant increase in OAR sparing. ST-model generally provided more reliable predictions than SBRT-model. Two radiation oncologists judged as equivalent the plans based on the KBP prediction, which was also judged better that reference clinical plans. CONCLUSION A KBP model trained on moderately fractionated prostate treatment plans provided optimal SBRT prostate plans, with similar or larger plan quality than an embryonic SBRT-model based on a limited number of cases.
Collapse
Affiliation(s)
- Alessandro Scaggion
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy.
| | - Samuele Cavinato
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Francesca Dusi
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Badr El Khouzai
- S.C. Radioterapia, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Federica Guida
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Chiara Paronetto
- S.C. Radioterapia, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | | | - Sonia Sapignoli
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | | | - Matteo Sepulcri
- S.C. Radioterapia, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Marta Paiusco
- S.C. Fisica Sanitaria, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| |
Collapse
|
7
|
Kaderka R, Dogan N, Jin W, Bossart E. Effects of model size and composition on quality of head-and-neck knowledge-based plans. J Appl Clin Med Phys 2024; 25:e14168. [PMID: 37798910 PMCID: PMC10860434 DOI: 10.1002/acm2.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Knowledge-based planning (KBP) aims to automate and standardize treatment planning. New KBP users are faced with many questions: How much does model size matter, and are multiple models needed to accommodate specific physician preferences? In this study, six head-and-neck KBP models were trained to address these questions. METHODS The six models differed in training size and plan composition: The KBPFull (n = 203 plans), KBP101 (n = 101), KBP50 (n = 50), and KBP25 (n = 25) were trained with plans from two head-and-neck physicians. KBPA and KBPB each contained n = 101 plans from only one physician, respectively. An independent set of 39 patients treated to 6000-7000 cGy by a third physician was re-planned with all KBP models for validation. Standard head-and-neck dosimetric parameters were used to compare resulting plans. KBPFull plans were compared to the clinical plans to evaluate overall model quality. Additionally, clinical and KBPFull plans were presented to another physician for blind review. Dosimetric comparison of KBPFull against KBP101 , KBP50 , and KBP25 investigated the effect of model size. Finally, KBPA versus KBPB tested whether training KBP models on plans from one physician only influences the resulting output. Dosimetric differences were tested for significance using a paired t-test (p < 0.05). RESULTS Compared to manual plans, KBPFull significantly increased PTV Low D95% and left parotid mean dose but decreased dose cochlea, constrictors, and larynx. The physician preferred the KBPFull plan over the manual plan in 20/39 cases. Dosimetric differences between KBPFull , KBP101 , KBP50 , and KBP25 plans did not exceed 187 cGy on aggregate, except for the cochlea. Further, average differences between KBPA and KBPB were below 110 cGy. CONCLUSIONS Overall, all models were shown to produce high-quality plans. Differences between model outputs were small compared to the prescription. This indicates only small improvements when increasing model size and minimal influence of the physician when choosing treatment plans for training head-and-neck KBP models.
Collapse
Affiliation(s)
- Robert Kaderka
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Nesrin Dogan
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - William Jin
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Elizabeth Bossart
- Department of Radiation OncologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
8
|
Gao Y, Chang CW, Pan S, Peng J, Ma C, Patel P, Roper J, Zhou J, Yang X. Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy. Phys Med Biol 2024; 69:025004. [PMID: 38091613 PMCID: PMC10767225 DOI: 10.1088/1361-6560/ad154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
The advantage of proton therapy as compared to photon therapy stems from the Bragg peak effect, which allows protons to deposit most of their energy directly at the tumor while sparing healthy tissue. However, even with such benefits, proton therapy does present certain challenges. The biological effectiveness differences between protons and photons are not fully incorporated into clinical treatment planning processes. In current clinical practice, the relative biological effectiveness (RBE) between protons and photons is set as constant 1.1. Numerous studies have suggested that the RBE of protons can exhibit significant variability. Given these findings, there is a substantial interest in refining proton therapy treatment planning to better account for the variable RBE. Dose-average linear energy transfer (LETd) is a key physical parameter for evaluating the RBE of proton therapy and aids in optimizing proton treatment plans. Calculating precise LETddistributions necessitates the use of intricate physical models and the execution of specialized Monte-Carlo simulation software, which is a computationally intensive and time-consuming progress. In response to these challenges, we propose a deep learning based framework designed to predict the LETddistribution map using the dose distribution map. This approach aims to simplify the process and increase the speed of LETdmap generation in clinical settings. The proposed CycleGAN model has demonstrated superior performance over other GAN-based models. The mean absolute error (MAE), peak signal-to-noise ratio and normalized cross correlation of the LETdmaps generated by the proposed method are 0.096 ± 0.019 keVμm-1, 24.203 ± 2.683 dB, and 0.997 ± 0.002, respectively. The MAE of the proposed method in the clinical target volume, bladder, and rectum are 0.193 ± 0.103, 0.277 ± 0.112, and 0.211 ± 0.086 keVμm-1, respectively. The proposed framework has demonstrated the feasibility of generating synthetic LETdmaps from dose maps and has the potential to improve proton therapy planning by providing accurate LETdinformation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America
- Department of Nuclear & Radiological Engineering and Medical Physics, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
9
|
Pogue JA, Cardenas CE, Harms J, Soike MH, Kole AJ, Schneider CS, Veale C, Popple R, Belliveau JG, McDonald AM, Stanley DN. Benchmarking Automated Machine Learning-Enhanced Planning With Ethos Against Manual and Knowledge-Based Planning for Locally Advanced Lung Cancer. Adv Radiat Oncol 2023; 8:101292. [PMID: 37457825 PMCID: PMC10344691 DOI: 10.1016/j.adro.2023.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Currently, there is insufficient guidance for standard fractionation lung planning using the Varian Ethos adaptive treatment planning system and its unique intelligent optimization engine. Here, we address this gap in knowledge by developing a methodology to automatically generate high-quality Ethos treatment plans for locally advanced lung cancer. Methods and Materials Fifty patients previously treated with manually generated Eclipse plans for inoperable stage IIIA-IIIC non-small cell lung cancer were included in this institutional review board-approved retrospective study. Fifteen patient plans were used to iteratively optimize a planning template for the Daily Adaptive vs Non-Adaptive External Beam Radiation Therapy With Concurrent Chemotherapy for Locally Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Trial of an Individualized Approach for Toxicity Reduction (ARTIA-Lung); the remaining 35 patients were automatically replanned without intervention. Ethos plan quality was benchmarked against clinical plans and reoptimized knowledge-based RapidPlan (RP) plans, then judged using standard dose-volume histogram metrics, adherence to clinical trial objectives, and qualitative review. Results Given equal prescription target coverage, Ethos-generated plans showed improved primary and nodal planning target volume V95% coverage (P < .001) and reduced lung gross tumor volume V5 Gy and esophagus D0.03 cc metrics (P ≤ .003) but increased mean esophagus and brachial plexus D0.03 cc metrics (P < .001) compared with RP plans. Eighty percent, 49%, and 51% of Ethos, clinical, and RP plans, respectively, were "per protocol" or met "variation acceptable" ARTIA-Lung planning metrics. Three radiation oncologists qualitatively scored Ethos plans, and 78% of plans were clinically acceptable to all reviewing physicians, with no plans receiving scores requiring major changes. Conclusions A standard Ethos template produced lung radiation therapy plans with similar quality to RP plans, elucidating a viable approach for automated plan generation in the Ethos adaptive workspace.
Collapse
Affiliation(s)
- Joel A. Pogue
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlos E. Cardenas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam J. Kole
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig S. Schneider
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher Veale
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-Guy Belliveau
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew M. McDonald
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
- University of Alabama at Birmingham Institute for Cancer Outcomes and Survivorship, Birmingham, Alabama
| | - Dennis N. Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Fjellanger K, Hordnes M, Sandvik IM, Sulen TH, Heijmen BJM, Breedveld S, Rossi L, Pettersen HES, Hysing LB. Improving knowledge-based treatment planning for lung cancer radiotherapy with automatic multi-criteria optimized training plans. Acta Oncol 2023; 62:1194-1200. [PMID: 37589124 DOI: 10.1080/0284186x.2023.2238882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine. Model performance was compared for KBP models trained with manually created and automatic MCO treatment plans. MATERIAL AND METHODS Two RapidPlan models with the same 30 locally advanced non-small cell lung cancer patients included were created, one containing manually created clinical plans (RP_CLIN) and one containing fully automatic multi-criteria optimized plans (RP_MCO). For 15 validation patients, model performance was compared in terms of dose-volume parameters and normal tissue complication probabilities, and an oncologist performed a blind comparison of the clinical (CLIN), RP_CLIN, and RP_MCO plans. RESULTS The heart and esophagus doses were lower for RP_MCO compared to RP_CLIN, resulting in an average reduction in the risk of 2-year mortality by 0.9 percentage points and the risk of acute esophageal toxicity by 1.6 percentage points with RP_MCO. The oncologist preferred the RP_MCO plan for 8 patients and the CLIN plan for 7 patients, while the RP_CLIN plan was not preferred for any patients. CONCLUSION RP_MCO improved OAR sparing compared to RP_CLIN and was selected for implementation in the clinic. Training a KBP model with clinical plans may lead to suboptimal output plans, and making an extra effort to optimize the library plans in the KBP model creation phase can improve the plan quality for many future patients.
Collapse
Affiliation(s)
- Kristine Fjellanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| | - Marte Hordnes
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| | - Inger Marie Sandvik
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Turid Husevåg Sulen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ben J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Liv Bolstad Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Harms J, Pogue JA, Cardenas CE, Stanley DN, Cardan R, Popple R. Automated evaluation for rapid implementation of knowledge-based radiotherapy planning models. J Appl Clin Med Phys 2023; 24:e14152. [PMID: 37703545 PMCID: PMC10562024 DOI: 10.1002/acm2.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE Knowledge-based planning (KBP) offers the ability to predict dose-volume metrics based on information extracted from previous plans, reducing plan variability and improving plan quality. As clinical integration of KBP is increasing there is a growing need for quantitative evaluation of KBP models. A .NET-based application, RapidCompare, was created for automated plan creation and analysis of Varian RapidPlan models. METHODS RapidCompare was designed to read calculation parameters and a list of reference plans. The tool copies the reference plan field geometry and structure set, applies the RapidPlan model, optimizes the KBP plan, and generates data for quantitative evaluation of dose-volume metrics. A cohort of 85 patients, divided into training (50), testing (10), and validation (25) groups, was used to demonstrate the utility of RapidCompare. After training and tuning, the KBP model was paired with three different optimization templates to compare various planning strategies in the validation cohort. All templates used the same set of constraints for the planning target volume (PTV). For organs-at-risk, the optimization template provided constraints using the whole dose-volume histogram (DVH), fixed-dose/volume points, or generalized equivalent uniform dose (gEUD). The resulting plans from each optimization approach were compared using DVH metrics. RESULTS RapidCompare allowed for the automated generation of 75 total plans for comparison with limited manual intervention. In comparing optimization techniques, the Dose/Volume and Lines optimization templates generated plans with similar DVH metrics, with a slight preference for the Lines technique with reductions in heart V30Gy and spinal cord max dose. The gEUD model produced high target heterogeneity. CONCLUSION Automated evaluation allowed for the exploration of multiple optimization templates in a larger validation cohort than would have been feasible using a manual approach. A final KBP model using line optimization objectives produced the highest quality plans without human intervention.
Collapse
Affiliation(s)
- Joseph Harms
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| | - Joel A. Pogue
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| | - Carlos E. Cardenas
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| | - Dennis N. Stanley
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| | - Rex Cardan
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| | - Richard Popple
- Department of Radiation OncologyUniversity of Alabama at BirminghamBirminghamUSA
| |
Collapse
|
12
|
Li Z, Yang Z, Lu J, Zhu Q, Wang Y, Zhao M, Li Z, Fu J. Deep learning-based dose map prediction for high-dose-rate brachytherapy. Phys Med Biol 2023; 68:175015. [PMID: 37589292 DOI: 10.1088/1361-6560/acecd2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Background. Creating a clinically acceptable plan in the time-sensitive clinic workflow of brachytherapy is challenging. Deep learning-based dose prediction techniques have been reported as promising solutions with high efficiency and accuracy. However, current dose prediction studies mainly target EBRT which are inappropriate for brachytherapy, the model designed specifically for brachytherapy has not yet well-established.Purpose. To predict dose distribution in brachytherapy using a novel Squeeze and Excitation Attention Net (SE_AN) model.Method. We hypothesized the tracks of192Ir inside applicators are essential for brachytherapy dose prediction. To emphasize the applicator contribution, a novel SE module was integrated into a Cascaded UNet to recalibrate informative features and suppress less useful ones. The Cascaded UNet consists of two stacked UNets, with the first designed to predict coarse dose distribution and the second added for fine-tuning 250 cases including all typical clinical applicators were studied, including vaginal, tandem and ovoid, multi-channel, and free needle applicators. The developed SE_AN was subsequently compared to the classic UNet and classic Cascaded UNet (without SE module) models. The model performance was evaluated by comparing the predicted dose against the clinically approved plans using mean absolute error (MAE) of DVH metrics, includingD2ccandD90%.Results. The MAEs of DVH metrics demonstrated that SE_AN accurately predicted the dose with 0.37 ± 0.25 difference for HRCTVD90%, 0.23 ± 0.14 difference for bladderD2cc, and 0.28 ± 0.20 difference for rectumD2cc. In comparison studies, UNet achieved 0.34 ± 0.24 for HRCTV, 0.25 ± 0.20 for bladder, 0.25 ± 0.21 for rectum, and Cascaded UNet achieved 0.42 ± 0.31 for HRCTV, 0.24 ± 0.19 for bladder, 0.23 ± 0.19 for rectum.Conclusion. We successfully developed a method specifically for 3D brachytherapy dose prediction. Our model demonstrated comparable performance to clinical plans generated by experienced dosimetrists. The developed technique is expected to improve the standardization and quality control of brachytherapy treatment planning.
Collapse
Affiliation(s)
- Zhen Li
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhenyu Yang
- Duke University, Durham, NC, United States of America
| | - Jiayu Lu
- Boston University, Boston, MA, United States of America
| | - Qingyuan Zhu
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yanxiao Wang
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Mengli Zhao
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhaobin Li
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jie Fu
- Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/accdb2. [PMID: 37068488 PMCID: PMC10637515 DOI: 10.1088/1361-6560/accdb2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Online adaptive radiation therapy aims at adapting a patient's treatment plan to their current anatomy to account for inter-fraction variations before daily treatment delivery. As this process needs to be accomplished while the patient is immobilized on the treatment couch, it requires time-efficient adaptive planning methods to generate a quality daily treatment plan rapidly. The conventional planning methods do not meet the time requirement of online adaptive radiation therapy because they often involve excessive human intervention, significantly prolonging the planning phase. This article reviews the planning strategies employed by current commercial online adaptive radiation therapy systems, research on online adaptive planning, and artificial intelligence's potential application to online adaptive planning.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Business Analytics, University of Amsterdam, The Netherlands
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Sven Olberg
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Dick den Hertog
- Department of Business Analytics, University of Amsterdam, The Netherlands
| | - Ali Ajdari
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Thomas Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| |
Collapse
|
14
|
Scaggion A, Fusella M, Cavinato S, Dusi F, El Khouzai B, Germani A, Pivato N, Rossato MA, Roggio A, Scott A, Sepulcri M, Zandonà R, Paiusco M. Updating a clinical Knowledge-Based Planning prediction model for prostate radiotherapy. Phys Med 2023; 107:102542. [PMID: 36780793 DOI: 10.1016/j.ejmp.2023.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical knowledge-based planning (KBP) models dedicated to prostate radiotherapy treatment may require periodical updates to remain relevant and to adapt to possible changes in the clinic. This study proposes a paired comparison of two different update approaches through a longitudinal analysis. MATERIALS AND METHODS A clinically validated KBP model for moderately hypofractionated prostate therapy was periodically updated using two approaches: one was targeted at achieving the biggest library size (Mt), while the other one at achieving the highest mean sample quality (Rt). Four subsequent updates were accomplished. The goodness, robustness and quality of the outcomes were measured and compared to those of the common ancestor. Plan quality was assessed through the Plan Quality Metric (PQM) and plan complexity was monitored. RESULTS Both update procedures allowed for an increase in the OARs sparing between +3.9 % and +19.2 % compared to plans generated by a human planner. Target coverage and homogeneity slightly reduced [-0.2 %;-14.7 %] while plan complexity showed only minor changes. Increasing the sample size resulted in more reliable predictions and improved goodness-of-fit, while increasing the mean sample quality improved the outcomes but slightly reduced the models reliability. CONCLUSIONS Repeated updates of clinical KBP models can enhance their robustness, reliability and the overall quality of automatically generated plans. The periodical expansion of the model sample accompanied by the removal of the unacceptable low quality plans should maximize the benefits of the updates while limiting the associated workload.
Collapse
Affiliation(s)
- Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Samuele Cavinato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy; Dipartimento di Fisica e Astronomia 'G. Galilei', Università degli Studi di Padova, Padova, Italy
| | - Francesca Dusi
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Badr El Khouzai
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Alessandra Germani
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Nicola Pivato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marco Andrea Rossato
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Antonella Roggio
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Anthony Scott
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Matteo Sepulcri
- Radiation Oncology Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Roberto Zandonà
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
15
|
Matrosic CK, Dess K, Boike T, Dominello M, Dryden D, Fraser C, Grubb M, Hayman J, Jarema D, Marsh R, Paximadis P, Torolski K, Wilson M, Jolly S, Matuszak M. Knowledge-Based Quality Assurance and Model Maintenance in Lung Cancer Radiation Therapy in a Statewide Quality Consortium of Academic and Community Practice Centers. Pract Radiat Oncol 2023; 13:e200-e208. [PMID: 36526245 DOI: 10.1016/j.prro.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Locally advanced lung cancer (LALC) treatment planning is often complex due to challenging tradeoffs related to large targets near organs at risk, making the judgment of plan quality difficult. The purpose of this work was to update and maintain a multi-institutional knowledge-based planning (KBP) model developed by a statewide consortium of academic and community practices for use as a plan quality assurance (QA) tool. METHODS AND MATERIALS Sixty LALC volumetric-modulated arc therapy plans from 2021 were collected from 24 institutions. Plan quality was scored, with high-quality clinical (HQC) plans selected to update a KBP model originally developed in 2017. The model was validated via automated KBP planning, with 20 cases excluded from the model. Differences in dose-volume histogram metrics in the clinical plans, 2017 KBP model plans, and 2022 KBP model plans were compared. Twenty recent clinical cases not meeting consortium quality metrics were replanned with the 2022 model to investigate potential plan quality improvements. RESULTS Forty-seven plans were included in the final KBP model. Compared with the clinical plans, the 2022 model validation plans improved 60%, 65%, and 65% of the lung V20Gy, mean heart dose, and spinal canal D0.03cc metrics, respectively. The 2022 model showed improvements from the 2017 model in hot spot management at the cost of greater lung doses. Of the 20 recent cases not meeting quality metrics, 40% of the KBP model-replanned cases resulted in acceptable plans, suggesting potential clinical plan improvements. CONCLUSIONS A multi-institutional KBP model was updated using plans from a statewide consortium. Multidisciplinary plan review resulted in HQC model training plans and model validation resulted in acceptable quality plans. The model proved to be effective at identifying potential plan quality improvements. Work is ongoing to develop web-based training plan review tools and vendor-agnostic platforms to provide the model as a QA tool statewide.
Collapse
Affiliation(s)
- Charles K Matrosic
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Kathryn Dess
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Michael Dominello
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | | | - Margaret Grubb
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James Hayman
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - David Jarema
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Robin Marsh
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Kelly Torolski
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Shruti Jolly
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Martha Matuszak
- Medical School, Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
16
|
Pogue JA, Cardenas CE, Cao Y, Popple RA, Soike M, Boggs DH, Stanley DN, Harms J. Leveraging intelligent optimization for automated, cardiac-sparing accelerated partial breast treatment planning. Front Oncol 2023; 13:1130119. [PMID: 36845685 PMCID: PMC9950631 DOI: 10.3389/fonc.2023.1130119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Background Accelerated partial breast irradiation (APBI) yields similar rates of recurrence and cosmetic outcomes as compared to whole breast radiation therapy (RT) when patients and treatment techniques are appropriately selected. APBI combined with stereotactic body radiation therapy (SBRT) is a promising technique for precisely delivering high levels of radiation while avoiding uninvolved breast tissue. Here we investigate the feasibility of automatically generating high quality APBI plans in the Ethos adaptive workspace with a specific emphasis on sparing the heart. Methods Nine patients (10 target volumes) were utilized to iteratively tune an Ethos APBI planning template for automatic plan generation. Twenty patients previously treated on a TrueBeam Edge accelerator were then automatically replanned using this template without manual intervention or reoptimization. The unbiased validation cohort Ethos plans were benchmarked via adherence to planning objectives, a comparison of DVH and quality indices against the clinical Edge plans, and qualitative reviews by two board-certified radiation oncologists. Results 85% (17/20) of automated validation cohort plans met all planning objectives; three plans did not achieve the contralateral lung V1.5Gy objective, but all other objectives were achieved. Compared to the Eclipse generated plans, the proposed Ethos template generated plans with greater evaluation planning target volume (PTV_Eval) V100% coverage (p = 0.01), significantly decreased heart V1.5Gy (p< 0.001), and increased contralateral breast V5Gy, skin D0.01cc, and RTOG conformity index (p = 0.03, p = 0.03, and p = 0.01, respectively). However, only the reduction in heart dose was significant after correcting for multiple testing. Physicist-selected plans were deemed clinically acceptable without modification for 75% and 90% of plans by physicians A and B, respectively. Physicians A and B scored at least one automatically generated plan as clinically acceptable for 100% and 95% of planning intents, respectively. Conclusions Standard left- and right-sided planning templates automatically generated APBI plans of comparable quality to manually generated plans treated on a stereotactic linear accelerator, with a significant reduction in heart dose compared to Eclipse generated plans. The methods presented in this work elucidate an approach for generating automated, cardiac-sparing APBI treatment plans for daily adaptive RT with high efficiency.
Collapse
Affiliation(s)
- Joel A. Pogue
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pirlepesov F, Wilson L, Moskvin VP, Breuer A, Parkins F, Lucas JT, Merchant TE, Faught AM. Three-dimensional dose and LET D prediction in proton therapy using artificial neural networks. Med Phys 2022; 49:7417-7427. [PMID: 36227617 PMCID: PMC9872814 DOI: 10.1002/mp.16043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Challenges in proton therapy include identifying patients most likely to benefit; ensuring consistent, high-quality plans as its adoption becomes more widespread; and recognizing biological uncertainties that may be related to increased relative biologic effectiveness driven by linear energy transfer (LET). Knowledge-based planning (KBP) is a domain that may help to address all three. METHODS Artificial neural networks were trained using 117 unique treatment plans and associated dose and dose-weighted LET (LETD ) distributions. The data set was split into training (n = 82), validation (n = 17), and test (n = 18) sets. Model performance was evaluated on the test set using dose- and LETD -volume metrics in the clinical target volume (CTV) and nearby organs at risk and Dice similarity coefficients (DSC) comparing predicted and planned isodose lines at 50%, 75%, and 95% of the prescription dose. RESULTS Dose-volume metrics significantly differed (α = 0.05) between predicted and planned dose distributions in only one dose-volume metric, D2% to the CTV. The maximum observed root mean square (RMS) difference between corresponding metrics was 4.3 GyRBE (8% of prescription) for D1cc to optic chiasm. DSC were 0.90, 0.93, and 0.88 for the 50%, 75%, and 95% isodose lines, respectively. LETD -volume metrics significantly differed in all but one metric, L0.1cc of the brainstem. The maximum observed difference in RMS differences for LETD metrics was 1.0 keV/μm for L0.1cc to brainstem. CONCLUSIONS We have devised the first three-dimensional dose and LETD -prediction model for cranial proton radiation therapy has been developed. Dose accuracy compared favorably with that of previously published models in other treatment sites. The agreement in LETD supports future investigations with biological doses in mind to enable the full potential of KBP in proton therapy.
Collapse
Affiliation(s)
| | - Lydia Wilson
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Alex Breuer
- Department of Pathology, St. Jude Children's Research Hospital
| | - Franz Parkins
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| | - Austin M Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital
| |
Collapse
|
18
|
Knowledge-based planning using both the predicted DVH of organ-at risk and planning target volume. Med Eng Phys 2022; 110:103803. [PMID: 35461772 DOI: 10.1016/j.medengphy.2022.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the performance of a knowledge-based planning (KBP) method in nasopharyngeal cancer radiotherapy using the predicted dose-volume histogram (DVH) of organ-at risk (OAR) and planning target volume (PTV). METHODS AND MATERIALS A total of 85 patients previously treated for nasopharyngeal cancer using 9-field 6-MV intensity-modulated radiation therapy (IMRT) were identified for training and 30 similar patients were identified for testing. The dosimetric deposition information, individual dose-volume histograms (IDVHs) induced by a series of fields with uniform-intensity irradiation, was used to predict both OAR and PTV DVH. Two KBP methods (KBPOAR and KBPOAR+PTV) were established for plan generation based on the DVH prediction. The KBPOAR method utilized the dose constraints based on the predicted OAR DVH and the PTV dose constraints obtained according to the planning experience, while the KBPOAR+PTV method applied the dose constraints based on the predicted OAR and PTV DVH. For the plan evaluation, the PTV dose coverage was used D98 and D2, and the maximum dose, mean dose or dose-volume parameters were used for the OARs. Statistical differences of the two KBP methods were tested with the Wilcoxon signed rank test. RESULTS For patients with T3 tumors, there was no significant difference between the KBPOAR and KBPOAR+PTV methods in dosimetric results at most OARs and PTVs. Both KBP methods achieved a similar number of plans meeting the dose requirements. For patients with T4 tumors, KBPOAR+PTV reduced the maximum dose by more than 1 Gy in the body, spinal cord, optic nerve, eye and temporal lobes and reduced the V50 value by more than 3.9% in the larynx and tongue without reducing the PTV dose compared with KBPOAR. The KBPOAR+PTV method increased the plans by more than 14.2% in meeting the maximum dose requirements at the body, optic nerve, mandible and eye and increased the plans by more than 21.4% in meeting the V50 of the larynx and V50 of the tongue when compared with the KBPOAR method. CONCLUSIONS For patients with T3 tumors, no significant difference was found between the KBPOAR and KBPOAR+PTV methods in dosimetric results at most OARs and PTVs. For patients with T4 tumors, the KBPOAR+PTV method performs better than the KBPOAR method in improving the quality of the plans. Compared with the KBPOAR method, dose sparing of some OARs was achieved without reducing PTV dose coverage and helped to increase the number of plans meeting the dose requirements when the KBPOAR+PTV method was utilized.
Collapse
|
19
|
Trivellato S, Caricato P, Pellegrini R, Montanari G, Daniotti MC, Bordigoni B, Faccenda V, Panizza D, Meregalli S, Bonetto E, Arcangeli S, De Ponti E. Comprehensive dosimetric and clinical evaluation of lexicographic optimization-based planning for cervical cancer. Front Oncol 2022; 12:1041839. [PMID: 36465394 PMCID: PMC9709287 DOI: 10.3389/fonc.2022.1041839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/01/2023] Open
Abstract
AIM In this study, a not yet commercially available fully-automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), was validated for cervical cancer. MATERIAL AND METHODS Twenty-four mono-institutional consecutive treatment plans (50 Gy/25 fx) delivered between November 2019 and April 2022 were retrospectively selected. The automatic re-planning was performed by mCycle, implemented in the Monaco TPS research version (v5.59.13), in which the LO and Multicriterial Optimization (MCO) are coupled with Monte Carlo calculation. mCycle optimization follows an a priori assigned priority list, the so-called Wish List (WL), representing a dialogue between the radiation oncologist and the planner, setting hard constraints and following objectives. The WL was tuned on a patient subset according to the institution's clinical protocol to obtain an optimal plan in a single optimization. This robust WL was then used to automatically re-plan the remaining patients. Manual plans (MP) and mCycle plans (mCP) were compared in terms of dose distributions, complexity (modulation complexity score, MCS), and delivery accuracy (perpendicular diode matrices, gamma analysis-passing ratio, PR). Their clinical acceptability was assessed through the blind choice of two radiation oncologists. Finally, a global quality score index (SI) was defined to gather into a single number the plan evaluation process. RESULTS The WL tuning requested four patients. The 20 automated re-planning tasks took three working days. The median optimization and calculation time can be estimated at 4 h and just over 1 h per MP and mCP, respectively. The dose comparison showed a comparable organ-at-risk spare. The planning target volume coverage increased (V95%: MP 98.0% [95.6-99.3]; mCP 99.2%[89.7-99.9], p >0.05). A significant increase has been registered in MCS (MP 0.29 [0.24-0.34]; mCP 0.26 [0.23-0.30], p <0.05) without affecting delivery accuracy (PR (3%/3mm): MP 97.0% [92.7-99.2]; mCP 97.1% [95.0-98.6], p >0.05). In the blind choice, all mCP results were clinically acceptable and chosen over MP in more than 75% of cases. The median SI score was 0.69 [0.41-0.84] and 0.73 [0.51-0.82] for MP and mCP, respectively (p >0.05). CONCLUSIONS mCycle plans were comparable to clinical manual plans, more complex but accurately deliverable and registering a similar SI. Automated plans outperformed manual plans in blinded clinical choice.
Collapse
Affiliation(s)
- Sara Trivellato
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - Paolo Caricato
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- Department of Physics, University of Milan, Milan, Italy
| | | | - Gianluca Montanari
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - Martina Camilla Daniotti
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- Department of Physics, University of Milan, Milan, Italy
| | - Bianca Bordigoni
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- Department of Physics, University of Milan Bicocca, Milan, Italy
| | - Valeria Faccenda
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- Department of Physics, University of Milan, Milan, Italy
| | - Denis Panizza
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Sofia Meregalli
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- Department of Radiation Oncology, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - Elisa Bonetto
- Department of Radiation Oncology, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - Stefano Arcangeli
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
- Department of Radiation Oncology, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - Elena De Ponti
- Medical Physics Department, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
- School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| |
Collapse
|
20
|
Li X, Ge Y, Wu Q, Wang C, Sheng Y, Wang W, Stephens H, Yin FF, Wu QJ. Input feature design and its impact on the performance of deep learning models for predicting fluence maps in intensity-modulated radiation therapy. Phys Med Biol 2022; 67:215009. [PMID: 36206747 DOI: 10.1088/1361-6560/ac9882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Objective. Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance.Approach. This study included 231 head-and-neck intensity-modulated radiation therapy patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level = 0.05).Main results. For PTV-related metrics, all DL plans had significantly higher maximum dose (p < 0.001), conformity index (p < 0.001), and heterogeneity index (p < 0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5 mm (p < 0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans.Significance. Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.
Collapse
Affiliation(s)
- Xinyi Li
- Duke University Medical Center, United States of America
| | - Yaorong Ge
- University of North Carolina at Charlotte, United States of America
| | - Qiuwen Wu
- Duke University Medical Center, United States of America
| | - Chunhao Wang
- Duke University Medical Center, United States of America
| | - Yang Sheng
- Duke University Medical Center, United States of America
| | - Wentao Wang
- Duke University Medical Center, United States of America
| | | | - Fang-Fang Yin
- Duke University Medical Center, United States of America
| | - Q Jackie Wu
- Duke University Medical Center, United States of America
| |
Collapse
|
21
|
Li Z, Chen K, Yang Z, Zhu Q, Yang X, Li Z, Fu J. A personalized DVH prediction model for HDR brachytherapy in cervical cancer treatment. Front Oncol 2022; 12:967436. [PMID: 36110960 PMCID: PMC9468814 DOI: 10.3389/fonc.2022.967436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Although the knowledge-based dose-volume histogram (DVH) prediction has been largely researched and applied in External Beam Radiation Therapy, it is still less investigated in the domain of brachytherapy. The purpose of this study is to develop a reliable DVH prediction method for high-dose-rate brachytherapy plans. Method A DVH prediction workflow combining kernel density estimation (KDE), k-nearest neighbor (kNN), and principal component analysis (PCA) was proposed. PCA and kNN were first employed together to select similar patients based on principal component directions. 79 cervical cancer patients with different applicators inserted was included in this study. The KDE model was built based on the relationship between distance-to-target (DTH) and the dose in selected cases, which can be subsequently used to estimate the dose probability distribution in the validation set. Model performance of bladder and rectum was quantified by |ΔD2cc|, |ΔD1cc|, |ΔD0.1cc|, |ΔDmax|, and |ΔDmean| in the form of mean and standard deviation. The model performance between KDE only and the combination of kNN, PCA, and KDE was compared. Result 20, 30 patients were selected for rectum and bladder based on KNN and PCA, respectively. The absolute residual between the actual plans and the predicted plans were 0.38 ± 0.29, 0.4 ± 0.32, 0.43 ± 0.36, 0.97 ± 0.66, and 0.13 ± 0.99 for |ΔD2cc|, |ΔD1cc|, |ΔD0.1cc|, |ΔDmax|, and |ΔDmean| in the bladder, respectively. For rectum, the corresponding results were 0.34 ± 0.27, 0.38 ± 0.33, 0.63 ± 0.57, 1.41 ± 0.99 and 0.23 ± 0.17, respectively. The combination of kNN, PCA, and KDE showed a significantly better prediction performance than KDE only, with an improvement of 30.3% for the bladder and 33.3% for the rectum. Conclusion In this study, a knowledge-based machine learning model was proposed and verified to accurately predict the DVH for new patients. This model is proved to be effective in our testing group in the workflow of HDR brachytherapy.
Collapse
Affiliation(s)
- Zhen Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kehui Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Qingyuan Zhu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhaobin Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Fu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Fu,
| |
Collapse
|
22
|
Rhee DJ, Jhingran A, Huang K, Netherton TJ, Fakie N, White I, Sherriff A, Cardenas CE, Zhang L, Prajapati S, Kry SF, Beadle BM, Shaw W, O'Reilly F, Parkes J, Burger H, Trauernicht C, Simonds H, Court LE. Clinical acceptability of fully automated external beam radiotherapy for cervical cancer with three different beam delivery techniques. Med Phys 2022; 49:5742-5751. [PMID: 35866442 PMCID: PMC9474595 DOI: 10.1002/mp.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To fully automate CT‐based cervical cancer radiotherapy by automating contouring and planning for three different treatment techniques. Methods We automated three different radiotherapy planning techniques for locally advanced cervical cancer: 2D 4‐field‐box (4‐field‐box), 3D conformal radiotherapy (3D‐CRT), and volumetric modulated arc therapy (VMAT). These auto‐planning algorithms were combined with a previously developed auto‐contouring system. To improve the quality of the 4‐field‐box and 3D‐CRT plans, we used an in‐house, field‐in‐field (FIF) automation program. Thirty‐five plans were generated for each technique on CT scans from multiple institutions and evaluated by five experienced radiation oncologists from three different countries. Every plan was reviewed by two of the five radiation oncologists and scored using a 5‐point Likert scale. Results Overall, 87%, 99%, and 94% of the automatically generated plans were found to be clinically acceptable without modification for the 4‐field‐box, 3D‐CRT, and VMAT plans, respectively. Some customizations of the FIF configuration were necessary on the basis of radiation oncologist preference. Additionally, in some cases, it was necessary to renormalize the plan after it was generated to satisfy radiation oncologist preference. Conclusion Approximately, 90% of the automatically generated plans were clinically acceptable for all three planning techniques. This fully automated planning system has been implemented into the radiation planning assistant for further testing in resource‐constrained radiotherapy departments in low‐ and middle‐income countries.
Collapse
Affiliation(s)
- Dong Joo Rhee
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA.,Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Huang
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA.,Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tucker J Netherton
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nazia Fakie
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Ingrid White
- Radiotherapy Department, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alicia Sherriff
- Department of Oncology, University of the Free State, Bloemfontein, South Africa
| | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lifei Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Surendra Prajapati
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - William Shaw
- Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa
| | - Frederika O'Reilly
- Department of Medical Physics (G68), University of the Free State, Bloemfontein, South Africa
| | - Jeannette Parkes
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Hester Burger
- Division of Radiation Oncology and Medical Physics, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Chris Trauernicht
- Division of Medical Physics, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Hannah Simonds
- Division of Radiation Oncology, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | - Laurence E Court
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Tudda A, Castriconi R, Benecchi G, Cagni E, Cicchetti A, Dusi F, Esposito PG, Guernieri M, Ianiro A, Landoni V, Mazzilli A, Moretti E, Oliviero C, Placidi L, Rambaldi Guidasci G, Rancati T, Scaggion A, Trojani V, Fiorino C. Knowledge-based multi-institution plan prediction of whole breast irradiation with tangential fields. Radiother Oncol 2022; 175:10-16. [PMID: 35868603 DOI: 10.1016/j.radonc.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify inter-institute variability of Knowledge-Based (KB) models for right breast cancer patients treated with tangential fields whole breast irradiation (WBI). MATERIALS AND METHODS Ten institutions set KB models by using RapidPlan (Varian Inc.), following previously shared methodologies. Models were tested on 20 new patients from the same institutes, exporting DVH predictions of heart, ipsilateral lung, contralateral lung, and contralateral breast. Inter-institute variability was quantified by the inter-institute SDint of predicted DVHs/Dmean. Association between lung sparing vs PTV coverage strategy was also investigated. The transferability of models was evaluated by the overlap of each model's geometric Principal Component (PC1) when applied to the test patients of the other 9 institutes. RESULTS The overall inter-institute variability of DVH/Dmean ipsilateral lung dose prediction, was less than 2% (20%-80% dose range) and 0.55 Gy respectively (1SD) for a 40 Gy in 15 fraction schedule; it was < 0.2 Gy for other OARs. Institute 6 showed the lowest mean dose prediction value and no overlap between PTV and ipsilateral lung. Once excluded, the predicted ipsilateral lung Dmean was correlated with median PTV D99% (R2 = 0.78). PC1 values were always within the range of applicability (90th percentile) for 7 models: for 2 models they were outside in 1/18 cases. For the model of institute 6, it failed in 7/18 cases. The impact of inter-institute variability of dose calculation was tested and found to be almost negligible. CONCLUSIONS Results show limited inter-institute variability of plan prediction models translating in high inter-institute interchangeability, except for one of ten institutes. These results encourage future investigations in generating benchmarks for plan prediction incorporating inter-institute variability.
Collapse
Affiliation(s)
- Alessia Tudda
- Medical Physics Dept, San Raffaele Scientific Institute, Milano, Italy; Università Statale di Milano, Milano, Italy
| | | | | | - Elisabetta Cagni
- Medical Physics Unit, Department of Advanced Technology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Francesca Dusi
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Marika Guernieri
- Department of Medical Physics, University Hospital, Udine, Italy
| | - Anna Ianiro
- Istituto Nazionale dei Tumori Regina Elena, Rome, Italy
| | | | - Aldo Mazzilli
- Medical Physics Dept, University Hospital of Parma AOUP, Italy
| | - Eugenia Moretti
- Department of Medical Physics, University Hospital, Udine, Italy
| | | | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giulia Rambaldi Guidasci
- Amethyst Radioterapia Italia, Medical Physics Department, San Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valeria Trojani
- Medical Physics Unit, Department of Advanced Technology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Claudio Fiorino
- Medical Physics Dept, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
24
|
Kang Z, Fu L, Liu J, Shi L, Li Y. A practical method to improve the performance of knowledge-based VMAT planning for endometrial and cervical cancer. Acta Oncol 2022; 61:1012-1018. [PMID: 35793274 DOI: 10.1080/0284186x.2022.2093615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The aim of this work was to demonstrate a practical and effective method to improve the performance of RapidPlan (RP) model. METHODS 203 consecutive clinical VMAT plans (P0) for cervical and endometrial cancer were used to train an RP model (M0). The plans were then reoptimized by M0 to generate 203 new plans (P1). Compared with P0, 150 plans with a lower mean dose (MD) of bladder, rectum and PBM were selected from P1 to configure a new RP model (M1). A final RP model (M2) was trained using plans in M1 and the remaining 53 plans from P1 (excluding OARs with worse MD) and the corresponding plans from P0 (only including OARs with better MD). The models were validated on the mentioned 53 plans (closed-loop set) and 46 patient cohorts outside the training library (open-loop set). p < 0.05 was considered statistically significant. RESULTS For closed-loop validation, the difference of D2%, D98% and CI95% between groups was of no statistical significance, the homogeneity index (HI) was lower in the groups of RP models (p < 0.05). The MD of all OARs decreased monotonically in the sequence of the clinical group, group M0, M1 and M2, except the MD of bowel in M1 and MD of LFH in M2. Similarly, for open-loop validation, there was no significant difference in D2%, D98% and HI between groups, but CI95% was larger in the clinical group (p < 0.05). The MD of all OARs decreased monotonically in the sequence of the clinical group, group M0, M1 and M2, with the exception of bowel in M1. CONCLUSION The practical method of incorporating plan data of better-sparing OARs from both the clinical VMAT plans and the re-optimized plans could further improve the performance of the RP model.
Collapse
Affiliation(s)
- Zheng Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Radiation Oncology, Xiamen, China
| | - Lirong Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liwan Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Yimin Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Radiation Oncology, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
25
|
Douglas RJ, Olanrewaju A, Zhang L, Beadle BM, Court LE. Assessing the practicality of using a single knowledge‐based planning model for multiple linac vendors. J Appl Clin Med Phys 2022; 23:e13704. [PMID: 35791594 PMCID: PMC9359004 DOI: 10.1002/acm2.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Knowledge‐based planning (KBP) has been shown to be an effective tool in quality control for intensity‐modulated radiation therapy treatment planning and generating high‐quality plans. Previous studies have evaluated its ability to create consistent plans across institutions and between planners within the same institution as well as its use as teaching tool for inexperienced planners. This study evaluates whether planning quality is consistent when using a KBP model to plan across different treatment machines. Materials and methods This study used a RapidPlan model (Varian Medical Systems) provided by the vendor, to which we added additional planning objectives, maximum dose limits, and planning structures, such that a clinically acceptable plan is achieved in a single optimization. This model was used to generate and optimize volumetric‐modulated arc therapy plans for a cohort of 50 patients treated for head‐neck cancer. Plans were generated using the following treatment machines: Varian 2100, Elekta Versa HD, and Varian Halcyon. A noninferiority testing methodology was used to evaluate the hypothesis that normal and target metrics in our autoplans were no worse than a set of clinically‐acceptable baseline plans by a margin of 1.8 Gy or 3% dose‐volume. The quality of these plans were also compared through the use of common clinical dose‐volume histogram criteria. Results The Versa HD met our noninferiority criteria for 23 of 34 normal and target metrics; while the Halcyon and Varian 2100 machines met our criteria for 24 of 34 and 26 of 34 metrics, respectively. The experimental plans tended to have less volume coverage for prescription dose planning target volume and larger hotspot volumes. However, comparable plans were generated across different treatment machines. Conclusions These results support the use of a head‐neck RapidPlan models in centralized planning workflows that support clinics with different linac models/vendors, although some fine‐tuning for targets may be necessary.
Collapse
Affiliation(s)
- Raphael J. Douglas
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Adenike Olanrewaju
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Lifei Zhang
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Beth M. Beadle
- Department of Radiation Oncology Stanford University Palo Alto California USA
| | - Laurence E. Court
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
26
|
Evaluation of an automated template-based treatment planning system for radiotherapy of anal, rectal and prostate cancer. Tech Innov Patient Support Radiat Oncol 2022; 22:30-36. [PMID: 35464888 PMCID: PMC9020095 DOI: 10.1016/j.tipsro.2022.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Automated treatment planning system compared to manual planning. Equivalent plan quality between VMAT manually generated- and IMRT automatically generated plans. Evaluation of anal, prostate and rectum treatment plans. Generation of highly consistent IMRT automated plan within 2 to 3.5 min.
Background and purpose The Ethos system has enabled online adaptive radiotherapy (oART) by implementing an automated treatment planning system (aTPS) for both intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) plan creation. The purpose of this study is to evaluate the quality of aTPS plans in the pelvic region. Material and Methods Sixty patients with anal (n = 20), rectal (n = 20) or prostate (n = 20) cancer were retrospectively re-planned with the aTPS. Three IMRT (7-, 9- and 12-field) and two VMAT (2 and 3 arc) automatically generated plans (APs) were created per patient. The duration of the automated plan generation was registered. The best IMRT-AP and VMAT-AP for each patient were selected based on target coverage and dose to organs at risk (OARs). The AP quality was analyzed and compared to corresponding clinically accepted and manually generated VMAT plans (MPs) using several clinically relevant dose metrics. Calculation-based pre-treatment plan quality assurance (QA) was performed for all plans. Results The median total duration to generate the five APs with the aTPS was 55 min, 39 min and 35 min for anal, prostate and rectal plans, respectively. The target coverage and the OAR sparing were equivalent for IMRT-APs and VMAT-MPs, while VMAT-Aps. demonstrated lower target dose homogeneity and higher dose to some OARs. Both conformity and homogeneity index were equivalent (rectal) or better (anal and prostate) for IMRT-APs compared to VMAT-MPs. All plans passed the patient-specific QA tolerance limit. Conclusions The aTPS generates plans comparable to MPs within a short time-frame which is highly relevant for oART treatments.
Collapse
Key Words
- AP, automatically generated plan
- Automated treatment planning
- CN, conformity number
- CT, computed tomography
- CTV, clinical target volume
- DVH, dose volume histogram
- FFF, flattening filter free
- GTV, gross tumor volume
- HI, homogeneity index
- IMRT, intensity modulated radiotherapy
- Intelligent optimization engine
- KPB, knowledge-based planning
- Linac, Linear accelerators
- MCO, multi-criteria optimization
- MLC, multileaf collimator
- MP, manually-generated plan
- MR, magnetic resonance
- MU, Monitor Unit
- OAR, Organ at risk
- Online adaptive radiotherapy
- PTV, planning target volume
- Pelvic cancer
- Plan quality
- QA, Quality assurance
- SD, standard deviation
- Template-based Ethos TPS
- VMAT, volumetric arc radiotherapy
- aTPS, automated treatment planning system
- oART, online adaptive radiotherapy
Collapse
|
27
|
Kaderka R, Liu KC, Liu L, VanderStraeten R, Liu TL, Lee KM, Tu YCE, MacEwan I, Simpson D, Urbanic J, Chang C. Toward automatic beam angle selection for pencil-beam scanning proton liver Treatments: A deep learning-based approach. Med Phys 2022; 49:4293-4304. [PMID: 35488864 DOI: 10.1002/mp.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning however poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods. PURPOSE A deep learning-based approach to automatic beam angle selection is proposed for proton pencil-beam scanning treatment planning of liver lesions. METHODS We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning. RESULTS For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20 degrees (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10 degrees of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing. CONCLUSIONS This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Kaderka
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,Department of Radiation Oncology, University of Miami, Miami, FL, 33136
| | | | - Lawrence Liu
- California Protons Cancer Therapy Center, San Diego, CA, 92121
| | | | | | | | | | - Iain MacEwan
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Daniel Simpson
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121
| | - James Urbanic
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| | - Chang Chang
- Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, CA, 92121.,California Protons Cancer Therapy Center, San Diego, CA, 92121
| |
Collapse
|
28
|
Cao W, Gronberg M, Olanrewaju A, Whitaker T, Hoffman K, Cardenas C, Garden A, Skinner H, Beadle B, Court L. Knowledge-based planning for the radiation therapy treatment plan quality assurance for patients with head and neck cancer. J Appl Clin Med Phys 2022; 23:e13614. [PMID: 35488508 PMCID: PMC9195018 DOI: 10.1002/acm2.13614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
This study aimed to investigate the feasibility of using a knowledge‐based planning technique to detect poor quality VMAT plans for patients with head and neck cancer. We created two dose–volume histogram (DVH) prediction models using a commercial knowledge‐based planning system (RapidPlan, Varian Medical Systems, Palo Alto, CA) from plans generated by manual planning (MP) and automated planning (AP) approaches. DVHs were predicted for evaluation cohort 1 (EC1) of 25 patients and compared with achieved DVHs of MP and AP plans to evaluate prediction accuracy. Additionally, we predicted DVHs for evaluation cohort 2 (EC2) of 25 patients for which we intentionally generated plans with suboptimal normal tissue sparing while satisfying dose–volume limits of standard practice. Three radiation oncologists reviewed these plans without seeing the DVH predictions. We found that predicted DVH ranges (upper–lower predictions) were consistently wider for the MP model than for the AP model for all normal structures. The average ranges of mean dose predictions among all structures was 9.7 Gy (MP model) and 3.4 Gy (AP model) for EC1 patients. RapidPlan models identified 7 MP plans as outliers according to mean dose or D1% for at least one structure, while none of AP plans were flagged. For EC2 patients, 22 suboptimal plans were identified by prediction. While re‐generated AP plans validated that these suboptimal plans could be improved, 40 out of 45 structures with predicted poor sparing were also identified by oncologist reviews as requiring additional planning to improve sparing in the clinical setting. Our study shows that knowledge‐based DVH prediction models can be sufficiently accurate for plan quality assurance purposes. A prediction model built by a small cohort automatically‐generated plans was effective in detecting suboptimal plans. Such tools have potential to assist the plan quality assurance workflow for individual patients in the clinic.
Collapse
Affiliation(s)
- Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Gronberg
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adenike Olanrewaju
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas Whitaker
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Hoffman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adam Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heath Skinner
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Laurence Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
van Gysen K, Kneebone A, Le A, Wu K, Haworth A, Bromley R, Hruby G, O'Toole J, Booth J, Brown C, Pearse M, Sidhom M, Wiltshire K, Tang C, Eade T. Evaluating the utility of knowledge-based planning for clinical trials using the TROG 08.03 post prostatectomy radiation therapy planning data. Phys Imaging Radiat Oncol 2022; 22:91-97. [PMID: 35602546 PMCID: PMC9117914 DOI: 10.1016/j.phro.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 10/27/2022] Open
|
30
|
Tsang DS, Tsui G, McIntosh C, Purdie T, Bauman G, Dama H, Laperriere N, Millar BA, Shultz DB, Ahmed S, Khandwala M, Hodgson DC. A pilot study of machine-learning based automated planning for primary brain tumours. Radiat Oncol 2022; 17:3. [PMID: 34991634 PMCID: PMC8734345 DOI: 10.1186/s13014-021-01967-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose High-quality radiotherapy (RT) planning for children and young adults with primary brain tumours is essential to minimize the risk of late treatment effects. The feasibility of using automated machine-learning (ML) to aid RT planning in this population has not previously been studied. Methods and materials We developed a ML model that identifies learned relationships between image features and expected dose in a training set of 95 patients with a primary brain tumour treated with focal radiotherapy to a dose of 54 Gy in 30 fractions. This ML method was then used to create predicted dose distributions for 15 previously-treated brain tumour patients across two institutions, as a testing set. Dosimetry to target volumes and organs-at-risk (OARs) were compared between the clinically-delivered (human-generated) plans versus the ML plans. Results The ML method was able to create deliverable plans in all 15 patients in the testing set. All ML plans were generated within 30 min of initiating planning. Planning target volume coverage with 95% of the prescription dose was attained in all plans. OAR doses were similar across most structures evaluated; mean doses to brain and left temporal lobe were lower in ML plans than manual plans (mean difference to left temporal, – 2.3 Gy, p = 0.006; mean differences to brain, – 1.3 Gy, p = 0.017), whereas mean doses to right cochlea and lenses were higher in ML plans (+ 1.6–2.2 Gy, p < 0.05 for each). Conclusions Use of an automated ML method to aid RT planning for children and young adults with primary brain tumours is dosimetrically feasible and can be successfully used to create high-quality 54 Gy RT plans. Further evaluation after clinical implementation is planned. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01967-3.
Collapse
Affiliation(s)
- Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Grace Tsui
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Chris McIntosh
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Thomas Purdie
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Glenn Bauman
- London Regional Cancer Program, London, ON, Canada
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Barbara-Ann Millar
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - David B Shultz
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Sameera Ahmed
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Mohammad Khandwala
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - David C Hodgson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
31
|
Sheng Y, Zhang J, Ge Y, Li X, Wang W, Stephens H, Yin FF, Wu Q, Wu QJ. Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quant Imaging Med Surg 2021; 11:4859-4880. [PMID: 34888195 PMCID: PMC8611458 DOI: 10.21037/qims-21-208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) refers to methods that improve and automate challenging human tasks by systematically capturing and applying relevant knowledge in these tasks. Over the past decades, a number of approaches have been developed to address different types and needs of system intelligence ranging from search strategies to knowledge representation and inference to robotic planning. In the context of radiation treatment planning, multiple AI approaches may be adopted to improve the planning quality and efficiency. For example, knowledge representation and inference methods may improve dose prescription by integrating and reasoning about the domain knowledge described in many clinical guidelines and clinical trials reports. In this review, we will focus on the most studied AI approach in intensity modulated radiation therapy (IMRT)/volumetric modulated arc therapy (VMAT)-machine learning (ML) and describe our recent efforts in applying ML to improve the quality, consistency, and efficiency of IMRT/VMAT planning. With the available high-quality data, we can build models to accurately predict critical variables for each step of the planning process and thus automate and improve its outcomes. Specific to the IMRT/VMAT planning process, we can build models for each of the four critical components in the process: dose-volume histogram (DVH), Dose, Fluence, and Human Planner. These models can be divided into two general groups. The first group focuses on encoding prior experience and knowledge through ML and more recently deep learning (DL) from prior clinical plans and using these models to predict the optimal DVH (DVH prediction model), or 3D dose distribution (dose prediction model), or fluence map (fluence map model). The goal of these models is to reduce or remove the trial-and-error process and guarantee consistently high-quality plans. The second group of models focuses on mimicking human planners' decision-making process (planning strategy model) during the iterative adjustments/guidance of the optimization engine. Each critical step of the IMRT/VMAT treatment planning process can be improved and automated by AI methods. As more training data becomes available and more sophisticated models are developed, we can expect that the AI methods in treatment planning will continue to improve accuracy, efficiency, and robustness.
Collapse
Affiliation(s)
- Yang Sheng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jiahan Zhang
- Department of Radiation Oncology, Emory University Hospital, Atlanta, GA, USA
| | - Yaorong Ge
- Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Xinyi Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wentao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Hunter Stephens
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Q. Jackie Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
32
|
Xu Y, Brovold N, Cyriac J, Bossart E, Padgett K, Butkus M, Diwanj T, King A, Dal Pra A, Abramowitz M, Pollack A, Dogan N. Assessment of Knowledge-Based Planning for Prostate Intensity Modulated Proton Therapy. Int J Part Ther 2021; 8:62-72. [PMID: 34722812 PMCID: PMC8489488 DOI: 10.14338/ijpt-20-00088.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose To assess the performance of a proton-specific knowledge based planning (KBPP) model in creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of patients with prostate cancer. Materials and Methods Forty-five patients with localized prostate cancer, who had previously been treated with volumetric modulated arc therapy, were selected and replanned with robustly optimized IMPT. A KBPP model was generated from the results of 30 of the patients, and the remaining 15 patient results were used for validation. The KBPP model quality and accuracy were evaluated with the model-provided organ-at-risk regression plots and metrics. The KBPP quality was also assessed through comparison of expert and KBPP-generated IMPT plans for target coverage and organ-at-risk sparing. Results The resulting R 2 (mean ± SD, 0.87 ± 0.07) between dosimetric and geometric features, as well as the χ2 test (1.17 ± 0.07) between the original and estimated data, showed the model had good quality. All the KBPP plans were clinically acceptable. Compared with the expert plans, the KBPP plans had marginally higher dose-volume indices for the rectum V65Gy (0.8% ± 2.94%), but delivered a lower dose to the bladder (-1.06% ± 2.9% for bladder V65Gy). In addition, KBPP plans achieved lower hotspot (-0.67Gy ± 2.17Gy) and lower integral dose (-0.09Gy ± 0.3Gy) than the expert plans did. Moreover, the KBPP generated better plans that demonstrated slightly greater clinical target volume V95 (0.1% ± 0.68%) and lower homogeneity index (-1.13 ± 2.34). Conclusions The results demonstrated that robustly optimized IMPT plans created by the KBPP model are of high quality and are comparable to expert plans. Furthermore, the KBPP model can generate more-robust and more-homogenous plans compared with those of expert plans. More studies need to be done for the validation of the proton KBPP model at more-complicated treatment sites.
Collapse
Affiliation(s)
- Yihang Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nellie Brovold
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Jonathan Cyriac
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Bossart
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kyle Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Butkus
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tejan Diwanj
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adam King
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
33
|
Xu Y, Cyriac J, De Ornelas M, Bossart E, Padgett K, Butkus M, Diwanji T, Samuels S, Samuels MA, Dogan N. Knowledge-Based Planning for Robustly Optimized Intensity-Modulated Proton Therapy of Head and Neck Cancer Patients. Front Oncol 2021; 11:737901. [PMID: 34737954 PMCID: PMC8561780 DOI: 10.3389/fonc.2021.737901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess the performance of a proton-specific knowledge-based planning (KBP) model in the creation of robustly optimized intensity-modulated proton therapy (IMPT) plans for treatment of advanced head and neck (HN) cancer patients. METHODS Seventy-three patients diagnosed with advanced HN cancer previously treated with volumetric modulated arc therapy (VMAT) were selected and replanned with robustly optimized IMPT. A proton-specific KBP model, RapidPlanPT (RPP), was generated using 53 patients (20 unilateral cases and 33 bilateral cases). The remaining 20 patients (10 unilateral and 10 bilateral cases) were used for model validation. The model was validated by comparing the target coverage and organ at risk (OAR) sparing in the RPP-generated IMPT plans with those in the expert plans. To account for the robustness of the plan, all uncertainty scenarios were included in the analysis. RESULTS All the RPP plans generated were clinically acceptable. For unilateral cases, RPP plans had higher CTV_primary V100 (1.59% ± 1.24%) but higher homogeneity index (HI) (0.7 ± 0.73) than had the expert plans. In addition, the RPP plans had better ipsilateral cochlea Dmean (-5.76 ± 6.11 Gy), with marginal to no significant difference between RPP plans and expert plans for all other OAR dosimetric indices. For the bilateral cases, the V100 for all clinical target volumes (CTVs) was higher for the RPP plans than for the expert plans, especially the CTV_primary V100 (5.08% ± 3.02%), with no significant difference in the HI. With respect to OAR sparing, RPP plans had a lower spinal cord Dmax (-5.74 ± 5.72 Gy), lower cochlea Dmean (left, -6.05 ± 4.33 Gy; right, -4.84 ± 4.66 Gy), lower left and right parotid V20Gy (left, -6.45% ± 5.32%; right, -6.92% ± 3.45%), and a lower integral dose (-0.19 ± 0.19 Gy). However, RPP plans increased the Dmax in the body outside of CTV (body-CTV) (1.2 ± 1.43 Gy), indicating a slightly higher hotspot produced by the RPP plans. CONCLUSION IMPT plans generated by a broad-scope RPP model have a quality that is, at minimum, comparable with, and at times superior to, that of the expert plans. The RPP plans demonstrated a greater robustness for CTV coverage and better sparing for several OARs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
34
|
Siciarz P, Alfaifi S, Uytven EV, Rathod S, Koul R, McCurdy B. Machine learning for dose-volume histogram based clinical decision-making support system in radiation therapy plans for brain tumors. Clin Transl Radiat Oncol 2021; 31:50-57. [PMID: 34632117 PMCID: PMC8487981 DOI: 10.1016/j.ctro.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Extraction, analysis, and interpretation of historical treatment planning data is valuable but very time-consuming. Proposed machine learning model classifies radiotherapy plans based on their treatment planning objectives and trade-offs. Application of double nested cross-validation enabled to build a robust model that achieved 94% accuracy on a testing data. Model reasoning investigated with SHAP values showed consistency with clinical observations.
Purpose To create and investigate a novel, clinical decision-support system using machine learning (ML). Methods and Materials The ML model was developed based on 79 radiotherapy plans of brain tumor patients that were prescribed a total dose of 60 Gy delivered with volumetric-modulated arc therapy (VMAT). Structures considered for analysis included planning target volume (PTV), brainstem, cochleae, and optic chiasm. The model aimed to classify the target variable that included class-0 corresponding to plans for which the PTV treatment planning objective was met and class-1 that was associated with plans for which the PTV objective was not met due to the priority trade-off to meet one or more organs-at-risk constraints. Several models were evaluated using double-nested cross-validation and an area-under-the-curve (AUC) metric, with the highest performing one selected for further investigation. The model predictions were explained with Shapely additive explanation (SHAP) interaction values. Results The highest-performing model was Logistic Regression achieving an accuracy of 93.8 ± 4.1% and AUC of 0.98 ± 0.02 on the testing data. The SHAP analysis indicated that the ΔD99% metric for PTV had the greatest influence on the model predictions. The least important feature was ΔDMAX for the left and right cochleae. Conclusions The trained model achieved satisfactory accuracy and can be used by medical physicists in a data-driven quality assurance program as well as by radiation oncologists to support their decision-making process in terms of treatment plan approval and potential plan modifications. Model explanation analysis showed that the model relies on clinically valid logic when making predictions.
Collapse
Affiliation(s)
- Pawel Siciarz
- Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
- Department of Physics and Astronomy, University of Manitoba, Allen Building, Winnipeg, MB R3T 2N2, Canada
- Corresponding author at: Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada.
| | - Salem Alfaifi
- Radiation Oncology Resident, Department of Radiation Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | - Eric Van Uytven
- Radiation Oncology Resident, Department of Radiation Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | - Shrinivas Rathod
- Radiation Oncology Resident, Department of Radiation Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
- Department of Radiology, University of Manitoba, GA216-820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
| | - Rashmi Koul
- Department of Radiology, University of Manitoba, GA216-820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
- Medical Director and Head, Radiation Oncology Program, Department of Radiation Oncology, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | - Boyd McCurdy
- Department of Physics and Astronomy, University of Manitoba, Allen Building, Winnipeg, MB R3T 2N2, Canada
- Department of Radiology, University of Manitoba, GA216-820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
- Head of Radiation Oncology Physics Group, Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
35
|
Visak J, Webster A, Bernard ME, Kudrimoti M, Randall ME, McGarry RC, Pokhrel D. Fast generation of lung SBRT plans with a knowledge-based planning model on ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:54-63. [PMID: 34562308 PMCID: PMC8598154 DOI: 10.1002/acm2.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To demonstrate fast treatment planning feasibility of stereotactic body radiation therapy (SBRT) for centrally located lung tumors on Halcyon Linac via a previously validated knowledge‐based planning (KBP) model to support offline adaptive radiotherapy. Materials/methods Twenty previously treated non‐coplanar volumetric‐modulated arc therapy (VMAT) lung SBRT plans (c‐Truebeam) on SBRT‐dedicated C‐arm Truebeam Linac were selected. Patients received 50 Gy in five fractions. c‐Truebeam plans were re‐optimized for Halcyon manually (m‐Halcyon) and with KBP model (k‐Halcyon). Both m‐Halcyon and k‐Halcyon plans were normalized for identical or better target coverage than clinical c‐Truebeam plans and compared for target conformity, dose heterogeneity, dose fall‐off, and dose tolerances to the organs‐at‐risk (OAR). Treatment delivery parameters and planning times were evaluated. Results k‐Halcyon plans were dosimetrically similar or better than m‐Halcyon and c‐Truebeam plans. k‐Halcyon and m‐Halcyon plan comparisons are presented with respect to c‐Truebeam. Differences in conformity index were statistically insignificant in k‐Halcyon and on average 0.02 higher (p = 0.04) in m‐Halcyon plans. Gradient index was on average 0.43 (p = 0.006) lower and 0.27 (p = 0.02) higher for k‐Halcyon and m‐Halcyon, respectively. Maximal dose 2 cm away in any direction from target was statistically insignificant. k‐Halcyon increased maximal target dose on average by 2.9 Gy (p < 0.001). Mean lung dose was on average reduced by 0.10 Gy (p = 0.004) in k‐Halcyon and increased by 0.14 Gy (p < 0.001) in m‐Halcyon plans. k‐Halcyon plans lowered bronchial tree dose on average by 1.2 Gy. Beam‐on‐time (BOT) was increased by 2.85 and 1.67 min, on average for k‐Halcyon and m‐Halcyon, respectively. k‐Halcyon plans were generated in under 30 min compared to estimated dedicated 180 ± 30 min for m‐Halcyon or c‐Truebeam plan. Conclusion k‐Halcyon plans were generated in under 30 min with excellent plan quality. This adaptable KBP model supports high‐volume clinics in the expansion or transfer of lung SBRT patients to Halcyon.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Webster
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
36
|
Yusufaly TI, Meyers SM, Mell LK, Moore KL. Knowledge-Based Planning for Intact Cervical Cancer. Semin Radiat Oncol 2021; 30:328-339. [PMID: 32828388 DOI: 10.1016/j.semradonc.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cervical cancer radiotherapy is often complicated by significant variability in the quality and consistency of treatment plans. Knowledge-based planning (KBP), which utilizes prior patient data to correlated achievable optimal dosimetry with patient-specific anatomy, has demonstrated promise as a quality control tool for controlling this variability, with consequences for patient outcomes, as well as for the reliability of data from multi-institutional clinical trials. In this article we highlight the application of KBP-based quality control to cervical cancer radiotherapy. We discuss the potential impact of KBP on multi-institutional clinical trials to standardize cervical cancer treatment planning across diverse clinics, and discuss challenges and progress in the implementation of KBP for brachytherapy treatment planning. Additionally, we briefly discuss secondary applications of KBP for cervical cancer. The emerging picture from these studies indicates several exciting opportunities for increasing the utilization of KBP in day-to-day cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Tahir I Yusufaly
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA
| | - Sandra M Meyers
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA.
| |
Collapse
|
37
|
Hardcastle N, Cook O, Ray X, Moore A, Moore KL, Pryor D, Rossi A, Foroudi F, Kron T, Siva S. Personalising treatment plan quality review with knowledge-based planning in the TROG 15.03 trial for stereotactic ablative body radiotherapy in primary kidney cancer. Radiat Oncol 2021; 16:142. [PMID: 34344402 PMCID: PMC8330099 DOI: 10.1186/s13014-021-01820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Quality assurance (QA) of treatment plans in clinical trials improves protocol compliance and patient outcomes. Retrospective use of knowledge-based-planning (KBP) in clinical trials has demonstrated improved treatment plan quality and consistency. We report the results of prospective use of KBP for real-time QA of treatment plan quality in the TROG 15.03 FASTRACK II trial, which evaluates efficacy of stereotactic ablative body radiotherapy (SABR) for kidney cancer. METHODS A KBP model was generated based on single institution data. For each patient in the KBP phase (open to the last 31 patients in the trial), the treating centre submitted treatment plans 7 days prior to treatment. A treatment plan was created by using the KBP model, which was compared with the submitted plan for each organ-at-risk (OAR) dose constraint. A report comparing each plan for each OAR constraint was provided to the submitting centre within 24 h of receiving the plan. The centre could then modify the plan based on the KBP report, or continue with the existing plan. RESULTS Real-time feedback using KBP was provided in 24/31 cases. Consistent plan quality was in general achieved between KBP and the submitted plan. KBP review resulted in replan and improvement of OAR dosimetry in two patients. All centres indicated that the feedback was a useful QA check of their treatment plan. CONCLUSION KBP for real-time treatment plan review was feasible for 24/31 cases, and demonstrated ability to improve treatment plan quality in two cases. Challenges include integration of KBP feedback into clinical timelines, interpretation of KBP results with respect to clinical trade-offs, and determination of appropriate plan quality improvement criteria.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia. .,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia.
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Xenia Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, USA
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, USA
| | - David Pryor
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group, Newcastle, Australia
| | - Farshad Foroudi
- Olivia Newton, John Cancer Centre at Austin Health, Heidelberg, Australia
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia
| | - Shankar Siva
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, Australia.,Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
38
|
Momin S, Fu Y, Lei Y, Roper J, Bradley JD, Curran WJ, Liu T, Yang X. Knowledge-based radiation treatment planning: A data-driven method survey. J Appl Clin Med Phys 2021; 22:16-44. [PMID: 34231970 PMCID: PMC8364264 DOI: 10.1002/acm2.13337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
This paper surveys the data-driven dose prediction methods investigated for knowledge-based planning (KBP) in the last decade. These methods were classified into two major categories-traditional KBP methods and deep-learning (DL) methods-according to their techniques of utilizing previous knowledge. Traditional KBP methods include studies that require geometric or anatomical features to either find the best-matched case(s) from a repository of prior treatment plans or to build dose prediction models. DL methods include studies that train neural networks to make dose predictions. A comprehensive review of each category is presented, highlighting key features, methods, and their advancements over the years. We separated the cited works according to the framework and cancer site in each category. Finally, we briefly discuss the performance of both traditional KBP methods and DL methods, then discuss future trends of both data-driven KBP methods to dose prediction.
Collapse
Affiliation(s)
- Shadab Momin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|
39
|
Kaderka R, Hild SJ, Bry VN, Cornell M, Ray XJ, Murphy JD, Atwood TF, Moore KL. Wide-Scale Clinical Implementation of Knowledge-Based Planning: An Investigation of Workforce Efficiency, Need for Post-automation Refinement, and Data-Driven Model Maintenance. Int J Radiat Oncol Biol Phys 2021; 111:705-715. [PMID: 34217788 DOI: 10.1016/j.ijrobp.2021.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Our purpose was to investigate the effect of automated knowledge-based planning (KBP) on real-world clinical workflow efficiency, assess whether manual refinement of KBP plans improves plan quality across multiple disease sites, and develop a data-driven method to periodically improve KBP automated planning routines. METHODS AND MATERIALS Using clinical knowledge-based automated planning routines for prostate, prostatic fossa, head and neck, and hypofractionated lung disease sites in a commercial KBP solution, workflow efficiency was compared in terms of planning time in a pre-KBP (n = 145 plans) and post-KBP (n = 503) patient cohort. Post-KBP, planning was initialized with KBP (KBP-only) and subsequently manually refined (KBP + human). Differences in planning time were tested for significance using a 2-tailed Mann-Whitney U test (P < .05, null hypothesis: planning time unchanged). Post-refinement plan quality was assessed using site-specific dosimetric parameters of the original KBP-only plan versus KBP + human; 2-tailed paired t test quantified statistical significance (Bonferroni-corrected P < .05, null hypothesis: no dosimetric difference after refinement). If KBP + human significantly improved plans across the cohort, optimization objectives were changed to create an updated KBP routine (KBP'). Patients were replanned with KBP' and plan quality was compared with KBP + human as described previously. RESULTS KBP significantly reduced planning time in all disease sites: prostate (median: 7.6 hrs → 2.1 hrs; P < .001), prostatic fossa (11.1 hrs → 3.7 hrs; P = .001), lung (9.9 hrs → 2.0 hrs; P < .001), and head and neck (12.9 hrs → 3.5 hrs; P <.001). In prostate, prostatic fossa, and lung disease sites, organ-at-risk dose changes in KBP + human versus KBP-only were minimal (<1% prescription dose). In head and neck, KBP + human did achieve clinically relevant dose reductions in some parameters. The head and neck routine was updated (KBP'HN) to incorporate dose improvements from manual refinement. The only significant dosimetric differences to KBP + human after replanning with KBP'HN were in favor of the new routine. CONCLUSIONS KBP increased clinical efficiency by significantly reducing planning time. On average, human refinement offered minimal dose improvements over KBP-only plans. In the single disease site where KBP + human was superior to KBP-only, differences were eliminated by adjusting optimization parameters in a revised KBP routine.
Collapse
Affiliation(s)
- Robert Kaderka
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Sebastian J Hild
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Victoria N Bry
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Mariel Cornell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Xenia J Ray
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - James D Murphy
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Todd F Atwood
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| |
Collapse
|
40
|
Field M, Hardcastle N, Jameson M, Aherne N, Holloway L. Machine learning applications in radiation oncology. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 19:13-24. [PMID: 34307915 PMCID: PMC8295850 DOI: 10.1016/j.phro.2021.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Machine learning technology has a growing impact on radiation oncology with an increasing presence in research and industry. The prevalence of diverse data including 3D imaging and the 3D radiation dose delivery presents potential for future automation and scope for treatment improvements for cancer patients. Harnessing this potential requires standardization of tools and data, and focused collaboration between fields of expertise. The rapid advancement of radiation oncology treatment technologies presents opportunities for machine learning integration with investments targeted towards data quality, data extraction, software, and engagement with clinical expertise. In this review, we provide an overview of machine learning concepts before reviewing advances in applying machine learning to radiation oncology and integrating these techniques into the radiation oncology workflows. Several key areas are outlined in the radiation oncology workflow where machine learning has been applied and where it can have a significant impact in terms of efficiency, consistency in treatment and overall treatment outcomes. This review highlights that machine learning has key early applications in radiation oncology due to the repetitive nature of many tasks that also currently have human review. Standardized data management of routinely collected imaging and radiation dose data are also highlighted as enabling engagement in research utilizing machine learning and the ability integrate these technologies into clinical workflow to benefit patients. Physicists need to be part of the conversation to facilitate this technical integration.
Collapse
Affiliation(s)
- Matthew Field
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Michael Jameson
- GenesisCare, Alexandria, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Australia
| | - Noel Aherne
- Mid North Coast Cancer Institute, NSW, Australia.,Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lois Holloway
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,Cancer Therapy Centre, Liverpool Hospital, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
41
|
Swamidas J, Pradhan S, Chopra S, Panda S, Gupta Y, Sood S, Mohanty S, Jain J, Joshi K, Ph R, Gurram L, Mahantshetty U, Prakash Agarwal J. Development and clinical validation of Knowledge-based planning for Volumetric Modulated Arc Therapy of cervical cancer including pelvic and para aortic fields. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:61-67. [PMID: 34258410 PMCID: PMC8254199 DOI: 10.1016/j.phro.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
A knowledge-based planning model was configured for VMAT of cervical cancer. Knowledge-based plans were comparable, and for some OARs, outperformed clinical plans. Improved organ sparing was observed, when individual patient geometry was considered.
Background and Purpose Knowledge-based planning (KBP) is based on a model to estimate dose-volume histograms, configured using a library of historical treatment plans to efficiently create high quality plans. The aim was to report configuration and validation of KBP for Volumetric Modulated Arc Therapy of cervical cancer. Materials and methods A KBP model was configured from the institutional database (n = 125), including lymph node positive (n = 60) and negative (n = 65) patients. KBP Predicted plans were compared with Clinical Plans (CP) and Re-plans (Predicted plan as a base-plan) to validate the model. Model quality was quantified using coefficient of determination R2, mean square error (MSE), standard two-tailed paired t-test and Wilcoxon signed rank test. Results Estimation capability of the model was good for the bowel bag (MSE = 0.001, R2 = 0.84), modest for the bladder (MSE = 0.008) and poor for the rectum (MSE = 0.02 R2 = 0.78). KBP resulted in comparable target coverage, superior organ sparing as compared to CP. Re-plans outperformed CP for the bladder, V30 (66 ± 11% vs 74 ± 11%, p < .001), V40 (48 ± 14% vs 52 ± 14%, p < .001), however sparing was modest for the bowel bag V30 (413 ± 191cm3 vs 445 ± 208cm3, p = .037) V40 (199 ± 105cm3 vs 218 ± 127cm3, p = .031). All plans were comparable for rectum, while KBP resulted in significant sparing for spinal cord, kidneys and femoral heads. Conclusion KBP yielded comparable and for some organs superior performance compared to CP resulting in conformal and homogeneous target coverage. Improved organ sparing was observed when individual patient geometry was considered.
Collapse
Affiliation(s)
- Jamema Swamidas
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sangram Pradhan
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Supriya Chopra
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Subhajit Panda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Yashna Gupta
- Department of Radiotherapy, All India Institute of Medical Sciences, Rishikesh, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sahil Sood
- Homi Bhabha National Institute, Mumbai, India.,Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Samarpita Mohanty
- Homi Bhabha National Institute, Mumbai, India.,Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jeevanshu Jain
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Kishore Joshi
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Reena Ph
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Lavanya Gurram
- Homi Bhabha National Institute, Mumbai, India.,Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Umesh Mahantshetty
- Homi Bhabha National Institute, Mumbai, India.,Department of Radiation Oncology, Homi Bhabha Cancer Hospital and Research Centre, Vishakapatnam, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jai Prakash Agarwal
- Homi Bhabha National Institute, Mumbai, India.,Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.,Department of Medical Physics, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
42
|
Prospective study of artificial intelligence-based decision support to improve head and neck radiotherapy plan quality. Clin Transl Radiat Oncol 2021; 29:65-70. [PMID: 34159264 PMCID: PMC8196054 DOI: 10.1016/j.ctro.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
H&N radiation treatment plan directives are typically not patient-specific. Patient-specific directives may facilitate the best-achievable dose distribution. Use of an AI-guided tool significantly improved achieved dose for nearly all OARs.
Background and purpose Volumetric modulated arc therapy (VMAT) planning for head and neck cancer is a complex process. While the lowest achievable dose for each individual organ-at-risk (OAR) is unknown a priori, artificial intelligence (AI) holds promise as a tool to accurately estimate the expected dose distribution for OARs. We prospectively investigated the benefits of incorporating an AI-based decision support tool (DST) into the clinical workflow to improve OAR sparing. Materials and methods The DST dose prediction model was based on 276 institutional VMAT plans. Under an IRB-approved prospective trial, the physician first generated a custom OAR directive for 50 consecutive patients (physician directive, PD). The DST then estimated OAR doses (AI directive, AD). For each OAR, the treating physician used the lower directive to form a hybrid directive (HD). The final plan metrics were compared to each directive. A dose difference of 3 Gray (Gy) was considered clinically significant. Results Compared to the AD and PD, the HD reduced OAR dose objectives by more than 3 Gy in 22% to 75% of cases, depending on OAR. The resulting clinical plan typically met these lower constraints and achieved mean dose reductions between 4.3 and 16 Gy over the PD, and 5.6 to 9.1 Gy over the AD alone. Dose metrics achieved using the HD were significantly better than institutional historical plans for most OARs and NRG constraints for all OARs. Conclusions The DST facilitated a significantly improved treatment directive across all OARs for this generalized H&N patient cohort, with neither the AD nor PD alone sufficient to optimally direct planning.
Collapse
|
43
|
Wang M, Gu H, Hu J, Liang J, Xu S, Qi Z. Evaluation of a highly refined prediction model in knowledge-based volumetric modulated arc therapy planning for cervical cancer. Radiat Oncol 2021; 16:58. [PMID: 33752699 PMCID: PMC7983216 DOI: 10.1186/s13014-021-01783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Background and purpose To explore whether a highly refined dose volume histograms (DVH) prediction model can improve the accuracy and reliability of knowledge-based volumetric modulated arc therapy (VMAT) planning for cervical cancer. Methods and materials The proposed model underwent repeated refining through progressive training until the training samples increased from initial 25 prior plans up to 100 cases. The estimated DVHs derived from the prediction models of different runs of training were compared in 35 new cervical cancer patients to analyze the effect of such an interactive plan and model evolution method. The reliability and efficiency of knowledge-based planning (KBP) using this highly refined model in improving the consistency and quality of the VMAT plans were also evaluated. Results The prediction ability was reinforced with the increased number of refinements in terms of normal tissue sparing. With enhanced prediction accuracy, more than 60% of automatic plan-6 (AP-6) plans (22/35) can be directly approved for clinical treatment without any manual revision. The plan quality scores for clinically approved plans (CPs) and manual plans (MPs) were on average 89.02 ± 4.83 and 86.48 ± 3.92 (p < 0.001). Knowledge-based planning significantly reduced the Dmean and V18 Gy for kidney (L/R), the Dmean, V30 Gy, and V40 Gy for bladder, rectum, and femoral head (L/R). Conclusion The proposed model evolution method provides a practical way for the KBP to enhance its prediction ability with minimal human intervene. This highly refined prediction model can better guide KBP in improving the consistency and quality of the VMAT plans.
Collapse
Affiliation(s)
- Mingli Wang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Huikuan Gu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jiang Hu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Jian Liang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Sisi Xu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Zhenyu Qi
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China. .,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China.
| |
Collapse
|
44
|
Olanrewaju A, Court LE, Zhang L, Naidoo K, Burger H, Dalvie S, Wetter J, Parkes J, Trauernicht CJ, McCarroll RE, Cardenas C, Peterson CB, Benson KRK, du Toit M, van Reenen R, Beadle BM. Clinical Acceptability of Automated Radiation Treatment Planning for Head and Neck Cancer Using the Radiation Planning Assistant. Pract Radiat Oncol 2021; 11:177-184. [PMID: 33640315 DOI: 10.1016/j.prro.2020.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Radiation treatment planning for head and neck cancer is a complex process with much variability; automated treatment planning is a promising option to improve plan quality and efficiency. This study compared radiation plans generated from a fully automated radiation treatment planning system to plans generated manually that had been clinically approved and delivered. METHODS AND MATERIALS The study cohort consisted of 50 patients treated by a specialized head and neck cancer team at a tertiary care center. An automated radiation treatment planning system, the Radiation Planning Assistant, was used to create autoplans for all patients using their original, approved contours. Common dose-volume histogram (DVH) criteria were used to compare the quality of autoplans to the clinical plans. Fourteen radiation oncologists, each from a different institution, then reviewed and compared the autoplans and clinical plans in a blinded fashion. RESULTS Autoplans and clinical plans were very similar with regard to DVH metrics for coverage and critical structure constraints. Physician reviewers found both the clinical plans and autoplans acceptable for use; overall, 78% of the clinical plans and 88% of the autoplans were found to be usable as is (without any edits). When asked to choose which plan would be preferred for approval, 27% of physician reviewers selected the clinical plan, 47% selected the autoplan, 25% said both were equivalent, and 0% said neither. Hence, overall, 72% of physician reviewers believed the autoplan or either the clinical or autoplan was preferable. CONCLUSIONS Automated radiation treatment planning creates consistent, clinically acceptable treatment plans that meet DVH criteria and are found to be appropriate on physician review.
Collapse
Affiliation(s)
- Adenike Olanrewaju
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laurence E Court
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lifei Zhang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Komeela Naidoo
- Department of Radiation Oncology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Hester Burger
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Sameera Dalvie
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Julie Wetter
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Jeannette Parkes
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Christoph J Trauernicht
- Department of Radiation Oncology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Rachel E McCarroll
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Cardenas
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine B Peterson
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn R K Benson
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Monique du Toit
- Department of Radiation Oncology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Ricus van Reenen
- Department of Radiation Oncology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Beth M Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
45
|
Hundvin JA, Fjellanger K, Pettersen HES, Nygaard B, Revheim K, Sulen TH, Ekanger C, Hysing LB. Clinical iterative model development improves knowledge-based plan quality for high-risk prostate cancer with four integrated dose levels. Acta Oncol 2021; 60:237-244. [PMID: 33030972 DOI: 10.1080/0284186x.2020.1828619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manual volumetric modulated arc therapy (VMAT) treatment planning for high-risk prostate cancer receiving whole pelvic radiotherapy (WPRT) with four integrated dose levels is complex and time consuming. We have investigated if the radiotherapy planning process and plan quality can be improved using a well-tuned model developed through a commercial system for knowledge-based planning (KBP). MATERIAL AND METHODS Treatment plans from 69 patients treated for high-risk prostate cancer with manually planned VMAT were used to develop an initial KBP model (RapidPlan, RP). Prescribed doses were 50, 60, 67.5, and 72.5 Gy in 25 fractions to the pelvic lymph nodes, prostate and seminal vesicles, prostate gland, and prostate tumour(s), respectively. This RP model was in clinical use from July 2019 to February 2020, producing another set of 69 clinically delivered treatment plans for a new patient group, which were used to develop a second RP model. Both models were validated on an independent group of 40 patients. Plan quality was compared by D 98% and the Paddick conformity index for targets, mean dose (D mean) and generalised equivalent uniform dose (gEUD) for bladder, bowel bag and rectum, and number of monitor units (MU). RESULTS Target coverage and conformity was similar between manually created and RP treatment plans. Compared to the manually created treatment plans, the final RP model reduced average D mean and gEUD with 2.7 Gy and 1.3 Gy for bladder, 1.2 Gy and 0.9 Gy for bowel bag, and 2.7 Gy and 0.8 Gy for rectum, respectively (p < .05). For rectum, the interpatient variation (i.e., 95% confidence interval) of DVHs was reduced by 23%. CONCLUSION KBP improved plan quality and consistency among treatment plans for high-risk prostate cancer. Model tuning using KBP-based clinical plans further improved model outcome.
Collapse
Affiliation(s)
| | - Kristine Fjellanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Britt Nygaard
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Revheim
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Turid Husevåg Sulen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Christian Ekanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv Bolstad Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Ito T, Tamura M, Monzen H, Matsumoto K, Nakamatsu K, Harada T, Fukui T. [Impact of Aperture Shape Controller on Knowledge-based VMAT Planning of Prostate Cancer]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:23-31. [PMID: 33473076 DOI: 10.6009/jjrt.2021_jsrt_77.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Knowledge-based planning (KBP) has disadvantages of high monitor unit (MU) and complex multi-leaf collimator (MLC) motion. We investigated the optimal aperture shape controller (ASC) level for the KBP to reduce these factors in volumetric modulated arc therapy (VMAT) for prostate cancer. METHODS The KBP model was created based on 51 clinical plans (CPs) of patients who underwent the VMAT for prostate cancer. Another 10 CPs were selected randomly, and the KBPs with/without ASC, changed stepwise from very low (KBP-VL) to very high (KBP-VH), were performed with a single auto-optimization. The parameters of dose-volume histograms (DVHs) and MLC performance metrics were evaluated. We obtained the modulation complexity score for VMAT (MCSv), closed leaf score (CLS), small aperture score (SAS), leaf travel (LT), and total MU. RESULTS The ASC did not affect the DVH parameters negatively. The following comparisons of MLC performance were obtained (KBP vs. KBP-VL vs. KBP-VH, respectively): 0.25 vs. 0.27 vs. 0.30 (MCSv), 0.19 vs. 0.18 vs. 0.16 (CLS), 0.50 vs. 0.45 vs. 0.40 (SAS10 mm), 0.73 vs. 0.68 vs. 0.63 (SAS20 mm), 768.35 mm vs. 671.50 mm vs. 551.32 mm (LT), and 672.87 vs. 642.36 vs. 607.59 (MU). There were significant differences between KBP and KBP-VH for MCSv and LT (p<0.05). CONCLUSIONS The KBP using an ASC set to the very high level could reduce the complexity of MLC motion significantly more without deterioration of the DVH parameters compared with the KBP in VMAT for prostate cancer.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| | - Mikoto Tamura
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University
| | - Kenji Matsumoto
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University.,Department of Radiology, Kindai University Hospital
| | - Kiyoshi Nakamatsu
- Department of Radiation Oncology, Faculty of Medicine, Kindai University
| | - Tomoko Harada
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| | - Tatsuya Fukui
- Department of Radiological Technology, Kobe City Nishi-Kobe Medical Center
| |
Collapse
|
47
|
Rago M, Placidi L, Polsoni M, Rambaldi G, Cusumano D, Greco F, Indovina L, Menna S, Placidi E, Stimato G, Teodoli S, Mattiucci GC, Chiesa S, Marazzi F, Masiello V, Valentini V, De Spirito M, Azario L. Evaluation of a generalized knowledge-based planning performance for VMAT irradiation of breast and locoregional lymph nodes-Internal mammary and/or supraclavicular regions. PLoS One 2021; 16:e0245305. [PMID: 33449952 PMCID: PMC7810311 DOI: 10.1371/journal.pone.0245305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To evaluate the performance of eleven Knowledge-Based (KB) models for planning optimization (RapidPlantm (RP), Varian) of Volumetric Modulated Arc Therapy (VMAT) applied to whole breast comprehensive of nodal stations, internal mammary and/or supraclavicular regions. METHODS AND MATERIALS Six RP models have been generated and trained based on 120 VMAT plans data set with different criteria. Two extra-structures were delineated: a PTV for the optimization and a ring structure. Five more models, twins of the previous models, have been created without the need of these structures. RESULTS All models were successfully validated on an independent cohort of 40 patients, 30 from the same institute that provided the training patients and 10 from an additional institute, with the resulting plans being of equal or better quality compared with the clinical plans. The internal validation shows that the models reduce the heart maximum dose of about 2 Gy, the mean dose of about 1 Gy and the V20Gy of 1.5 Gy on average. Model R and L together with model B without optimization structures ensured the best outcomes in the 20% of the values compared to other models. The external validation observed an average improvement of at least 16% for the V5Gy of lungs in RP plans. The mean heart dose and for the V20Gy for lung IPSI were almost halved. The models reduce the maximum dose for the spinal canal of more than 2 Gy on average. CONCLUSIONS All KB models allow a homogeneous plan quality and some dosimetric gains, as we saw in both internal and external validation. Sub-KB models, developed by splitting right and left breast cases or including only whole breast with locoregional lymph nodes, have shown good performances, comparable but slightly worse than the general model. Finally, models generated without the optimization structures, performed better than the original ones.
Collapse
Affiliation(s)
- Maria Rago
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenzo Placidi
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mattia Polsoni
- Fatebenefratelli Isola Tiberina, Ospedale San Giovanni Calibita, Rome, Italy
- Amethyst Radioterapia Italia, Isola Tiberina, Rome, Italy
| | - Giulia Rambaldi
- Fatebenefratelli Isola Tiberina, Ospedale San Giovanni Calibita, Rome, Italy
- Amethyst Radioterapia Italia, Isola Tiberina, Rome, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Greco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sebastiano Menna
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisa Placidi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Stefania Teodoli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Silvia Chiesa
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Marazzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valeria Masiello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vincenzo Valentini
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco De Spirito
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luigi Azario
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
48
|
Hu J, Liu B, Xie W, Zhu J, Yu X, Gu H, Wang M, Wang Y, Qi Z. Quantitative Comparison of Knowledge-Based and Manual Intensity Modulated Radiation Therapy Planning for Nasopharyngeal Carcinoma. Front Oncol 2021; 10:551763. [PMID: 33489869 PMCID: PMC7817947 DOI: 10.3389/fonc.2020.551763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE To validate the feasibility and efficiency of a fully automatic knowledge-based planning (KBP) method for nasopharyngeal carcinoma (NPC) cases, with special attention to the possible way that the success rate of auto-planning can be improved. METHODS AND MATERIALS A knowledge-based dose volume histogram (DVH) prediction model was developed based on 99 formerly treated NPC patients, by means of which the optimization objectives and the corresponding priorities for intensity modulation radiation therapy (IMRT) planning were automatically generated for each head and neck organ at risk (OAR). The automatic KBP method was thus evaluated in 17 new NPC cases with comparison to manual plans (MP) and expert plans (EXP) in terms of target dose coverage, conformity index (CI), homogeneity index (HI), and normal tissue protection. To quantify the plan quality, a metric was applied for plan evaluation. The variation in the plan quality and time consumption among planners was also investigated. RESULTS With comparable target dose distributions, the KBP method achieved a significant dose reduction in critical organs such as the optic chiasm (p<0.001), optic nerve (p=0.021), and temporal lobe (p<0.001), but failed to spare the spinal cord (p<0.001) compared with MPs and EXPs. The overall plan quality evaluation gave mean scores of 144.59±11.48, 142.71±15.18, and 144.82±15.17, respectively, for KBPs, MPs, and EXPs (p=0.259). A total of 15 out of 17 KBPs (i.e., 88.24%) were approved by our physician as clinically acceptable. CONCLUSION The automatic KBP method using the DVH prediction model provided a possible way to generate clinically acceptable plans in a short time for NPC patients.
Collapse
Affiliation(s)
- Jiang Hu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Boji Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Weihao Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinhan Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoli Yu
- Sun Yat-sen Memory Hospital, Guangzhou, China
| | - Huikuan Gu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mingli Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yixuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - ZhenYu Qi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
49
|
Visak J, McGarry RC, Randall ME, Pokhrel D. Development and clinical validation of a robust knowledge-based planning model for stereotactic body radiotherapy treatment of centrally located lung tumors. J Appl Clin Med Phys 2020; 22:146-155. [PMID: 33285034 PMCID: PMC7856508 DOI: 10.1002/acm2.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop a robust and adaptable knowledge-based planning (KBP) model with commercially available RapidPlanTM for early stage, centrally located non-small-cell lung tumors (NSCLC) treated with stereotactic body radiotherapy (SBRT) and improve a patient's"simulation to treatment" time. METHODS The KBP model was trained using 86 clinically treated high-quality non-coplanar volumetric modulated arc therapy (n-VMAT) lung SBRT plans with delivered prescriptions of 50 or 55 Gy in 5 fractions. Another 20 independent clinical n-VMAT plans were used for validation of the model. KBP and n-VMAT plans were compared via Radiation Therapy Oncology Group (RTOG)-0813 protocol compliance criteria for conformity (CI), gradient index (GI), maximal dose 2 cm away from the target in any direction (D2cm), dose to organs-at-risk (OAR), treatment delivery efficiency, and accuracy. KBP plans were re-optimized with larger calculation grid size (CGS) of 2.5 mm to assess feasibility of rapid adaptive re-planning. RESULTS Knowledge-based plans were similar or better than n-VMAT plans based on a range of target coverage and OAR metrics. Planning target volume (PTV) for validation cases was 30.5 ± 19.1 cc (range 7.0-71.7 cc). KBPs provided an average CI of 1.04 ± 0.04 (0.97-1.11) vs. n-VMAT plan'saverage CI of 1.01 ± 0.04 (0.97-1.17) (P < 0.05) with slightly improved GI with KBPs (P < 0.05). D2cm was similar between the KBPs and n-VMAT plans. KBPs provided lower lung V10Gy (P = 0.003), V20Gy (P = 0.007), and mean lung dose (P < 0.001). KBPs had overall better sparing of OAR at the minimal increased of average total monitor units and beam-on time by 460 (P < 0.05) and 19.2 s, respectively. Quality assurance phantom measurement showed similar treatment delivery accuracy. Utilizing a CGS of 2.5 mm in the final optimization improved planning time (mean, 5 min) with minimal or no cost to the plan quality. CONCLUSION The RTOG-compliant adaptable RapidPlan model for early stage SBRT treatment of centrally located lung tumors was developed. All plans met RTOG dosimetric requirements in less than 30 min of planning time, potentially offering shorter "simulation to treatment" times. OAR sparing via KBPs may permit tumorcidal dose escalation with minimal penalties. Same day adaptive re-planning is plausible with a 2.5-mm CGS optimizer setting.
Collapse
Affiliation(s)
- Justin Visak
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Ronald C McGarry
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Marcus E Randall
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| | - Damodar Pokhrel
- Medical Physics Graduate Program, Department of Radiation Medicine, University Kentucky, Lexington, KY, USA
| |
Collapse
|
50
|
Shepherd M, Bromley R, Stevens M, Morgia M, Kneebone A, Hruby G, Atyeo J, Eade T. Developing knowledge-based planning for gynaecological and rectal cancers: a clinical validation of RapidPlan ™. J Med Radiat Sci 2020; 67:217-224. [PMID: 32450610 PMCID: PMC7476182 DOI: 10.1002/jmrs.396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION To create and clinically validate knowledge-based planning (KBP) models for gynaecologic (GYN) and rectal cancer patients. Assessment of ecologic generalisability and predictive validity of conventional planning versus single calculation KBP was reviewed against practical metrics of planning time (PT) and radiation oncologist plan preference. METHOD Study cohorts were 34 and 42 consecutively treated GYN and rectal cancer patients dosimetrically archived within the centre's research databank. For model training, structures and dose distributions from 22 and 32 GYN and rectal volumetric-modulated arc therapy (VMAT) plans were used in RapidPlan™. Prescription doses ranged from 45 to 60Gy in 25 fractions using a simultaneous integrated boost to 2-4 targets and up to 9 organ-at-risk volumes. For model validation, 12 GYN and 10 rectal were independent of the archive and a single pass KBP VMAT plan was created. Each plan was evaluated against the archived treated plan under blinded conditions for radiation oncologist preference using standard dosimetric quality parameters. RESULTS All 22 plans generated in the KBP validation cohort met pre-set GYN and rectal cancer dosimetric quality metrics. Fifty per cent of GYN plans and eighty per cent of rectal plans were judged superior to the manually optimised plans. KBP reduced PT considerably for both tumour sites. CONCLUSION Single pass KBP for GYN and rectal cancer patients produced clinically acceptable treatment plans which were non-inferior to conventionally optimised plans in 14 of 22 cases. Efficiencies captured by KBP will have predictable impacts on institutional workflows and resource allocation to facilitate adaptive planning.
Collapse
Affiliation(s)
- Meegan Shepherd
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
| | - Regina Bromley
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
| | - Mark Stevens
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
| | - Marita Morgia
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
| | - Andrew Kneebone
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyAustralia
| | - George Hruby
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyAustralia
| | - John Atyeo
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
| | - Thomas Eade
- Department of Radiation OncologyNorthern Sydney Cancer CentreRoyal North Shore HospitalReserve Road, St LeonardsNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyAustralia
| |
Collapse
|