1
|
De Pietro S, Di Martino G, Caroprese M, Barillaro A, Cocozza S, Pacelli R, Cuocolo R, Ugga L, Briganti F, Brunetti A, Conson M, Elefante A. The role of MRI in radiotherapy planning: a narrative review "from head to toe". Insights Imaging 2024; 15:255. [PMID: 39441404 PMCID: PMC11499544 DOI: 10.1186/s13244-024-01799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Over the last few years, radiation therapy (RT) techniques have evolved very rapidly, with the aim of conforming high-dose volume tightly to a target. Although to date CT is still considered the imaging modality for target delineation, it has some known limited capabilities in properly identifying pathologic processes occurring, for instance, in soft tissues. This limitation, along with other advantages such as dose reduction, can be overcome using magnetic resonance imaging (MRI), which is increasingly being recognized as a useful tool in RT clinical practice. This review has a two-fold aim of providing a basic introduction to the physics of MRI in a narrative way and illustrating the current knowledge on its application "from head to toe" (i.e., different body sites), in order to highlight the numerous advantages in using MRI to ensure the best therapeutic response. We provided a basic introduction for residents and non-radiologist on the physics of MR and reported evidence of the advantages and future improvements of MRI in planning a tailored radiotherapy treatment "from head to toe". CRITICAL RELEVANCE STATEMENT: This review aims to help understand how MRI has become indispensable, not only to better characterize and evaluate lesions, but also to predict the evolution of the disease and, consequently, to ensure the best therapeutic response. KEY POINTS: MRI is increasingly gaining interest and applications in RT planning. MRI provides high soft tissue contrast resolution and accurate delineation of the target volume. MRI will increasingly become indispensable for characterizing and evaluating lesions, and to predict the evolution of disease.
Collapse
Affiliation(s)
- Simona De Pietro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Di Martino
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Angela Barillaro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Andrea Elefante
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Xia ZY, Zhang SH, Sun JX, Wang SG, Xia QD. Trends in focal therapy for localized prostate cancer: a bibliometric analysis from 2014 to 2023. Discov Oncol 2024; 15:472. [PMID: 39331332 PMCID: PMC11436610 DOI: 10.1007/s12672-024-01387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024] Open
Abstract
Focal therapy, a minimally invasive strategy for localized prostate cancer, has been widely employed in the targeted treatment of localized prostate cancer in recent years. We analyzed 1312 relevant papers from the last decade using Web of Science Core Collection data. Our analysis covered countries, institutions, journals, authors, keywords, and references to offer a multifaceted perspective on the development of this field. The U.S. led in publications, contributing over half of the top 10 institutions. Emberton, M from University College London was the most published and cited author. "EUROPEAN UROLOGY" was the top journal by impact factor in 2022. Analysis of references and keywords suggests the prevalence of brachytherapy-related research, while high-intensity focused ultrasound (HIFU), cryotherapy, and irreversible electroporation (IRE) are emerging as new research focuses. Consequently, more high-quality evidence is necessary to evaluate the long-term effectiveness and safety of these novel therapeutic methods.
Collapse
Affiliation(s)
- Zhi-Yu Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Nugent K, Das P, Ford D, Sabharwal A, Perna C, Dallas N, Lester J, Camilleri P. Stereotactic Magnetic Resonance-Guided Daily Adaptive Radiation Therapy for Localized Prostate Cancer: Acute and Late Patient-Reported Toxicity Outcomes. Adv Radiat Oncol 2024; 9:101574. [PMID: 39224488 PMCID: PMC11367053 DOI: 10.1016/j.adro.2024.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To report acute and late bowel, urinary, and sexual dysfunction patient-reported outcome measures, among patients with localized prostate cancer who underwent stereotactic magnetic resonance-guided daily adaptive radiation therapy (SMART). Methods and Materials All patients who completed a baseline 12-item Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events questionnaire, before undergoing SMART with 36.25 Gy in 5 fractions, were subsequently followed up with the same graded questionnaire at set time points. Latest prostate-specific antigen levels were recorded. The percentage of patients who reported no change from their baseline adverse event (AE) or reported a new ≥ "frequent or almost constant" or "severe grade or higher" AE grade during follow-up was calculated. The maximum 12-item Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events grade for each item was recorded for each patient. The percentage of toxicity levels for each separate AE item at set time points was calculated. Results The total number of patients was 69 with a median follow-up of 27 months. Median age of the cohort was 73 years (range, 54-85 years). The median pretreatment prostate-specific antigen level, T stage, and Gleason score were 7.5 mmol/L (range, 4.5-32 mmol/L), T2b (range, T2-T3b), and 7 (3 + 4; range, 6-9), respectively. No patient had biochemical failure during follow-up. Regarding bowel symptoms, >80% of men reported no change from baseline toxicity during follow-up. New ≥ frequent or almost constant diarrhea was reported in 9% of patients. "Almost constant" diarrhea peaked at 1 month but was absent at >33 months. Regarding urinary symptoms, increased urinary urgency was the most common complaint (39%). Twenty percent of men reported new ≥ frequent or almost constant urinary urgency incidence peaking at 1 month but absent at >33 months. New "severe" sexual dysfunction was seen in 26% of patients and was persistent at >33 months. Conclusions Our study is one the largest patient-reported outcomes study after prostate SMART. It shows acceptable levels of toxicity even up to 2 years after treatment.
Collapse
Affiliation(s)
- Killian Nugent
- GenesisCare UK, Oxford, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | | | - Dan Ford
- GenesisCare UK, Oxford, United Kingdom
| | | | | | | | | | - Philip Camilleri
- GenesisCare UK, Oxford, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
4
|
Webster M, Dona Lemus OM, Tanny S, Cummings M, Zheng D. Cone-Beam Computed Tomography (CBCT)-Based Online Adaptive Radiation Therapy (oART) for a Prostate Cancer Patient With Inflammatory Bowel Disease and Bilateral Total Hip Arthroplasty: A Case Report. Cureus 2024; 16:e68990. [PMID: 39385924 PMCID: PMC11463887 DOI: 10.7759/cureus.68990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/12/2024] Open
Abstract
This case report addresses the complex management of a patient with concurrent prostate cancer, inflammatory bowel disease (IBD), and bilateral total hip arthroplasty, and demonstrates the efficacy of cone-beam computed tomography (CBCT)-guided daily online adaptive radiation therapy (oART) and advanced imaging techniques in overcoming significant treatment challenges. A 68-year-old male with a history of ulcerative colitis and bilateral hip prostheses was diagnosed with high-risk prostate cancer. Conventional radiation therapy modalities, including external beam radiation therapy (EBRT), proton therapy, and magnetic resonance imaging (MRI)-based oART, faced limitations because of the patient's comorbidities and metallic implants. Daily oART, using the Ethos platform (Varian Medical Systems, Palo Alto, CA, USA) with HyperSight™ metal artifact reduction (MAR) imaging, was employed to enhance treatment efficacy. The daily oART treatment on the Ethos platform facilitated the successful delivery of a therapeutic dose while sparing healthy tissues, and the treatment was successful without an IBD flare-up. Daily oART also optimized the target dose while best sparing the critical organs based on the patient's daily anatomy. The HyperSight MAR algorithm significantly reduced imaging artifacts caused by the hip prostheses, enabling accurate identification of the prostate, bladder, and surrounding organs. The oART workflow was delivered without technical challenges, with a total session time of 20 to 30 minutes, similar to our typical prostate patients without hip implants. Despite the complex anatomy and comorbid conditions, the treatment plan met all organ-at-risk constraints and delivered the prescribed dose to the target volumes. Ethos oART with HyperSight provided an effective solution for treating a patient with concurrent prostate cancer, IBD, and bilateral hip arthroplasty. The patient's case was successfully treated without complications, despite such challenging clinical and technical scenarios.
Collapse
Affiliation(s)
| | | | - Sean Tanny
- Radiation Oncology, University of Rochester, Rochester, USA
| | | | - Dandan Zheng
- Radiation Oncology, University of Rochester, Rochester, USA
| |
Collapse
|
5
|
Tsekas G, Zachiu C, Bol GH, van den Dobbelsteen M, Meijers LT, van Lier AL, de Boer JC, Raaymakers BW. Investigating the use of comprehensive motion monitoring for intrafraction 3D drift assessment of hypofractionated prostate cancer patients on a 1.5T magnetic resonance imaging radiotherapy system. Phys Imaging Radiat Oncol 2024; 31:100596. [PMID: 39104731 PMCID: PMC11298924 DOI: 10.1016/j.phro.2024.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
This work investigates the use of a multi-2D cine magnetic resonance imaging-based comprehensive motion monitoring (CMM) system for the assessment of prostate intrafraction 3D drifts. The data of six healthy volunteers were analyzed and the values of a clinically-relevant registration quality factor metric exported by CMM were presented. Additionally, the CMM-derived prostate motion was compared to a 3D-based reference and the 2D-3D tracking agreement was reported. Due to the low quality of SI motion tracking (often > 2 mm tracking mismatch between anatomical planes) we conclude that further improvements are desirable prior to clinical introduction of CMM for prostate drift corrections.
Collapse
Affiliation(s)
- Georgios Tsekas
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Gijsbert H. Bol
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Madelon van den Dobbelsteen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lieke T.C. Meijers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Astrid L.H.M.W. van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Johannes C.J. de Boer
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Wang H, Yang J, Lee A, Phan J, Lim TY, Fuller CD, Han EY, Rhee DJ, Salzillo T, Zhao Y, Chopra N, Pham M, Castillo P, Sobremonte A, Moreno AC, Reddy JP, Rosenthal D, Garden AS, Wang X. MR-guided stereotactic radiation therapy for head and neck cancers. Clin Transl Radiat Oncol 2024; 46:100760. [PMID: 38510980 PMCID: PMC10950743 DOI: 10.1016/j.ctro.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose MR-guided radiotherapy (MRgRT) has the advantage of utilizing high soft tissue contrast imaging to track daily changes in target and critical organs throughout the entire radiation treatment course. Head and neck (HN) stereotactic body radiation therapy (SBRT) has been increasingly used to treat localized lesions within a shorter timeframe. The purpose of this study is to examine the dosimetric difference between the step-and-shot intensity modulated radiation therapy (IMRT) plans on Elekta Unity and our clinical volumetric modulated arc therapy (VMAT) plans on Varian TrueBeam for HN SBRT. Method Fourteen patients treated on TrueBeam sTx with VMAT treatment plans were re-planned in the Monaco treatment planning system for Elekta Unity MR-Linac (MRL). The plan qualities, including target coverage, conformity, homogeneity, nearby critical organ doses, gradient index and low dose bath volume, were compared between VMAT and Monaco IMRT plans. Additionally, we evaluated the Unity adaptive plans of adapt-to-position (ATP) and adapt-to-shape (ATS) workflows using simulated setup errors for five patients and assessed the outcomes of our treated patients. Results Monaco IMRT plans achieved comparable results to VMAT plans in terms of target coverage, uniformity and homogeneity, with slightly higher target maximum and mean doses. The critical organ doses in Monaco IMRT plans all met clinical goals; however, the mean doses and low dose bath volumes were higher than in VMAT plans. The adaptive plans demonstrated that the ATP workflow may result in degraded target coverage and OAR doses for HN SBRT, while the ATS workflow can maintain the plan quality. Conclusion The use of Monaco treatment planning and online adaptation can achieve dosimetric results comparable to VMAT plans, with the additional benefits of real-time tracking of target volume and nearby critical structures. This offers the potential to treat aggressive and variable tumors in HN SBRT and improve local control and treatment toxicity.
Collapse
Affiliation(s)
- He Wang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhong Yang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Lee
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jack Phan
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Tze Yee Lim
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Eun Young Han
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Joo Rhee
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Travis Salzillo
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Zhao
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Nitish Chopra
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Pham
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Pam Castillo
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Sobremonte
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jay P. Reddy
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David Rosenthal
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S. Garden
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Wang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Sritharan K, Daamen L, Pathmanathan A, Schytte T, Pos F, Choudhury A, van der Voort van Zyp JR, Kerkmeijer LG, Hall W, Hall E, Verkooijen HM, Herbert T, Hafeez S, Mitchell A, Tree AC. MRI-guided radiotherapy in twenty fractions for localised prostate cancer; results from the MOMENTUM study. Clin Transl Radiat Oncol 2024; 46:100742. [PMID: 38440792 PMCID: PMC10909700 DOI: 10.1016/j.ctro.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024] Open
Abstract
Background and purpose MRI-guided radiotherapy (MRIgRT) offers multiple potential advantages over CT-guidance. This study examines the potential clinical benefits of MRIgRT for men with localised prostate cancer, in the setting of moderately hypofractionated radiotherapy. We evaluate two-year toxicity outcomes, early biochemical response and patient-reported outcomes (PRO), using data obtained from a multicentre international registry study, for the first group of patients with prostate cancer who underwent treatment on a 1.5 T MR-Linac. Materials and methods Patients who were enrolled within the MOMENTUM study and received radical treatment with 60 Gy in 20 fractions were identified. PSA levels and CTCAE version 5.0 toxicity data were measured at follow-up visits. Those patients who consented to PRO data collection also completed EQ-5D-5L, EORTC QLQ-C30 and EORTC QLQ-PR25 questionnaires. Results Between November 2018 and June 2022, 146 patients who had MRIgRT for localised prostate cancer on the 1.5 T MR-Linac were eligible for this study. Grade 2 and worse gastro-intestinal (GI) toxicity was reported in 3 % of patients at three months whilst grade 2 and worse genitourinary (GU) toxicity was 7 % at three months. There was a significant decrease in the median PSA at 12 months. The results from both the EQ-5D-5L data and EORTC global health status scale indicate a decline in the quality of life (QoL) during the first six months. The mean change in score for the EORTC scale showed a decrease of 11.4 points, which is considered clinically important. QoL improved back to baseline by 24 months. Worsening of hormonal symptoms in the first six months was reported with a return to baseline by 24 months and sexual activity in all men worsened in the first three months and returned to baseline at 12 months. Conclusion This study establishes the feasibility of online-MRIgRT for localised prostate on a 1.5 T MR-Linac with low rates of toxicity, similar to that published in the literature. However, the clinical benefits of MRIgRT over conventional radiotherapy in the setting of moderate hypofractionation is not evident. Further research will focus on the delivery of ultrahypofractionated regimens, where the potential advantages of MRIgRT for prostate cancer may become more discernible.
Collapse
Affiliation(s)
- Kobika Sritharan
- The Royal Marsden NHS Foundation Trust, UK
- The Institute of Cancer Research, UK
| | - Lois Daamen
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Floris Pos
- The Netherlands Cancer Institute, The Netherlands
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester and The Christie NHS Foundation Trust, UK
| | | | | | | | - Emma Hall
- The Institute of Cancer Research, UK
| | - Helena M. Verkooijen
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Adam Mitchell
- The Royal Marsden NHS Foundation Trust, UK
- The Institute of Cancer Research, UK
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust, UK
- The Institute of Cancer Research, UK
| |
Collapse
|
8
|
de Mol van Otterloo S, Westerhoff J, Leer T, Rutgers R, Meijers L, Daamen L, Intven M, Verkooijen H. Patient expectation and experience of MR-guided radiotherapy using a 1.5T MR-Linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100224. [PMID: 38162695 PMCID: PMC10755768 DOI: 10.1016/j.tipsro.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Purpose Online adaptive MR-guided radiotherapy (MRgRT) is a relatively new form of radiotherapy treatment, delivered using a MR-Linac. It is unknown what patients expect from this treatment and whether these expectations are met. This study evaluates whether patients' pre-treatment expectations of MRgRT are met and reports patients' on-table experience on a 1.5 T MR-Linac. Materials and methods All patients treated on the MR-Linac from November 2020 until April 2021, were eligible for inclusion. Patient expectation and experience were captured through questionnaires before, during, and three months after treatment. The on-table experience questionnaire included patient' physical and psychological coping. Patient-expected side effects, participation in daily and social activity, disease outcome and, disease related symptoms were compared to post-treatment experience. Results We included 113 patients who were primarily male (n = 100, 89 %), with a median age of 69 years (range 52-90). For on-table experience, ninety percent of patients (strongly) agreed to feeling calm during their treatment. Six and eight percent of patients found the treatment position or bed uncomfortable respectively. Twenty-eight percent of patients felt tingling sensations during treatment. After treatment, 79 % of patients' expectations were met. Most patients experienced an (better than) expected level of side effects (75 %), participation in daily- (83 %) and social activity (86 %) and symptoms (78 %). However, 33 % expected more treatment efficacy than experienced. Conclusion Treatment on the 1.5 T MR-Linac is well tolerated and meets patient expectations. Despite the fact that some patients expected greater treatment efficacy and the frequent occurrence of tingling sensations during treatment, most patient experiences were comparable or better than previously expected.
Collapse
Affiliation(s)
- S.R. de Mol van Otterloo
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - J.M. Westerhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - T. Leer
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - R.H.A. Rutgers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.T.C. Meijers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.A. Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - M.P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - H.M. Verkooijen
- Division of Imaging, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
9
|
Oar B, Brown A, Newman G, Boles A, Rumley CN, Doyle R, Baines J, Tan A. Improvement in male pelvis magnetic resonance image contouring following radiologist-delivered training. J Med Radiat Sci 2024; 71:114-122. [PMID: 37740640 PMCID: PMC10920942 DOI: 10.1002/jmrs.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
INTRODUCTION The magnetic resonance linear accelerator (MRL) combines both magnetic resonance imaging and a linear accelerator, allowing for daily treatment adaptation. This study aimed to assess the impact of radiologist-delivered training in magnetic resonance (MR) contouring of relevant structures within the male pelvis. METHODS Two radiation oncologists, two radiation oncology registrars and seven radiation therapists completed contouring on 10 male pelvis MR datasets both pre- and post-training. A 2-hour MR anatomy training session was delivered by a radiologist, who also provided the 'gold standard' contours. The pre- and post-training contours were compared against the gold standard with Dice similarity coefficient (DSC) and Hausdorff distances calculated; and the pre- and post-confidence scores and timing were compared. RESULTS The improvement in DSC were significant in prostate, rectum and seminal vesicles, with a post-training median DSC of 0.87 ± 0.06, 0.92 ± 0.04 and 0.80 ± 0.14, respectively. The median Hausdorff improved with a median of 1.46 ± 0.78 mm, 0.52 ± 0.32 mm and 1.11 ± 0.86 mm for prostate, rectum and seminal vesicles, respectively. Bladder concordance was high both pre- and post-training. Urethra contours improved post-training, however, remained difficult to contour with a median post-DSC of 0.51 ± 0.24. Overall, confidence scoring improved (P < 0.001) and timing decreased by an average of 4.4 ± 16.4 min post-training. CONCLUSION Radiologist-delivered training improved concordance of male pelvis contouring on MR datasets. Further work is required in the identification of urethra on MRs. These findings are of importance in the MRL adaptive workflow.
Collapse
Affiliation(s)
- Bronwyn Oar
- Townsville University HospitalTownsvilleQueenslandAustralia
| | - Amy Brown
- Townsville University HospitalTownsvilleQueenslandAustralia
- Queensland University of TechnologyBrisbaneQueenslandAustralia
- James Cook UniversityTownsvilleQueenslandAustralia
| | - Glen Newman
- Townsville University HospitalTownsvilleQueenslandAustralia
| | - Alan Boles
- Queensland XRayTownsvilleQueenslandAustralia
| | - Christopher N. Rumley
- Townsville University HospitalTownsvilleQueenslandAustralia
- James Cook UniversityTownsvilleQueenslandAustralia
| | - Rachel Doyle
- Townsville University HospitalTownsvilleQueenslandAustralia
| | - John Baines
- Townsville University HospitalTownsvilleQueenslandAustralia
- James Cook UniversityTownsvilleQueenslandAustralia
| | - Alex Tan
- Townsville University HospitalTownsvilleQueenslandAustralia
- James Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
10
|
Xiong Y, Rabe M, Rippke C, Kawula M, Nierer L, Klüter S, Belka C, Niyazi M, Hörner-Rieber J, Corradini S, Landry G, Kurz C. Impact of daily plan adaptation on accumulated doses in ultra-hypofractionated magnetic resonance-guided radiation therapy of prostate cancer. Phys Imaging Radiat Oncol 2024; 29:100562. [PMID: 38463219 PMCID: PMC10924058 DOI: 10.1016/j.phro.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background and purpose Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.
Collapse
Affiliation(s)
- Yuqing Xiong
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Kawula
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lukas Nierer
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner site Munich, a Partnership between DKFZ and LMU University Hospital Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Singhrao K, Dugan CL, Calvin C, Pelayo L, Yom SS, Chan JW, Scholey JE, Singer L. Evaluating the Hounsfield unit assignment and dose differences between CT-based standard and deep learning-based synthetic CT images for MRI-only radiation therapy of the head and neck. J Appl Clin Med Phys 2024; 25:e14239. [PMID: 38128040 PMCID: PMC10795453 DOI: 10.1002/acm2.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Magnetic resonance image only (MRI-only) simulation for head and neck (H&N) radiotherapy (RT) could allow for single-image modality planning with excellent soft tissue contrast. In the MRI-only simulation workflow, synthetic computed tomography (sCT) is generated from MRI to provide electron density information for dose calculation. Bone/air regions produce little MRI signal which could lead to electron density misclassification in sCT. Establishing the dosimetric impact of this error could inform quality assurance (QA) procedures using MRI-only RT planning or compensatory methods for accurate dosimetric calculation. PURPOSE The aim of this study was to investigate if Hounsfield unit (HU) voxel misassignments from sCT images result in dosimetric errors in clinical treatment plans. METHODS Fourteen H&N cancer patients undergoing same-day CT and 3T MRI simulation were retrospectively identified. MRI was deformed to the CT using multimodal deformable image registration. sCTs were generated from T1w DIXON MRIs using a commercially available deep learning-based generator (MRIplanner, Spectronic Medical AB, Helsingborg, Sweden). Tissue voxel assignment was quantified by creating a CT-derived HU threshold contour. CT/sCT HU differences for anatomical/target contours and tissue classification regions including air (<250 HU), adipose tissue (-250 HU to -51 HU), soft tissue (-50 HU to 199 HU), spongy (200 HU to 499 HU) and cortical bone (>500 HU) were quantified. t-test was used to determine if sCT/CT HU differences were significant. The frequency of structures that had a HU difference > 80 HU (the CT window-width setting for intra-cranial structures) was computed to establish structure classification accuracy. Clinical intensity modulated radiation therapy (IMRT) treatment plans created on CT were retrospectively recalculated on sCT images and compared using the gamma metric. RESULTS The mean ratio of sCT HUs relative to CT for air, adipose tissue, soft tissue, spongy and cortical bone were 1.7 ± 0.3, 1.1 ± 0.1, 1.0 ± 0.1, 0.9 ± 0.1 and 0.8 ± 0.1 (value of 1 indicates perfect agreement). T-tests (significance set at t = 0.05) identified differences in HU values for air, spongy and cortical bone in sCT images compared to CT. The structures with sCT/CT HU differences > 80 HU of note were the left and right (L/R) cochlea and mandible (>79% of the tested cohort), the oral cavity (for 57% of the tested cohort), the epiglottis (for 43% of the tested cohort) and the L/R TM joints (occurring > 29% of the cohort). In the case of the cochlea and TM joints, these structures contain dense bone/air interfaces. In the case of the oral cavity and mandible, these structures suffer the additional challenge of being positionally altered in CT versus MRI simulation (due to a non-MR safe immobilizing bite block requiring absence of bite block in MR). Finally, the epiglottis HU assignment suffers from its small size and unstable positionality. Plans recalculated on sCT yielded global/local gamma pass rates of 95.5% ± 2% (3 mm, 3%) and 92.7% ± 2.1% (2 mm, 2%). The largest mean differences in D95, Dmean , D50 dose volume histogram (DVH) metrics for organ-at-risk (OAR) and planning tumor volumes (PTVs) were 2.3% ± 3.0% and 0.7% ± 1.9% respectively. CONCLUSIONS In this cohort, HU differences of CT and sCT were observed but did not translate into a reduction in gamma pass rates or differences in average PTV/OAR dose metrics greater than 3%. For sites such as the H&N where there are many tissue interfaces we did not observe large scale dose deviations but further studies using larger retrospective cohorts are merited to establish the variation in sCT dosimetric accuracy which could help to inform QA limits on clinical sCT usage.
Collapse
Affiliation(s)
- Kamal Singhrao
- Department of Radiation OncologyBrigham and Women's Hospital, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Catherine Lu Dugan
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Christina Calvin
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Luis Pelayo
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sue Sun Yom
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jason Wing‐Hong Chan
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Lisa Singer
- Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
12
|
Thomas C, Dregely I, Oksuz I, Guerrero Urbano T, Greener T, King AP, Barrington SF. Effect of synthetic CT on dose-derived toxicity predictors for MR-only prostate radiotherapy. BJR Open 2024; 6:tzae014. [PMID: 38948455 PMCID: PMC11213647 DOI: 10.1093/bjro/tzae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/09/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Toxicity-driven adaptive radiotherapy (RT) is enhanced by the superior soft tissue contrast of magnetic resonance (MR) imaging compared with conventional computed tomography (CT). However, in an MR-only RT pathway synthetic CTs (sCT) are required for dose calculation. This study evaluates 3 sCT approaches for accurate rectal toxicity prediction in prostate RT. Methods Thirty-six patients had MR (T2-weighted acquisition optimized for anatomical delineation, and T1-Dixon) with same day standard-of-care planning CT for prostate RT. Multiple sCT were created per patient using bulk density (BD), tissue stratification (TS, from T1-Dixon) and deep-learning (DL) artificial intelligence (AI) (from T2-weighted) approaches for dose distribution calculation and creation of rectal dose volume histograms (DVH) and dose surface maps (DSM) to assess grade-2 (G2) rectal bleeding risk. Results Maximum absolute errors using sCT for DVH-based G2 rectal bleeding risk (risk range 1.6% to 6.1%) were 0.6% (BD), 0.3% (TS) and 0.1% (DL). DSM-derived risk prediction errors followed a similar pattern. DL sCT has voxel-wise density generated from T2-weighted MR and improved accuracy for both risk-prediction methods. Conclusions DL improves dosimetric and predicted risk calculation accuracy. Both TS and DL methods are clinically suitable for sCT generation in toxicity-guided RT, however, DL offers increased accuracy and offers efficiencies by removing the need for T1-Dixon MR. Advances in knowledge This study demonstrates novel insights regarding the effect of sCT on predictive toxicity metrics, demonstrating clear accuracy improvement with increased sCT resolution. Accuracy of toxicity calculation in MR-only RT should be assessed for all treatment sites where dose to critical structures will guide adaptive-RT strategies. Clinical trial registration number Patient data were taken from an ethically approved (UK Health Research Authority) clinical trial run at Guy's and St Thomas' NHS Foundation Trust. Study Name: MR-simulation in Radiotherapy for Prostate Cancer. ClinicalTrials.gov Identifier: NCT03238170.
Collapse
Affiliation(s)
- Christopher Thomas
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Medical Physics Department, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Isabel Dregely
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Computer Science, UAS Technikum Wien, 1200 Vienna, Austria
| | - Ilkay Oksuz
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Computer Engineering Department, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Teresa Guerrero Urbano
- Clinical Oncology, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Tony Greener
- Medical Physics Department, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Andrew P King
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
| | - Sally F Barrington
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, SE17EH London, United Kingdom
| |
Collapse
|
13
|
Rusu DN, Cunningham JM, Arch JV, Chetty IJ, Parikh PJ, Dolan JL. Impact of intrafraction motion in pancreatic cancer treatments with MR-guided adaptive radiation therapy. Front Oncol 2023; 13:1298099. [PMID: 38162503 PMCID: PMC10756668 DOI: 10.3389/fonc.2023.1298099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose The total time of radiation treatment delivery for pancreatic cancer patients with daily online adaptive radiation therapy (ART) on an MR-Linac can range from 50 to 90 min. During this period, the target and normal tissues undergo changes due to respiration and physiologic organ motion. We evaluated the dosimetric impact of the intrafraction physiological organ changes. Methods Ten locally advanced pancreatic cancer patients were treated with 50 Gy in five fractions with intensity-modulated respiratory-gated radiation therapy on a 0.35-T MR-Linac. Patients received both pre- and post-treatment volumetric MRIs for each fraction. Gastrointestinal organs at risk (GI-OARs) were delineated on the pre-treatment MRI during the online ART process and retrospectively on the post-treatment MRI. The treated dose distribution for each adaptive plan was assessed on the post-treatment anatomy. Prescribed dose volume histogram metrics for the scheduled plan on the pre-treatment anatomy, the adapted plan on the pre-treatment anatomy, and the adapted plan on post-treatment anatomy were compared to the OAR-defined criteria for adaptation: the volume of the GI-OAR receiving greater than 33 Gy (V33Gy) should be ≤1 cubic centimeter. Results Across the 50 adapted plans for the 10 patients studied, 70% were adapted to meet the duodenum constraint, 74% for the stomach, 12% for the colon, and 48% for the small bowel. Owing to intrafraction organ motion, at the time of post-treatment imaging, the adaptive criteria were exceeded for the duodenum in 62% of fractions, the stomach in 36%, the colon in 10%, and the small bowel in 48%. Compared to the scheduled plan, the post-treatment plans showed a decrease in the V33Gy, demonstrating the benefit of plan adaptation for 66% of the fractions for the duodenum, 95% for the stomach, 100% for the colon, and 79% for the small bowel. Conclusion Post-treatment images demonstrated that over the course of the adaptive plan generation and delivery, the GI-OARs moved from their isotoxic low-dose region and nearer to the dose-escalated high-dose region, exceeding dose-volume constraints. Intrafraction motion can have a significant dosimetric impact; therefore, measures to mitigate this motion are needed. Despite consistent intrafraction motion, plan adaptation still provides a dosimetric benefit.
Collapse
Affiliation(s)
- Doris N. Rusu
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Justine M. Cunningham
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jacob V. Arch
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Parag J. Parikh
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jennifer L. Dolan
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
14
|
Ong WL, Loblaw A. The march toward single-fraction stereotactic body radiotherapy for localized prostate cancer-Quo Vadimus? World J Urol 2023; 41:3485-3491. [PMID: 37921936 DOI: 10.1007/s00345-023-04663-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/01/2023] [Indexed: 11/05/2023] Open
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) is an emerging treatment option for localized prostate cancer. There is increasing interest to reduce the number of fractions for prostate SBRT. METHODS We provide a narrative review and summary of prospective trials of different fractionation schedules for prostate SBRT, focusing on efficacy, toxicities, and quality of life outcomes. RESULTS There are two randomized phase 3 trials comparing standard external beam radiotherapy with ultra-hypofractionated radiotherapy. HYPO-RT-PC compared 78 Gy in 39 fractions vs 42.7 Gy in 7 fractions (3D-CRT or IMRT) showing non-inferiority in 5-year biochemical recurrence-free survival and equivalent tolerability. PACE-B trial compared 78 Gy in 39-fraction or 62 Gy in 20-fraction vs 36.25 Gy in 5-fraction prostate SBRT, with no significant differences in toxicity outcomes at 2 years. Five-year efficacy data for PACE-B are expected in 2024. Five-fraction prostate SBRT is currently the most common and well-established fractionation schedule with multiple prospective phase 2 trials published to date. There is more limited data on 1-4 fraction prostate SBRT. All fractionation schedules had acceptable toxicity outcomes. Experience from a high-dose-rate brachytherapy randomized trial showed inferior efficacy with single-fraction compared to two-fraction brachytherapy. Hence, caution should be applied in adopting single-fraction prostate SBRT. CONCLUSION Two-fraction SBRT is likely the shortest fractionation schedule that maintains the therapeutic ratio. Several randomized trials currently recruiting will likely provide us with more definite answers about whether two-fraction prostate SBRT should become a standard-of-care option. Enrollment of eligible patients into these trials should be encouraged.
Collapse
Affiliation(s)
- Wee Loon Ong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Rm T2-161, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
- Alfred Health Radiation Oncology, Monash University, Melbourne, Australia
| | - Andrew Loblaw
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Rm T2-161, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
- Institute of Health Policy, Measurement and Evaluation, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Beddok A, Lim R, Thariat J, Shih HA, El Fakhri G. A Comprehensive Primer on Radiation Oncology for Non-Radiation Oncologists. Cancers (Basel) 2023; 15:4906. [PMID: 37894273 PMCID: PMC10605284 DOI: 10.3390/cancers15204906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Multidisciplinary management is crucial in cancer diagnosis and treatment. Multidisciplinary teams include specialists in surgery, medical therapies, and radiation therapy (RT), each playing unique roles in oncology care. One significant aspect is RT, guided by radiation oncologists (ROs). This paper serves as a detailed primer for non-oncologists, medical students, or non-clinical investigators, educating them on contemporary RT practices. Methods: This report follows the process of RT planning and execution. Starting from the decision-making in multidisciplinary teams to the completion of RT and subsequent patient follow-up, it aims to offer non-oncologists an understanding of the RO's work in a comprehensive manner. Results: The first step in RT is a planning session that includes obtaining a CT scan of the area to be treated, known as the CT simulation. The patients are imaged in the exact position in which they will receive treatment. The second step, which is the primary source of uncertainty, involves the delineation of treatment targets and organs at risk (OAR). The objective is to ensure precise irradiation of the target volume while sparing the OARs as much as possible. Various radiation modalities, such as external beam therapy with electrons, photons, or particles (including protons and carbon ions), as well as brachytherapy, are utilized. Within these modalities, several techniques, such as three-dimensional conformal RT, intensity-modulated RT, volumetric modulated arc therapy, scattering beam proton therapy, and intensity-modulated proton therapy, are employed to achieve optimal treatment outcomes. The RT plan development is an iterative process involving medical physicists, dosimetrists, and ROs. The complexity and time required vary, ranging from an hour to a week. Once approved, RT begins, with image-guided RT being standard practice for patient alignment. The RO manages acute toxicities during treatment and prepares a summary upon completion. There is a considerable variance in practices, with some ROs offering lifelong follow-up and managing potential late effects of treatment. Conclusions: Comprehension of RT clinical effects by non-oncologists providers significantly elevates long-term patient care quality. Hence, educating non-oncologists enhances care for RT patients, underlining this report's importance.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruth Lim
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François-Baclesse, 14000 Caen, France
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Tseng W, Liu H, Yang Y, Liu C, Furutani K, Beltran C, Lu B. Performance assessment of variant UNet-based deep-learning dose engines for MR-Linac-based prostate IMRT plans. Phys Med Biol 2023; 68:175004. [PMID: 37499682 DOI: 10.1088/1361-6560/aceb2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.Significance. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models' performance was present.
Collapse
Affiliation(s)
- Wenchih Tseng
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
| | - Hongcheng Liu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611-6595, United States of America
| | - Yu Yang
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611-6595, United States of America
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
| | - Keith Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224-0001, United States of America
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224-0001, United States of America
| | - Bo Lu
- Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385, United States of America
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224-0001, United States of America
| |
Collapse
|
17
|
Subashi E, Segars P, Veeraraghavan H, Deasy J, Tyagi N. A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Med Phys 2023; 50:3066-3075. [PMID: 36808107 PMCID: PMC10561541 DOI: 10.1002/mp.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) tract motility is one of the main sources for intra/inter-fraction variability and uncertainty in radiation therapy for abdominal targets. Models for GI motility can improve the assessment of delivered dose and contribute to the development, testing, and validation of deformable image registration (DIR) and dose-accumulation algorithms. PURPOSE To implement GI tract motion in the 4D extended cardiac-torso (XCAT) digital phantom of human anatomy. MATERIALS AND METHODS Motility modes that exhibit large amplitude changes in the diameter of the GI tract and may persist over timescales comparable to online adaptive planning and radiotherapy delivery were identified based on literature research. Search criteria included amplitude changes larger than planning risk volume expansions and durations of the order of tens of minutes. The following modes were identified: peristalsis, rhythmic segmentation, high amplitude propagating contractions (HAPCs), and tonic contractions. Peristalsis and rhythmic segmentations were modeled by traveling and standing sinusoidal waves. HAPCs and tonic contractions were modeled by traveling and stationary Gaussian waves. Wave dispersion in the temporal and spatial domain was implemented by linear, exponential, and inverse power law functions. Modeling functions were applied to the control points of the nonuniform rational B-spline surfaces defined in the reference XCAT library. GI motility was combined with the cardiac and respiratory motions available in the standard 4D-XCAT phantom. Default model parameters were estimated based on the analysis of cine MRI acquisitions in 10 patients treated in a 1.5T MR-linac. RESULTS We demonstrate the ability to generate realistic 4D multimodal images that simulate GI motility combined with respiratory and cardiac motion. All modes of motility, except tonic contractions, were observed in the analysis of our cine MRI acquisitions. Peristalsis was the most common. Default parameters estimated from cine MRI were used as initial values for simulation experiments. It is shown that in patients undergoing stereotactic body radiotherapy for abdominal targets, the effects of GI motility can be comparable or larger than the effects of respiratory motion. CONCLUSION The digital phantom provides realistic models to aid in medical imaging and radiation therapy research. The addition of GI motility will further contribute to the development, testing, and validation of DIR and dose accumulation algorithms for MR-guided radiotherapy.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Segars
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Bessieres I, Lorenzo O, Bertaut A, Petitfils A, Aubignac L, Boudet J. Online adaptive radiotherapy and dose delivery accuracy: A retrospective analysis. J Appl Clin Med Phys 2023:e14005. [PMID: 37097765 PMCID: PMC10402677 DOI: 10.1002/acm2.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
PURPOSE With online adaptive radiotherapy (ART), patient-specific quality assurance (PSQA) testing cannot be performed prior to delivery of the adapted treatment plan. Consequently, the dose delivery accuracy of adapted plans (i.e., the ability of the system to interpret and deliver the treatment as planned) are not initially verified. We investigated the variation in dose delivery accuracy of ART on the MRIdian 0.35 T MR-linac (Viewray Inc., Oakwood, USA) between initial plans and their respective adapted plans, by analyzing PSQA results. METHODS We considered the two main digestive localizations treated with ART (liver and pancreas). A total of 124 PSQA results acquired with the ArcCHECK (Sun Nuclear Corporation, Melbourne, USA) multidetector system were analyzed. PSQA result variations between the initial plans and their respective adapted plans were statistically investigated and compared with the variation in MU number. RESULTS For the liver, limited deterioration in PSQA results was observed, and was within the limits of clinical tolerance (Initial = 98.2%, Adapted = 98.2%, p = 0.4503). For pancreas plans, only a few significant deteriorations extending beyond the limits of clinical tolerance were observed and were due to specific, complex anatomical configurations (Initial = 97.3%, Adapted = 96.5%, p = 0.0721). In parallel, we observed an influence of the increase in MU number on the PSQA results. CONCLUSION We show that the dose delivery accuracy of adapted plans, in terms of PSQA results, is preserved in ART processes on the 0.35 T MR-linac. Respecting good practices, and minimizing the increase in MU number can help to preserve the accuracy of delivery of adapted plans as compared to their respective initial plans.
Collapse
Affiliation(s)
- Igor Bessieres
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Olivier Lorenzo
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Aurélie Bertaut
- Methodology, Data-Management and Biostatistics Unit, Centre Georges-François Leclerc, Dijon, France
| | - Aurélie Petitfils
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Léone Aubignac
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| | - Julien Boudet
- Department of Medical Physics, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
19
|
Chuong MD, Palm RF, Tjong MC, Hyer DE, Kishan AU. Advances in MRI-Guided Radiation Therapy. Surg Oncol Clin N Am 2023; 32:599-615. [PMID: 37182995 DOI: 10.1016/j.soc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.
Collapse
Affiliation(s)
- Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, 8900 North Kendall Drive, Miami, FL 33176, USA.
| | - Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Michael C Tjong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, 1338 S Hope Street, Los Angeles, CA 90015, USA
| |
Collapse
|
20
|
Teunissen FR, Hehakaya C, Meijer RP, van Melick HHE, Verkooijen HM, van der Voort van Zyp JRN. Patient preferences for treatment modalities for localised prostate cancer. BJUI COMPASS 2023; 4:214-222. [PMID: 36816141 PMCID: PMC9931535 DOI: 10.1002/bco2.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives To assess the patient preferences and utility scores for the different conventional and innovative treatment modalities for localised prostate cancer (PCa). Subjects and Methods Patients treated for localised PCa and healthy volunteers were invited to fill out a treatment-outcome scenario questionnaire. Participants ranked six different treatments for localised PCa from most to least favourable, prior to information. In a next step, treatment procedures, toxicity, risk of biochemical recurrence and follow-up regimen were comprehensibly described for each of the six treatments (i.e. treatment-outcome scenarios), after which patients re-ranked the six treatments. Additionally, participants gave a visual analogue scale (VAS) and time trade-off (TTO) score for each scenario. Differences between utility scores were tested by Friedman tests with post hoc Wilcoxon signed-rank tests. Results Eighty patients and twenty-nine healthy volunteers were included in the study. Before receiving treatment-outcome scenario information, participants ranked magnetic resonance-guided adaptive radiotherapy most often as their first choice (35%). After treatment information was received, active surveillance was most often ranked as the first choice (41%). Utility scores were significantly different between the six treatment-outcome scenarios, and active surveillance, non- and minimal-invasive treatments received higher scores. Conclusions Active surveillance and non-invasive treatment for localised PCa were the most preferred options by PCa patients and healthy volunteers and received among the highest utility scores. Treatment preferences change after treatment information is received.
Collapse
Affiliation(s)
- Frederik R. Teunissen
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Charisma Hehakaya
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Richard P. Meijer
- Department of Oncological UrologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Helena M. Verkooijen
- Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Utrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
21
|
Kishan AU, Ma TM, Lamb JM, Casado M, Wilhalme H, Low DA, Sheng K, Sharma S, Nickols NG, Pham J, Yang Y, Gao Y, Neylon J, Basehart V, Cao M, Steinberg ML. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol 2023; 9:365-373. [PMID: 36633877 PMCID: PMC9857817 DOI: 10.1001/jamaoncol.2022.6558] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Importance Magnetic resonance imaging (MRI) guidance offers multiple theoretical advantages in the context of stereotactic body radiotherapy (SBRT) for prostate cancer. However, to our knowledge, these advantages have yet to be demonstrated in a randomized clinical trial. Objective To determine whether aggressive margin reduction with MRI guidance significantly reduces acute grade 2 or greater genitourinary (GU) toxic effects after prostate SBRT compared with computed tomography (CT) guidance. Design, Setting, and Participants This phase 3 randomized clinical trial (MRI-Guided Stereotactic Body Radiotherapy for Prostate Cancer [MIRAGE]) enrolled men aged 18 years or older who were receiving SBRT for clinically localized prostate adenocarcinoma at a single center between May 5, 2020, and October 1, 2021. Data were analyzed from January 15, 2021, through May 15, 2022. All patients had 3 months or more of follow-up. Interventions Patients were randomized 1:1 to SBRT with CT guidance (control arm) or MRI guidance. Planning margins of 4 mm (CT arm) and 2 mm (MRI arm) were used to deliver 40 Gy in 5 fractions. Main Outcomes and Measures The primary end point was the incidence of acute (≤90 days after SBRT) grade 2 or greater GU toxic effects (using Common Terminology Criteria for Adverse Events, version 4.03 [CTCAE v4.03]). Secondary outcomes included CTCAE v4.03-based gastrointestinal toxic effects and International Prostate Symptom Score (IPSS)-based and Expanded Prostate Cancer Index Composite-26 (EPIC-26)-based outcomes. Results Between May 2020 and October 2021, 156 patients were randomized: 77 to CT (median age, 71 years [IQR, 67-77 years]) and 79 to MRI (median age, 71 years [IQR, 68-75 years]). A prespecified interim futility analysis conducted after 100 patients reached 90 or more days after SBRT was performed October 1, 2021, with the sample size reestimated to 154 patients. Thus, the trial was closed to accrual early. The incidence of acute grade 2 or greater GU toxic effects was significantly lower with MRI vs CT guidance (24.4% [95% CI, 15.4%-35.4%] vs 43.4% [95% CI, 32.1%-55.3%]; P = .01), as was the incidence of acute grade 2 or greater gastrointestinal toxic effects (0.0% [95% CI, 0.0%-4.6%] vs 10.5% [95% CI, 4.7%-19.7%]; P = .003). Magnetic resonance imaging guidance was associated with a significantly smaller percentage of patients with a 15-point or greater increase in IPSS at 1 month (6.8% [5 of 72] vs 19.4% [14 of 74]; P = .01) and a significantly reduced percentage of patients with a clinically significant (≥12-point) decrease in EPIC-26 bowel scores (25.0% [17 of 68] vs 50.0% [34 of 68]; P = .001) at 1 month. Conclusions and Relevance In this randomized clinical trial, compared with CT-guidance, MRI-guided SBRT significantly reduced both moderate acute physician-scored toxic effects and decrements in patient-reported quality of life. Longer-term follow-up will confirm whether these notable benefits persist. Trial Registration ClinicalTrials.gov Identifier: NCT04384770.
Collapse
Affiliation(s)
- Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles
| | - James M. Lamb
- Department of Radiation Oncology, University of California, Los Angeles
| | - Maria Casado
- Department of Radiation Oncology, University of California, Los Angeles
| | - Holly Wilhalme
- Statistics Core, Department of Medicine, University of California, Los Angeles
| | - Daniel A. Low
- Department of Radiation Oncology, University of California, Los Angeles
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles
| | - Sahil Sharma
- Department of Radiation Oncology, University of California, Los Angeles
| | - Nicholas G. Nickols
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | - Jonathan Pham
- Department of Radiation Oncology, University of California, Los Angeles
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles
| | - Yu Gao
- Department of Radiation Oncology, University of California, Los Angeles
| | - John Neylon
- Department of Radiation Oncology, University of California, Los Angeles
| | - Vincent Basehart
- Department of Radiation Oncology, University of California, Los Angeles
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles
| | | |
Collapse
|
22
|
Krug D, Imhoff D, Haidenberger A, Heßler N, Schäfer J, Huttenlocher S, Chatzikonstantinou G, Fürweger C, Ramm U, König IR, Chun F, Staehler M, Rödel C, Muacevic A, Vonthein R, Dunst J, Blanck O. Robotic stereotactic body radiotherapy for localized prostate cancer: final analysis of the German HYPOSTAT trial. Strahlenther Onkol 2023; 199:565-573. [PMID: 36757424 DOI: 10.1007/s00066-023-02044-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE We report results of the first German prospective multicenter single-arm phase II trial (ARO 2013-06; NCT02635256) of hypofractionated robotic stereotactic body radiotherapy (SBRT) for patients with localized prostate cancer (HYPOSTAT). METHODS Patients eligible for the HYPOSTAT study had localized prostate cancer (cT1‑3 cN0 cM0), Gleason score ≤ 7, prostate-specific antigen (PSA) ≤ 15 ng/ml, prostate volume ≤ 80 cm3, and an International Prostate Symptom Score (IPSS) ≤ 12. Initially, inclusion was limited to patients ≥ 75 years or patients 70-74 years with additional risk factors. The trial protocol was later amended to allow for enrolment of patients aged ≥ 60 years. The treatment consisted of 35 Gy delivered in 5 fractions to the prostate and for intermediate- or high-risk patients, also to the proximal seminal vesicles using the CyberKnife system (Accuray Inc., Sunnyvale, CA, USA). Primary endpoint was the rate of treatment-related gastrointestinal or genitourinary grade ≥ 2 toxicity based on the RTOG scale 12-15 months after treatment. Secondary endpoints were acute toxicity, late toxicity, urinary function, quality of life, and PSA response. RESULTS From July 2016 through December 2018, 85 eligible patients were enrolled and received treatment, of whom 83 could be evaluated regarding the primary endpoint. Patients mostly had intermediate-risk disease with a median PSA value of 7.97 ng/ml and Gleason score of 7a and 7b in 43.5% and 25.9% of patients, respectively. At the final follow-up 12-15 months after treatment, no patient suffered from treatment-related gastrointestinal or genitourinary grade ≥ 2 toxicity. Acute toxicity was mostly mild, with three grade 3 events, and the cumulative rate of grade ≥ 2 genitourinary toxicity was 8.4% (95% CI 4.1-16.4%). There were no major changes in urinary function or quality of life. The median PSA value dropped to 1.18 ng/ml 12-15 months after treatment. There was one patient who developed distant metastases. CONCLUSION Robotic SBRT with 35 Gy in 5 fractions was associated with a favorable short-term toxicity profile. Recruitment for the HYPOSTAT‑2 trial (ARO-2018‑4; NCT03795337), which further analyses the late toxicity of this regimen with a planned sample size of 500 patients, is ongoing.
Collapse
Affiliation(s)
- David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein - Campus Kiel, Arnold-Heller-Str. 3, Haus L, 24105, Kiel, Germany. .,Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany.
| | - Detlef Imhoff
- Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany.,Klinik für Strahlentherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Nicole Heßler
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Jane Schäfer
- Zentrum für Klinische Studien, Universität zu Lübeck, Lübeck, Germany
| | - Stefan Huttenlocher
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein - Campus Kiel, Arnold-Heller-Str. 3, Haus L, 24105, Kiel, Germany.,Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany
| | - Georgios Chatzikonstantinou
- Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany.,Klinik für Strahlentherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Ulla Ramm
- Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany.,Klinik für Strahlentherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.,German Center for Cardiovascular Research (DZHK), Lübeck, Germany
| | - Felix Chun
- Klinik für Urologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Michael Staehler
- Urologische Klinik und Poliklinik, LMU Klinikum der Universität München, Munich, Germany
| | - Claus Rödel
- Klinik für Strahlentherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | | | - Reinhard Vonthein
- Institut für Medizinische Biometrie und Statistik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein - Campus Kiel, Arnold-Heller-Str. 3, Haus L, 24105, Kiel, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein - Campus Kiel, Arnold-Heller-Str. 3, Haus L, 24105, Kiel, Germany.,Saphir Radiochirurgie Zentrum Frankfurt am Main und Norddeutschland, Kiel, Germany
| |
Collapse
|
23
|
Baldeon-Calisto M, Wei Z, Abudalou S, Yilmaz Y, Gage K, Pow-Sang J, Balagurunathan Y. A multi-object deep neural network architecture to detect prostate anatomy in T2-weighted MRI: Performance evaluation. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1083245. [PMID: 39381408 PMCID: PMC11460296 DOI: 10.3389/fnume.2022.1083245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 10/10/2024]
Abstract
Prostate gland segmentation is the primary step to estimate gland volume, which aids in the prostate disease management. In this study, we present a 2D-3D convolutional neural network (CNN) ensemble that automatically segments the whole prostate gland along with the peripheral zone (PZ) (PPZ-SegNet) using a T2-weighted sequence (T2W) of Magnetic Resonance Imaging (MRI). The study used 4 different public data sets organized as Train #1 and Test #1 (independently derived from the same cohort), Test #2, Test #3 and Test #4. The prostate gland and the peripheral zone (PZ) anatomy were manually delineated with consensus read by a radiologist, except for Test #4 cohorts that had pre-marked glandular anatomy. A Bayesian hyperparameter optimization method was applied to construct the network model (PPZ-SegNet) with a training cohort (Train #1, n = 150) using a five-fold cross validation. The model evaluation was performed on an independent cohort of 283 T2W MRI prostate cases (Test #1 to #4) without any additional tuning. The data cohorts were derived from The Cancer Imaging Archives (TCIA): PROSTATEx Challenge, Prostatectomy, Repeatability studies and PROMISE12-Challenge. The segmentation performance was evaluated by computing the Dice similarity coefficient and Hausdorff distance between the estimated-deep-network identified regions and the radiologist-drawn annotations. The deep network architecture was able to segment the prostate gland anatomy with an average Dice score of 0.86 in Test #1 (n = 192), 0.79 in Test #2 (n = 26), 0.81 in Test #3 (n = 15), and 0.62 in Test #4 (n = 50). We also found the Dice coefficient improved with larger prostate volumes in 3 of the 4 test cohorts. The variation of the Dice scores from different cohorts of test images suggests the necessity of more diverse models that are inclusive of dependencies such as the gland sizes and others, which will enable us to develop a universal network for prostate and PZ segmentation. Our training and evaluation code can be accessed through the link: https://github.com/mariabaldeon/PPZ-SegNet.git.
Collapse
Affiliation(s)
- Maria Baldeon-Calisto
- Departamento de Ingeniería Industrial and Instituto de Innovación en Productividad y Logística CATENA-USFQ, Universidad San Francisco de Quito, Quito, Ecuador
| | - Zhouping Wei
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Shatha Abudalou
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States
| | - Yasin Yilmaz
- Department of Electrical Engineering, University of South Florida, Tampa, FL, United States
| | - Kenneth Gage
- Diagnostic Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Julio Pow-Sang
- Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
24
|
Xu D, Ma TM, Savjani R, Pham J, Cao M, Yang Y, Kishan AU, Scalzo F, Sheng K. Fully automated segmentation of prostatic urethra for MR-guided radiation therapy. Med Phys 2023; 50:354-364. [PMID: 36106703 DOI: 10.1002/mp.15983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Accurate delineation of the urethra is a prerequisite for urethral dose reduction in prostate radiotherapy. However, even in magnetic resonance-guided radiation therapy (MRgRT), consistent delineation of the urethra is challenging, particularly in online adaptive radiotherapy. This paper presented a fully automatic MRgRT-based prostatic urethra segmentation framework. METHODS Twenty-eight prostate cancer patients were included in this study. In-house 3D half fourier single-shot turbo spin-echo (HASTE) and turbo spin echo (TSE) sequences were used to image the Foley-free urethra on a 0.35 T MRgRT system. The segmentation pipeline uses 3D nnU-Net as the base and innovatively combines ground truth and its corresponding radial distance (RD) map during training supervision. Additionally, we evaluate the benefit of incorporating a convolutional long short term memory (LSTM-Conv) layer and spatial recurrent convolution layer (RCL) into nnU-Net. A novel slice-by-slice simple exponential smoothing (SEPS) method specifically for tubular structures was used to post-process the segmentation results. RESULTS The experimental results show that nnU-Net trained using a combination of Dice, cross-entropy and RD achieved a Dice score of 77.1 ± 2.3% in the testing dataset. With SEPS, Hausdorff distance (HD) and 95% HD were reduced to 2.95 ± 0.17 mm and 1.84 ± 0.11 mm, respectively. LSTM-Conv and RCL layers only minimally improved the segmentation precision. CONCLUSION We present the first Foley-free MRgRT-based automated urethra segmentation study. Our method is built on a data-driven neural network with novel cost functions and a post-processing step designed for tubular structures. The performance is consistent with the need for online and offline urethra dose reduction in prostate radiotherapy.
Collapse
Affiliation(s)
- Di Xu
- Department of Computer Science, University of California, Los Angeles, California, USA.,Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Ricky Savjani
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Jonathan Pham
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Yingli Yang
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Fabien Scalzo
- Department of Computer Science, Pepperdine University, Los Angeles, California, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Poon DMC, Yang B, Geng H, Wong OL, Chiu ST, Cheung KY, Yu SK, Chiu G, Yuan J. Analysis of online plan adaptation for 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer. J Cancer Res Clin Oncol 2023; 149:841-850. [PMID: 35199189 PMCID: PMC8866042 DOI: 10.1007/s00432-022-03950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To analyze and characterize the online plan adaptation of 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer (PC). METHODS PC patients (n = 107) who received adaptive 1.5 Tesla MRgSBRT were included. Online plan adaptation was implemented by either the adapt-to-position (ATP) or adapt-to-shape (ATS) methods. Patients were assigned to the ATS group if they underwent ≥ 1 ATS fraction (n = 51); the remainder were assigned to the ATP group (n = 56). The online plan adaptation records of 535 (107 × 5) fractions were retrospectively reviewed. Rationales for ATS decision-making were determined and analyzed using predefined criteria. Statistics of ATS fractions were summarized. Associations of patient characteristics and clinical factors with ATS utilization were investigated. RESULTS There were 87 (16.3%) ATS fractions and 448 ATP fractions (83.7%). The numbers of ATS adoptions in fractions 1-5 were 29 (29/107, 27.1%), 18 (16.8%), 15 (14.0%), 16 (15.0%), and 9 (8.4%), respectively, with significant differences in adoption frequency between fractions (p = 0.007). Other baseline patient characteristics and clinical factors were not significantly associated with ATS classification (all p > 0.05). Underlying criteria for the determination of ATS implementation comprised anatomical changes (77 fractions in 50 patients) and discrete multiple targets (15 fractions in 3 patients). No ATS utilization was determined using dosimetric or online quality assurance criteria. CONCLUSIONS This study contributes to facilitating the establishment of a standardized protocol for online MR-guided adaptive radiotherapy in PC.
Collapse
Affiliation(s)
- Darren M. C. Poon
- grid.414329.90000 0004 1764 7097Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Bin Yang
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Hui Geng
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Oi Lei Wong
- grid.414329.90000 0004 1764 7097Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Sin Ting Chiu
- grid.414329.90000 0004 1764 7097Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Kin Yin Cheung
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Siu Ki Yu
- grid.414329.90000 0004 1764 7097Medical Physics Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - George Chiu
- grid.414329.90000 0004 1764 7097Department of Radiotherapy, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| | - Jing Yuan
- grid.414329.90000 0004 1764 7097Research Department, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, Hong Kong SAR China
| |
Collapse
|
26
|
Song JY, Chie EK, Kang SH, Jeon YJ, Ko YA, Kim DY, Kang HC. Dosimetric evaluation of magnetic resonance imaging-guided adaptive radiation therapy in pancreatic cancer by extent of re-contouring of organs-at-risk. Radiat Oncol J 2022; 40:242-250. [PMID: 36606301 PMCID: PMC9830039 DOI: 10.3857/roj.2022.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The safety of online contouring and planning for adaptive radiotherapy is unknown. This study aimed to evaluate the dosimetric difference of the organ-at-risk (OAR) according to the extent of contouring in stereotactic magnetic resonance image-guided adaptive RT (SMART) for pancreatic cancer. MATERIALS AND METHODS We reviewed the treatment plan data used for SMART in patients with pancreatic cancer. For the online contouring and planning, OARs within 2 cm from the planning target volume (PTV) in the craniocaudal direction were re-controlled daily at the attending physician's discretion. The entire OARs were re-contoured retrospectively for data analysis. We termed the two contouring methods the Rough OAR and the Full OAR, respectively. The proportion of dose constraint violation and other dosimetric parameters was analyzed. RESULTS Nineteen patients with 94 fractions of SMART were included in the analysis. The dose constraint was violated in 10.6% and 43.6% of the fractions in Rough OAR and Full OAR methods, respectively (p = 0.075). Patients with a large tumor, a short distance from gross tumor volume (GTV) to OAR, and a tumor in the body or tail were associated with more occult dose constraint violations-large tumor (p = 0.027), short distance from GTV to OAR (p = 0.061), tumor in body or tail (p = 0.054). No dose constraint violation occurred outside 2 cm from the PTV. CONCLUSION More occult dose constraint violations can be found by the Full OAR method in patients with pancreatic cancer with some clinical factors in the online re-planning for SMART. Re-contouring all the OARs would be helpful to detect occult dose constraint violations in SMART planning. Since the dosimetric profile of SMART cannot be represented by a single fraction, patient selection for the Full OAR method should be weighted between the clinical usefulness and the time and workforce required.
Collapse
Affiliation(s)
- Jun Yeong Song
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Hee Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Jun Jeon
- Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Ah Ko
- Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea,Correspondence: Hyun-Cheol Kang Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. Tel: +82-2-2072-2526 E-mail:
| |
Collapse
|
27
|
Teunissen FR, Willigenburg T, Tree AC, Hall WA, Choi SL, Choudhury A, Christodouleas JP, de Boer JCJ, de Groot-van Breugel EN, Kerkmeijer LGW, Pos FJ, Schytte T, Vesprini D, Verkooijen HM, van der Voort van Zyp JRN. Magnetic Resonance-Guided Adaptive Radiation therapy for Prostate Cancer: The First Results from the MOMENTUM study-An International Registry for the Evidence-Based Introduction of Magnetic Resonance-Guided Adaptive Radiation Therapy. Pract Radiat Oncol 2022; 13:e261-e269. [PMID: 36462619 DOI: 10.1016/j.prro.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Magnetic resonance (MR)-guided radiation therapy (MRgRT) is a new technique for treatment of localized prostate cancer (PCa). We report the 12-month outcomes for the first PCa patients treated within an international consortium (the MOMENTUM study) on a 1.5T MR-Linac system with ultrahypofractionated radiation therapy. METHODS AND MATERIALS Patients treated with 5 × 7.25 Gy were identified. Prostate specific antigen-level, physician-reported toxicity (Common Terminology Criteria for Adverse Events [CTCAE]), and patient-reported outcomes (Quality of Life Questionnaire PR25 and Quality of Life Questionnaire C30 questionnaires) were recorded at baseline and at 3, 6, and 12 months of follow-up (FU). Pairwise comparative statistics were conducted to compare outcomes between baseline and FU. RESULTS The study included 425 patients with localized PCa (11.4% low, 82.0% intermediate, and 6.6% high-risk), and 365, 313, and 186 patients reached 3-, 6-, and 12-months FU, respectively. Median prostate specific antigen level declined significantly to 1.2 ng/mL and 0.1 ng/mL at 12 months FU for the nonandrogen deprivation therapy (ADT) and ADT group, respectively. The peak of genitourinary and gastrointestinal CTCAE toxicity was reported at 3 months FU, with 18.7% and 1.7% grade ≥2, respectively. The QLQ-PR25 questionnaire outcomes showed significant deterioration in urinary domain score at all FU moments, from 8.3 (interquartile range [IQR], 4.1-16.6) at baseline to 12.4 (IQR, 8.3-24.8; P = .005) at 3 months, 12.4 (IQR, 8.3-20.8; P = .018;) at 6 months, and 12.4 (IQR, 8.3-20.8; P = .001) at 12 months. For the non-ADT group, physician- and patient-reported erectile function worsened significantly between baseline and 12 months FU. CONCLUSIONS Ultrahypofractionated MR-guided radiation therapy for localized PCa using a 1.5T MR-Linac is effective and safe. The peak of CTCAE genitourinary and gastrointestinal toxicity was reported at 3 months FU. Furthermore, for patients without ADT, a significant increase in CTCAE erectile dysfunction was reported at 12 months FU. These data are useful for educating patients on expected outcomes and informing study design of future comparative-effectiveness studies.
Collapse
Affiliation(s)
- Frederik R Teunissen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Willigenburg
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alison C Tree
- Department of Urological Oncology, The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Seungtaek L Choi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester and Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - John P Christodouleas
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania; Elekta AB, Stockholm, Sweden
| | - Johannes C J de Boer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Linda G W Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Helena M Verkooijen
- Imaging and Oncology Division, University Medical Center Utrecht, Utrecht, The Netherlands; Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
28
|
Sritharan K, Dunlop A, Mohajer J, Adair-Smith G, Barnes H, Brand D, Greenlay E, Hijab A, Oelfke U, Pathmanathan A, Mitchell A, Murray J, Nill S, Parker C, Sundahl N, Tree AC. Dosimetric comparison of automatically propagated prostate contours with manually drawn contours in MRI-guided radiotherapy: A step towards a contouring free workflow? Clin Transl Radiat Oncol 2022; 37:25-32. [PMID: 36052018 PMCID: PMC9424262 DOI: 10.1016/j.ctro.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022] Open
Abstract
Background The prostate demonstrates inter- and intra- fractional changes and thus adaptive radiotherapy would be required to ensure optimal coverage. Daily adaptive radiotherapy for MRI-guided radiotherapy can be both time and resource intensive when structure delineation is completed manually. Contours can be auto-generated on the MR-Linac via a deformable image registration (DIR) based mapping process from the reference image. This study evaluates the performance of automatically generated target structure contours against manually delineated contours by radiation oncologists for prostate radiotherapy on the Elekta Unity MR-Linac. Methods Plans were generated from prostate contours propagated by DIR and rigid image registration (RIR) for forty fractions from ten patients. A two-dose level SIB (simultaneous integrated boost) IMRT plan is used to treat localised prostate cancer; 6000 cGy to the prostate and 4860 cGy to the seminal vesicles. The dose coverage of the PTV 6000 and PTV 4860 created from the manually drawn target structures was evaluated with each plan. If the dose objectives were met, the plan was considered successful in covering the gold standard (clinician-delineated) volume. Results The mandatory PTV 6000 dose objective (D98% > 5580 cGy) was met in 81 % of DIR plans and 45 % of RIR plans. The SV were mapped by DIR only and for all the plans, the PTV 4860 dose objective met the optimal target (D98% > 4617 cGy). The plans created by RIR led to under-coverage of the clinician-delineated prostate, predominantly at the apex or the bladder-prostate interface. Conclusion Plans created from DIR propagation of prostate contours outperform those created from RIR propagation. In approximately 1 in 5 DIR plans, dosimetric coverage of the gold standard PTV was not clinically acceptable. Thus, at our institution, we use a combination of DIR propagation of contours alongside manual editing of contours where deemed necessary for online treatments.
Collapse
Affiliation(s)
- Kobika Sritharan
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Alex Dunlop
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Jonathan Mohajer
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | | | - Helen Barnes
- The Royal Marsden NHS Foundation Trust, United Kingdom
| | | | | | - Adham Hijab
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Uwe Oelfke
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Angela Pathmanathan
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Adam Mitchell
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Julia Murray
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Simeon Nill
- The Joint Department of Physics, the Royal Marsden Hospital and the Institute of Cancer Research, United Kingdom
| | - Chris Parker
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Nora Sundahl
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust, United Kingdom
- The Institute of Cancer Research, United Kingdom
| |
Collapse
|
29
|
Willigenburg T, Zachiu C, Bol GH, de Groot-van Beugel EN, Lagendijk JJW, van der Voort van Zyp JRN, Raaymakers BW, de Boer JCJ. Clinical application of a sub-fractionation workflow for intrafraction re-planning during prostate radiotherapy treatment on a 1.5 Tesla MR-Linac: A practical method to mitigate intrafraction motion. Radiother Oncol 2022; 176:25-30. [PMID: 36113777 DOI: 10.1016/j.radonc.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intrafraction motion during radiotherapy limits margin reduction and dose escalation. Magnetic resonance (MR)-guided linear accelerators (MR-Linac) have emphasised this issue by enabling intrafraction imaging. We present and clinically apply a new workflow to counteract systematic intrafraction motion during MR-guided stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS With the sub-fractionation workflow, the daily dose is delivered in multiple sequential parts (sub-fractions), each adapted to the latest anatomy. As each sub-fractionation treatment plan complies with the dose constraints, no online dose accumulation is required. Imaging and treatment planning are executed in parallel with dose delivery to minimise dead time, enabling an efficient workflow. The workflow was implemented on a 1.5 T MR-Linac and applied in 15 prostate cancer (PCa) patients treated with 5 × 7.25 Gy in two sub-fractions of 3.625 Gy (10 × 3.625 Gy in total). Intrafraction clinical target volume (CTV) motion was determined and compared to a workflow with single-plan delivery. Furthermore, required planning target volume (PTV) margins were determined. RESULTS Average on-table time was 42.7 min. Except for two fractions, all fractions were delivered within 60 min. Average intrafraction 3D CTV displacement (±standard deviation) was 1.1 mm (± 0.7) with the sub-fractionation workflow, whereas this was up to 3.5 mm (± 2.4) without sub-fractionation. Calculated PTV margins required with sub-fractionation were 1.0 mm (left-right), 2.4 mm (cranial-caudal), and 2.6 mm (anterior-posterior). CONCLUSION Feasibility of the sub-fractionation workflow was demonstrated in 15 PCa patients treated with two sub-fractions on a 1.5 T MR-Linac. The workflow allows for significant PTV margin reduction in these patients by reducing systematic intrafraction motion during SBRT.
Collapse
Affiliation(s)
- Thomas Willigenburg
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands.
| | - Cornel Zachiu
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands
| | - Gijsbert H Bol
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands
| | | | - Jan J W Lagendijk
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands
| | | | - Bas W Raaymakers
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands
| | - Johannes C J de Boer
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
30
|
Hall WA, Kishan AU, Hall E, Nagar H, Vesprini D, Paulson E, Van der Heide UA, Lawton CAF, Kerkmeijer LGW, Tree AC. Adaptive magnetic resonance image guided radiation for intact localized prostate cancer how to optimally test a rapidly emerging technology. Front Oncol 2022; 12:962897. [PMID: 36132128 PMCID: PMC9484536 DOI: 10.3389/fonc.2022.962897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Prostate cancer is a common malignancy for which radiation therapy (RT) provides an excellent management option with high rates of control and low toxicity. Historically RT has been given with CT based image guidance. Recently, magnetic resonance (MR) imaging capabilities have been successfully integrated with RT delivery platforms, presenting an appealing, yet complex, expensive, and time-consuming method of adapting and guiding RT. The precise benefits of MR guidance for localized prostate cancer are unclear. We sought to summarize optimal strategies to test the benefits of MR guidance specifically in localized prostate cancer. Methods A group of radiation oncologists, physicists, and statisticians were identified to collectively address this topic. Participants had a history of treating prostate cancer patients with the two commercially available MRI-guided RT devices. Participants also had a clinical focus on randomized trials in localized prostate cancer. The goal was to review both ongoing trials and present a conceptual focus on MRI-guided RT specifically in the definitive treatment of prostate cancer, along with developing and proposing novel trials for future consideration. Trial hypotheses, endpoints, and areas for improvement in localized prostate cancer that specifically leverage MR guided technology are presented. Results Multiple prospective trials were found that explored the potential of adaptive MRI-guided radiotherapy in the definitive treatment of prostate cancer. Different primary areas of improvement that MR guidance may offer in prostate cancer were summarized. Eight clinical trial design strategies are presented that summarize options for clinical trials testing the potential benefits of MRI-guided RT. Conclusions The number and scope of trials evaluating MRI-guided RT for localized prostate cancer is limited. Yet multiple promising opportunities to test this technology and potentially improve outcomes for men with prostate cancer undergoing definitive RT exist. Attention, in the form of multi-institutional randomized trials, is needed.
Collapse
Affiliation(s)
- William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emma Hall
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Himanshu Nagar
- Depart of Radiation Oncology, Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, United States
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Hospital, University of Toronto, Toronto, ON, Canada
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Uulke A. Van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Colleen A. F. Lawton
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Linda G. W. Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust, and the Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
31
|
Hehakaya C, Sharma AM, van der Voort Van Zijp JR, Grobbee DE, Verkooijen HM, Izaguirre EW, Moors EH. Implementation of Magnetic Resonance Imaging-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States. Adv Radiat Oncol 2022; 7:100953. [PMID: 35651662 PMCID: PMC9149022 DOI: 10.1016/j.adro.2022.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Magnetic resonance image (MRI)-guided radiation therapy with the 1.5 Tesla magnetic resonance linear accelerator (MR-Linac) is a rapidly evolving and emerging treatment. The MR-Linac literature mainly focused on clinical and technological factors in technology implementation, but it is relatively silent on health care system-related factors. Consequently, there is a lack of understanding of opportunities and barriers in implementing the MR-Linac from a health care system perspective. This study addresses this gap with a case study of the US health care system. Methods and Materials An exploratory, qualitative research design was used. Data collection consisted of 23 semistructured interviews ranging from clinical experts at the radiation therapy and radiology department to insurance commissioners in 7 US hospitals. Analysis of opportunities and barriers was guided by the Nonadoption, Abandonment, Scale-up, Spread and Sustainability framework for new medical technologies in health care organizations. Results Opportunities included high-precision MR-guidance during radiation therapy with potential continued technical advances and better patient outcomes. MR-Linac also offers opportunities for research, professional, and economic development. Barriers included the lack of empirical evidence of clinical effectiveness, technological complexity, and large staffing and structural investments. Furthermore, the presence of patients with disadvantaged socioeconomic background, and the lack of appropriate reimbursement as well as regulatory conditions can hinder technology implementation. Conclusions Our study confirms the current literature on implementing the MR-Linac, but also reveals additional challenges for the US health care system. Alongside the well-known clinical and technical factors, also professional, socioeconomic, market, and governing influences affect technology implementation. These findings highlight new connections to facilitate technology uptake and provide a richer start to understanding its long-term effect.
Collapse
Affiliation(s)
- Charisma Hehakaya
- Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands
| | - Ankur M. Sharma
- University of Tennessee Health Science Center, Memphis, Tennessee
- Centre for Evidence-Based Medicine and Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, England
| | | | - Diederick E. Grobbee
- Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Helena M. Verkooijen
- Division of Imaging & Oncology, University Medical Center Utrecht, The Netherlands
- Utrecht University, Utrecht, The Netherlands
| | | | - Ellen H.M. Moors
- Innovation Studies, Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands
| |
Collapse
|
32
|
Tang B, Liu M, Wang B, Diao P, Li J, Feng X, Wu F, Yao X, Liao X, Hou Q, Orlandini LC. Improving the clinical workflow of a MR-Linac by dosimetric evaluation of synthetic CT. Front Oncol 2022; 12:920443. [PMID: 36106119 PMCID: PMC9464932 DOI: 10.3389/fonc.2022.920443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive radiotherapy performed on the daily magnetic resonance imaging (MRI) is an option to improve the treatment quality. In the adapt-to-shape workflow of 1.5-T MR-Linac, the contours of structures are adjusted on the basis of patient daily MRI, and the adapted plan is recalculated on the MRI-based synthetic computed tomography (syCT) generated by bulk density assignment. Because dosimetric accuracy of this strategy is a priority and requires evaluation, this study aims to explore the usefulness of adding an assessment of dosimetric errors associated with recalculation on syCT to the clinical workflow. Sixty-one patients, with various tumor sites, treated using a 1.5-T MR-Linac were included in this study. In Monaco V5.4, the target and organs at risk (OARs) were contoured, and a reference CT plan that contains information about the outlined contours, their average electron density (ED), and the priority of ED assignment was generated. To evaluate the dosimetric error of syCT caused by the inherent approximation within bulk density assignment, the reference CT plan was recalculated on the syCT obtained from the reference CT by forcing all contoured structures to their mean ED defined on the reference plan. The dose–volume histogram (DVH) and dose distribution of the CT and syCT plan were compared. The causes of dosimetric discrepancies were investigated, and the reference plan was reworked to minimize errors if needed. For 54 patients, gamma analysis of the dose distribution on syCT and CT show a median pass rate of 99.7% and 98.5% with the criteria of 3%/3 mm and 2%/2 mm, respectively. DVH difference of targets and OARs remained less than 1.5% or 1 Gy. For the remaining patients, factors (i.e., inappropriate ED assignments) influenced the dosimetric agreement of the syCT vs. CT reference DVH by up to 21%. The causes of the errors were promptly identified, and the DVH dosimetry was realigned except for two lung treatments for which a significant discrepancy remained. The recalculation on the syCT obtained from the planning CT is a powerful tool to assess and decrease the minimal error committed during the adaptive plan on the MRI-based syCT.
Collapse
Affiliation(s)
- Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Bingjie Wang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Peng Diao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- *Correspondence: Peng Diao,
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Qing Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
33
|
Turkkan G, Bilici N, Sertel H, Keskus Y, Alkaya S, Tavli B, Ozkirim M, Fayda M. Clinical utility of a 1.5 T magnetic resonance imaging-guided linear accelerator during conventionally fractionated and hypofractionated prostate cancer radiotherapy. Front Oncol 2022; 12:909402. [PMID: 36052268 PMCID: PMC9424496 DOI: 10.3389/fonc.2022.909402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose To report our initial experience with 1.5 T magnetic resonance imaging (MRI) linear accelerator (LINAC) in prostate cancer radiotherapy in terms of its use in a radiation oncology clinic. Methods The medical records of 14 prostate cancer patients treated with MRI-guided radiotherapy were retrospectively evaluated. The fraction time, adapt-to-position (ATP):adapt-to-shape (ATS) usage rate, machine-associated treatment interruption rate, median gamma pass rate, the percentage of planning target volume receiving at least 95% of the prescription dose coverage value of each ATS fraction, the effect of the learning curve on the fraction time and radiation-related acute gastrointestinal and genitourinary toxicities were evaluated. Results Fourteen patients have completed their treatment receiving a total of 375 fractions. Six patients (42%) were treated with the moderately hypofractionated regimen, five patients (36%) with conventionally fractionated, and three patients (22%) with the ultra-hypofractionated radiotherapy regimens. The ATP : ATS usage ratio was 3:372. The median fraction time was 46 min (range, 24-81 min). For the 3%/3 mm criterion, median gamma pass rate was 99.4% (range, 94.6–100%). Machine-related treatment interruptions were observed in 11 (2.9%) of 375 fractions, but this interruption rate decreased from 4.1% to 0.8%, after an upgrade. Three patients (22%) had gastrointestinal and five patients (36%) had genitourinary toxicity. No ≥grade 3 toxicity was observed. Conclusion 1.5 T MRI-LINAC device could be used as a conventional LINAC device, when the conditions of the radiotherapy center are appropriate. MRI-guided prostate radiotherapy is safe and feasible, and high-quality studies with a larger number of patients and long-term results are needed to better evaluate this new technology.
Collapse
Affiliation(s)
- Gorkem Turkkan
- Department of Radiation Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
- *Correspondence: Gorkem Turkkan, ;
| | - Nazli Bilici
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Huseyin Sertel
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Yavuz Keskus
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Sercan Alkaya
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Busra Tavli
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Muge Ozkirim
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| | - Merdan Fayda
- Department of Radiation Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, Liv Hospital Ulus, Istanbul, Turkey
| |
Collapse
|
34
|
Wu C, Lorenzo G, Hormuth DA, Lima EABF, Slavkova KP, DiCarlo JC, Virostko J, Phillips CM, Patt D, Chung C, Yankeelov TE. Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. BIOPHYSICS REVIEWS 2022; 3:021304. [PMID: 35602761 PMCID: PMC9119003 DOI: 10.1063/5.0086789] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Digital twins employ mathematical and computational models to virtually represent a physical object (e.g., planes and human organs), predict the behavior of the object, and enable decision-making to optimize the future behavior of the object. While digital twins have been widely used in engineering for decades, their applications to oncology are only just emerging. Due to advances in experimental techniques quantitatively characterizing cancer, as well as advances in the mathematical and computational sciences, the notion of building and applying digital twins to understand tumor dynamics and personalize the care of cancer patients has been increasingly appreciated. In this review, we present the opportunities and challenges of applying digital twins in clinical oncology, with a particular focus on integrating medical imaging with mechanism-based, tissue-scale mathematical modeling. Specifically, we first introduce the general digital twin framework and then illustrate existing applications of image-guided digital twins in healthcare. Next, we detail both the imaging and modeling techniques that provide practical opportunities to build patient-specific digital twins for oncology. We then describe the current challenges and limitations in developing image-guided, mechanism-based digital twins for oncology along with potential solutions. We conclude by outlining five fundamental questions that can serve as a roadmap when designing and building a practical digital twin for oncology and attempt to provide answers for a specific application to brain cancer. We hope that this contribution provides motivation for the imaging science, oncology, and computational communities to develop practical digital twin technologies to improve the care of patients battling cancer.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | - Kalina P. Slavkova
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | - Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Debra Patt
- Texas Oncology, Austin, Texas 78731, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
35
|
AI-based optimization for US-guided radiation therapy of the prostate. Int J Comput Assist Radiol Surg 2022; 17:2023-2032. [PMID: 35593988 PMCID: PMC9515059 DOI: 10.1007/s11548-022-02664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Fast volumetric ultrasound presents an interesting modality for continuous and real-time intra-fractional target tracking in radiation therapy of lesions in the abdomen. However, the placement of the ultrasound probe close to the target structures leads to blocking some beam directions. METHODS To handle the combinatorial complexity of searching for the ultrasound-robot pose and the subset of optimal treatment beams, we combine CNN-based candidate beam selection with simulated annealing for setup optimization of the ultrasound robot, and linear optimization for treatment plan optimization into an AI-based approach. For 50 prostate cases previously treated with the CyberKnife, we study setup and treatment plan optimization when including robotic ultrasound guidance. RESULTS The CNN-based search substantially outperforms previous randomized heuristics, increasing coverage from 93.66 to 97.20% on average. Moreover, in some cases the total MU was also reduced, particularly for smaller target volumes. Results after AI-based optimization are similar for treatment plans with and without beam blocking due to ultrasound guidance. CONCLUSIONS AI-based optimization allows for fast and effective search for configurations for robotic ultrasound-guided radiation therapy. The negative impact of the ultrasound robot on the plan quality can successfully be mitigated resulting only in minor differences.
Collapse
|
36
|
Kim H, Lee P, Tree AC, Chuong MD, Raldow AC, Kishan AU, Fuller CD, Rosenberg SA, Hall WA, Chie EK, Portelance L. Adaptive radiation therapy physician guidelines: Recommendations from an expert users’ panel. Pract Radiat Oncol 2022; 12:e355-e362. [DOI: 10.1016/j.prro.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
37
|
Hinault P, Gardin I, Gouel P, Decazes P, Thureau S, Veresezan O, Souchay H, Vera P, Gensanne D. Characterization of positioning uncertainties in PET-CT-MR trimodality solutions for radiotherapy. J Appl Clin Med Phys 2022; 23:e13617. [PMID: 35481611 PMCID: PMC9278679 DOI: 10.1002/acm2.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to evaluate the positioning uncertainties of two PET/CT‐MR imaging setups, C1 and C2. Because the PET/CT data were acquired on the same hybrid device with automatic image registration, experiments were conducted using CT‐MRI data. In C1, a transfer table was used, which allowed the patient to move from one imager to another while maintaining the same position. In C2, the patient stood up and was positioned in the same radiotherapy treatment position on each imager. The two setups provided a set of PET/CT and MR images. The accuracy of the registration software was evaluated on the CT‐MRI data of one patient using known translations and rotations of MRI data. The uncertainties on the two setups were estimated using a phantom and a cohort of 30 patients. The accuracy of the positioning uncertainties was evaluated using descriptive statistics and a t‐test to determine whether the mean shift significantly deviated from zero (p < 0.05) for each setup. The maximum registration errors were less than 0.97 mm and 0.6° for CT‐MRI registration. On the phantom, the mean total uncertainties were less than 2.74 mm and 1.68° for C1 and 1.53 mm and 0.33° for C2. For C1, the t‐test showed that the displacements along the z‐axis did not significantly deviate from zero (p = 0.093). For C2, significant deviations from zero were present for anterior‐posterior and superior‐inferior displacements. The mean total uncertainties were less than 4 mm and 0.42° for C1 and less than 1.39 mm and 0.27° for C2 in the patients. Furthermore, the t‐test showed significant deviations from zero for C1 on the anterior‐posterior and roll sides. For C2, there was a significant deviation from zero for the left‐right displacements.This study shows that transfer tables require careful evaluation before use in radiotherapy.
Collapse
Affiliation(s)
- Pauline Hinault
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,GE Healthcare, Buc, France
| | - Isabelle Gardin
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierre Decazes
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Sebastien Thureau
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Ovidiu Veresezan
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | | | - Pierre Vera
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - David Gensanne
- QuantIF-LITIS EA4108, University of Rouen Normandie, Rouen, France.,Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| |
Collapse
|
38
|
Willigenburg T, van der Velden JM, Zachiu C, Teunissen FR, Lagendijk JJW, Raaymakers BW, de Boer JCJ, van der Voort van Zyp JRN. Accumulated bladder wall dose is correlated with patient-reported acute urinary toxicity in prostate cancer patients treated with stereotactic, daily adaptive MR-guided radiotherapy. Radiother Oncol 2022; 171:182-188. [PMID: 35489444 DOI: 10.1016/j.radonc.2022.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR)-guided linear accelerators (MR-Linac) enable accurate estimation of delivered doses through dose accumulation using daily MR images and treatment plans. We aimed to assess the association between the accumulated bladder (wall) dose and patient-reported acute urinary toxicity in prostate cancer (PCa) patients treated with stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS One-hundred-and-thirty PCa patients treated on a 1.5T MR-Linac were included. Patients filled out International Prostate Symptom Scores (IPSS) questionnaires at baseline, 1 month, and 3 months post-treatment. Deformable image registration-based dose accumulation was performed to reconstruct the delivered dose. Dose parameters for both bladder and bladder wall were correlated with a clinically relevant increase in IPSS (≥10 points) and/or start of alpha-blockers within 3 months using logistic regression. RESULTS Thirty-nine patients (30%) experienced a clinically relevant IPSS increase and/or started with alpha-blockers. Bladder D5cm3, V10-35Gy (in %), and Dmean and Bladder wall V10-35Gy (cm3 and %) and Dmean were correlated with the outcome (odds ratios 1.04-1.33, p-values 0.001-0.044). Corrected for baseline characteristics, bladder V10-35Gy (in %) and Dmean and bladder wall V10-35Gy (cm3 and %) and Dmean were still correlated with the outcome (odds ratios 1.04-1.30, p-values 0.001-0.028). Bladder wall parameters generally showed larger AUC values. CONCLUSION This is the first study to assess the correlation between accumulated bladder wall dose and patient-reported urinary toxicity in PCa patients treated with MR-guided SBRT. The dose to the bladder wall is a promising parameter for prediction of patient-reported urinary toxicity and therefore warrants prospective validation and consideration in treatment planning.
Collapse
Affiliation(s)
- Thomas Willigenburg
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands.
| | - Joanne M van der Velden
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Cornel Zachiu
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Frederik R Teunissen
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Jan J W Lagendijk
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Bas W Raaymakers
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | - Johannes C J de Boer
- University Medical Center Utrecht, Department of Radiation Oncology, 3508 GA, Utrecht, The Netherlands
| | | |
Collapse
|
39
|
Li W, Winter J, Padayachee J, Dang J, Kong V, Chung P. Case Report: MR-Guided Adaptive Radiotherapy, Some Room to Maneuver. Front Oncol 2022; 12:877452. [PMID: 35494044 PMCID: PMC9047540 DOI: 10.3389/fonc.2022.877452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background A magnetic resonance linear accelerator (MR-Linac) provides superior soft tissue contrast to evaluate inter- and intra-fraction motion and facilitate online adaptive radiation therapy (ART). We present here an unusual case of locally advanced castrate-resistant prostate cancer treated with high-dose palliative ultra-hypofractionated radiation therapy on the MR-Linac with significant inter-fraction tumor regression. Case Presentation The patient was a 65-year-old man diagnosed with metastatic prostate cancer to bone and pelvic lymph nodes 7 years prior. At diagnosis, he presented with a PSA of 23 ng/ml and was commenced on a luteinizing hormone-releasing hormone agonist, achieving a PSA nadir of 4.68 ng/ml at 12 months. The patient subsequently had progressive lower urinary tract symptoms, his PSA increased to 47 ng/ml, and there was a markedly enlarged pelvic mass involving the prostate with gross extra-capsular disease and invasion into the posterior bladder wall. The patient was referred for palliative radiation to the pelvic mass due to urinary symptoms, pain, and lower limb paraesthesia. Treatment was planned to be delivered on the MR-Linac with a schedule of 36 Gy over 6 weekly factions allowing for maximal target dose delivery while minimizing surrounding organs at risk (OARs) radiation exposure. Unexpectedly, the target volume had a marked 49% (453 cc to 233 cc) reduction that was accounted for in the online adaptive process. A new reference plan was generated after 3 fractions to add sacral plexus as an OAR, previously not visible due to mass encroachment. The patient reported ongoing reduction in urinary symptoms, pelvic pain, and lower limb paresthesia by the end of treatment. Conclusion Using daily MR-guided ART, improved visualization of the changing target and OARs ensured safe dose escalation. The unexpected positive response of the target and improved patient outcomes demonstrated the added value of the MR-Linac for online adaptive radiotherapy in this setting.
Collapse
Affiliation(s)
- Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Winnie Li,
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jerusha Padayachee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Subashi E, Dresner A, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5 T MR-linac: Part II-Magnetic resonance imaging. J Appl Clin Med Phys 2022; 23:e13586. [PMID: 35332990 PMCID: PMC9398228 DOI: 10.1002/acm2.13586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To describe and report longitudinal quality assurance (QA) measurements for the magnetic resonance imaging (MRI) component of the Elekta Unity MR-linac during the first year of clinical use in our institution. MATERIALS AND METHODS The performance of the MRI component of Unity was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor image uniformity, signal-to-noise ratio (SNR), resolution/detectability, slice position/thickness, linearity, central frequency, and geometric accuracy. In anticipation of routine use of quantitative imaging (qMRI), we characterize B0/B1 uniformity and the bias/reproducibility of longitudinal/transverse relaxation times (T1/T2) and apparent diffusion coefficient (ADC). Tolerance levels for QA measurements of qMRI biomarkers are derived from weekly monitoring of T1, T2, and ADC. RESULTS The 1-year assessment of QA measurements shows that daily variations in each MR quality metric are well below the threshold for failure. Routine testing procedures can reproducibly identify machine issues. The longitudinal three-dimensional (3D) geometric analysis reveals that the maximum distortion in a diameter of spherical volume (DSV) of 20, 30, 40, and 50 cm is 0.4, 0.6, 1.0, and 3.1 mm, respectively. The main source of distortion is gradient nonlinearity. Maximum peak-to-peak B0 inhomogeneity is 3.05 ppm, with gantry induced B0 inhomogeneities an order of magnitude smaller. The average deviation from the nominal B1 is within 2%, with minimal dependence on gantry angle. Mean ADC, T1, and T2 values are measured with high reproducibility. The median coefficient of variation for ADC, T1, and T2 is 1.3%, 1.1%, and 0.5%, respectively. The median bias for ADC, T1, and T2 is -0.8%, -0.1%, and 3.9%, respectively. CONCLUSION The MRI component of Unity operates within the guidelines and recommendations for scanner performance and stability. Our findings support the recently published guidance in establishing clinically acceptable tolerance levels for image quality. Highly reproducible qMRI measurements are feasible in Unity.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alex Dresner
- Philips Healthcare MR Oncology, Cleveland, Ohio, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
41
|
Using ELP Repeats as a Scaffold for De Novo Construction of Gadolinium-Binding Domains within Multifunctional Recombinant Proteins for Targeted Delivery of Gadolinium to Tumour Cells. Int J Mol Sci 2022; 23:ijms23063297. [PMID: 35328725 PMCID: PMC8949254 DOI: 10.3390/ijms23063297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of nucleolin, a tumour marker) to form the F3-W4 block. The F3-W4 block was taken alone (E2-13W4 protein), as two repeats (E1-W8) and as three repeats (E1-W12). Each protein was supplemented with three copies of the RGD motif (a ligand of integrin αvβ3) and green fluorescent protein (GFP). In contrast to Magnevist (a Gd-containing contrast agent), the proteins exhibited three to four times higher accumulation in U87MG glioma and A375 melanoma cell lines than in normal fibroblasts. The proteins remained for >24 h in tumours induced by Ca755 adenocarcinoma in C57BL/6 mice. They exhibited stability towards blood proteases and only accumulated in the liver and kidney. The technological advantages of using the engineered proteins as a basis for developing efficient and non-toxic agents for early diagnosis of tumours by MRI as well as part of BRT were demonstrated.
Collapse
|
42
|
Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, Kurz C, Landry G, Reiner M, Niyazi M, Belka C, Corradini S. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol 2022; 17:53. [PMID: 35279185 PMCID: PMC8917666 DOI: 10.1186/s13014-022-02021-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hybrid magnetic resonance (MR)-Linac systems have recently been introduced into clinical practice. The systems allow online adaption of the treatment plan with the aim of compensating for interfractional anatomical changes. The aim of this study was to evaluate the dose volume histogram (DVH)-based dosimetric benefits of online adaptive MR-guided radiotherapy (oMRgRT) across different tumor entities and to investigate which subgroup of plans improved the most from adaption. Methods Fifty patients treated with oMRgRT for five different tumor entities (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) were included in this retrospective analysis. Various target volume (gross tumor volume GTV, clinical target volume CTV, and planning target volume PTV) and organs at risk (OAR) related DVH parameters were compared between the dose distributions before and after plan adaption. Results All subgroups clearly benefited from online plan adaption in terms of improved PTV coverage. For the liver, lung and abdominal lymph nodes cases, a consistent improvement in GTV coverage was found, while many fractions of the prostate subgroup showed acceptable CTV coverage even before plan adaption. The largest median improvements in GTV near-minimum dose (D98%) were found for the liver (6.3%, p < 0.001), lung (3.9%, p < 0.001), and abdominal lymph nodes (6.8%, p < 0.001) subgroups. Regarding OAR sparing, the largest median OAR dose reduction during plan adaption was found for the pancreas subgroup (-87.0%). However, in the pancreas subgroup an optimal GTV coverage was not always achieved because sparing of OARs was prioritized. Conclusion With online plan adaptation, it was possible to achieve significant improvements in target volume coverage and OAR sparing for various tumor entities and account for interfractional anatomical changes.
Collapse
|
43
|
Sritharan K, Tree A. MR-guided radiotherapy for prostate cancer: state of the art and future perspectives. Br J Radiol 2022; 95:20210800. [PMID: 35073158 PMCID: PMC8978250 DOI: 10.1259/bjr.20210800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Advances in radiotherapy technology have increased precision of treatment delivery and in some tumour types, improved cure rates and decreased side effects. A new generation of radiotherapy machines, hybrids of an MRI scanner and a linear accelerator, has the potential to further transform the practice of radiation therapy in some cancers. Facilitating superior image quality and the ability to change the dose distribution online on a daily basis (termed "daily adaptive replanning"), MRI-guided radiotherapy machines allow for new possibilities including increasing dose, for hard to treat cancers, and more selective sparing of healthy tissues, where toxicity reduction is the key priority.These machines have already been used to treat most types of cancer, although experience is still in its infancy. This review summarises the potential and current evidence for MRI-guided radiotherapy, with a predominant focus on prostate cancer. Current advantages and disadvantages are discussed including a realistic appraisal of the likely potential to improve patient outcomes. In addition, horizon scanning for near-term possibilities for research and development will hopefully delineate the potential role for this technology over the next decade.
Collapse
|
44
|
Cellini F, Tagliaferri L, Frascino V, Alitto AR, Fionda B, Boldrini L, Romano A, Casà C, Catucci F, Mattiucci GC, Valentini V. Radiation therapy for prostate cancer: What's the best in 2021. Urologia 2022; 89:5-15. [PMID: 34496707 DOI: 10.1177/03915603211042335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Radiotherapy is highly involved in the management of prostate cancer. Its features and potential applications experienced a radical evolution over last decades, as they are associated to the continuous evolution of available technology and current oncological innovations. Some application of radiotherapy like brachytherapy have been recently enriched by innovative features and multidisciplinary dedications. In this report we aim to put some questions regarding the following issues regarding multiple aspects of modern application of radiation oncology: the current application of radiation oncology; the modern role of stereotactic body radiotherapy (SBRT) for both the management of primary lesions and for lymph-nodal recurrence; the management of the oligometastatic presentations; the role of brachytherapy; the aid played by the application of the organ at risk spacer (spacer OAR), fiducial markers, electromagnetic tracking systems and on-line Magnetic Resonance guided radiotherapy (MRgRT), and the role of the new opportunity represented by radiomic analysis.
Collapse
Affiliation(s)
- Francesco Cellini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Luca Tagliaferri
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Vincenzo Frascino
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Rita Alitto
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Bruno Fionda
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Luca Boldrini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Angela Romano
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Calogero Casà
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Gian Carlo Mattiucci
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
- Radiation Oncology, Mater Olbia Hospital, Olbia, Italy
| | - Vincenzo Valentini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
45
|
Kozak MM, Crompton D, Gross BA, Harshman L, Dickens D, Snyder J, Shepard A, St-Aubin J, Dunkerley D, Hyer D, Buatti JM. Initial clinical applications treating pediatric and adolescent patients using MR-guided radiotherapy. Front Oncol 2022; 12:962926. [PMID: 36419881 PMCID: PMC9676495 DOI: 10.3389/fonc.2022.962926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose To demonstrate the clinical applications and feasibility of online adaptive magnetic resonance image guided radiotherapy (MRgRT) in the pediatric, adolescent and young adult (AYA) population. Methods This is a retrospective case series of patients enrolled onto a prospective study. All pediatric (age < 18) and AYA patients (age< 30), treated on the Elekta Unity MR linear accelerator (MRL) from 2019 to 2021 were enrolled onto a prospective registry. Rationale for MRgRT included improved visualization of and alignment to the primary tumor, re-irradiation in a critical area, ability to use smaller margins, and need for daily adaptive replanning to minimize dose to adjacent critical structures. Step-and-shoot intensity-modulated radiation treatment (IMRT) plans were generated for all Unity patients with a dose grid of 3 mm and a statistical uncertainty of < 1% per plan. Results A total of 15 pediatric and AYA patients have been treated with median age of 13 years (range: 6 mos - 27 yrs). Seven patients were <10 yo. The clinical applications of MRgRT included Wilms tumor with unresectable IVC thrombus (n=1), Ewing sarcoma (primary and metastatic, n=3), recurrent diffuse intrinsic pontine glioma (DIPG, n=2), nasopharyngeal carcinoma (n=1), clival chordoma (n=1), primitive neuroectodermal tumor of the pancreas (n=1), recurrent gluteo-sacral germ cell tumor (n=1), C-spine ependymoma (n=1), and posterior fossa ependymoma (n=1). Two children required general anesthesia. One AYA patient could not complete the MRgRT course due to tumor-related pain exacerbated by longer treatment times. Two AYA patients experienced anxiety related to treatment on the MRL, one of which required daily Ativan. No patient experienced treatment interruptions or unexpected toxicity. Conclusion MRgRT was well-tolerated by pediatric and AYA patients. There was no increased use of anesthesia outside of our usual practice. Dosimetric advantages were seen for patients with tumors in critical locations such as adjacent to or involving optic structures, stomach, kidney, bowel, and heart.
Collapse
Affiliation(s)
- Margaret M Kozak
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - David Crompton
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Brandie A Gross
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Lyndsay Harshman
- Department of Pediatrics, the University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - David Dickens
- Department of Hematology/Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Jeffrey Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Andrew Shepard
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Joël St-Aubin
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - David Dunkerley
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - Daniel Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa, IA, United States
| |
Collapse
|
46
|
Law MWL, Yuan J, Wong OL, Ying AD, Zhou Y, Cheung KY, Yu SK. Phantom assessment of three-dimensional geometric distortion of a dedicated wide-bore MR-simulator for radiotherapy. Biomed Phys Eng Express 2021; 8. [PMID: 34874313 DOI: 10.1088/2057-1976/ac3f4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/11/2022]
Abstract
This study evaluated the machine-dependent three-dimensional geometric distortion images acquired from a 1.5T 700mm-wide bore MR-simulator based on a large geometric accuracy phantom. With the consideration of radiation therapy (RT) application requirements, every sequence was examined in various combinations of acquisition-orientations and receiver-bandwidths with console-integrated distortion correction enabled. Distortion was repeatedly measured over a six-month period. The distortion measured from the images acquired at the beginning of this period was employed to retrospectively correct the distortion in the subsequent acquisitions. Geometric distortion was analyzed within the largest field-of-view allowed. Six sequences were examined for comprehensive distortion analysis - VIBE, SPACE, TSE, FLASH, BLADE and PETRA. Based on optimal acquisition parameters, their diameter-sphere-volumes (DSVs) of CT-comparable geometric fidelity (where 1mm distortion was allowed) were 333.6mm, 315.1mm, 316.0mm, 318.9mm, 306.2mm and 314.5mm respectively. This was a significant increase from 254.0mm, 245.5mm, 228.9mm, 256.6mm, 230.8mm and 254.2mm DSVs respectively, when images were acquired using un-optimized parameters. The longitudinal stability of geometric distortion and the efficacy of retrospective correction of console-corrected images, based on prior distortion measurements, were inspected using VIBE and SPACE. The retrospectively corrected images achieved over 500mm DSVs with 1mm distortion allowed. The median distortion was below 1mm after retrospective correction, proving that obtaining prior distortion map for subsequent retrospective distortion correction is beneficial. The systematic evaluation of distortion using various combinations of sequence-type, acquisition-orientation and receiver-bandwidth in a six-month time span would be a valuable guideline for optimizing sequence for various RT applications.
Collapse
Affiliation(s)
- Max W L Law
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Jing Yuan
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Oi Lei Wong
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, NA, 000, HONG KONG
| | - Abby D Ying
- Medical Physics Department, Hong Kong Sanatorium and Hospital, Hong Kong Sanatorium and Hospital, Hong Kong, HONG KONG
| | - Yihang Zhou
- Research Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium and Hospital, 2nd Village Road, Happy Valley, Hong Kong Island, Hong Kong, 000, HONG KONG
| |
Collapse
|
47
|
Siciarz P, McCurdy B, Hanumanthappa N, Van Uytven E. Adaptive radiation therapy strategies in the treatment of prostate cancer patients using hypofractionated VMAT. J Appl Clin Med Phys 2021; 22:7-26. [PMID: 34787360 PMCID: PMC8664140 DOI: 10.1002/acm2.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To perform a comprehensive evaluation of eight adaptive radiation therapy strategies in the treatment of prostate cancer patients who underwent hypofractionated volumetric modulated arc therapy (VMAT) treatment. MATERIAL AND METHODS The retrospective study included 20 prostate cancer patients treated with 40 Gy total dose over five fractions (8 Gy/fraction) using VMAT. Daily cone beam computed tomography images were acquired before the delivery of every fraction and then, with the application of deformable image registration used for the estimation of daily dose, contouring and plan re-optimization. Dosimetric benefits of the various ART strategies were quantified by the comparison of dose and dose-volume metrics derived from treatment planning objectives for original treatment plan and adapted plans with the consideration of target volumes (PTV and CTV) as well as critical structures (bladder, rectum, left, and right femoral heads). RESULTS Percentage difference (ΔD) between planning objectives and delivered dose in the D99% > 4000cGy (CTV) metric was -3.9% for the non-ART plan and 2.1% to 4.1% for ART plans. For D99% > 3800cGy and Dmax < 4280cGy (PTV), ΔD was -11.2% and -6.5% for the non-ART plan as well as -3.9% to -1.6% and -0.2% to 1.8% for ART plans, respectively. For D15% < 3200 cGy and D20% < 2800 cGy (bladder), ΔD was -62.4% and -68.8% for the non-ART plan as well as -60.0% to -57.4% and -67.0% to -64.0% for ART plans. For D15% < 3200 cGy and D20% < 2800 cGy (rectum), ΔD was -11.4% and -8.15% for non-ART plan as well as -14.9% to -9.0% and -11.8% to -5.1% for ART plans. CONCLUSIONS Daily on-line adaptation approaches were the most advantageous, although strategies adapting every other fraction were also impactful while reducing relative workload as well. Offline treatment adaptations were shown to be less beneficial due to increased dose delivered to bladder and rectum compared toother ART strategies.
Collapse
Affiliation(s)
- Pawel Siciarz
- Department of Medical PhysicsCancerCare ManitobaWinnipegManitobaCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
| | - Boyd McCurdy
- Department of Medical PhysicsCancerCare ManitobaWinnipegManitobaCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegManitobaCanada
- Department of RadiologyUniversity of ManitobaWinnipegManitobaCanada
| | | | - Eric Van Uytven
- Department of Medical PhysicsCancerCare ManitobaWinnipegManitobaCanada
| |
Collapse
|
48
|
Yang B, Tang KK, Huang CY, Geng H, Lam WW, Wong YS, Tse MY, Lau KK, Cheung KY, Yu SK. Out-of-field dose and its constituent components for a 1.5 T MR-Linac. Phys Med Biol 2021; 66. [PMID: 34700308 DOI: 10.1088/1361-6560/ac3346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.
Collapse
Affiliation(s)
- Bin Yang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Keung Tang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Chen-Yu Huang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Hui Geng
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Wai Wang Lam
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Yeung Sum Wong
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Mei Yan Tse
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Ka Ki Lau
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong, People's Republic of China
| |
Collapse
|
49
|
Chen Y, Lu L, Zhu T, Ma D. Technical overview of magnetic resonance fingerprinting and its applications in radiation therapy. Med Phys 2021; 49:2846-2860. [PMID: 34633687 DOI: 10.1002/mp.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is an emerging imaging technique for rapid and simultaneous quantification of multiple tissue properties. The technique has been developed for quantitative imaging of different organs. The obtained quantitative measures have the potential to improve multiple steps of a typical radiotherapy workflow and potentially further improve integration of magnetic resonance imaging guided clinical decision making. In this review paper, we first provide a technical overview of the MRF method from data acquisition to postprocessing, along with recent development in advanced reconstruction methods. We further discuss critical aspects that could influence its usage in radiation therapy, such as accuracy and precision, repeatability and reproducibility, geometric distortion, and motion robustness. Finally, future directions for MRF application in radiation therapy are discussed.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lan Lu
- Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tong Zhu
- Radiation Oncology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Moteabbed M, Smeets J, Hong TS, Janssens G, Labarbe R, Wolfgang JA, Bortfeld TR. Toward MR-integrated proton therapy: modeling the potential benefits for liver tumors. Phys Med Biol 2021; 66. [PMID: 34407528 DOI: 10.1088/1361-6560/ac1ef2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
Magnetic resonance imaging (MRI)-integrated proton therapy (MRiPT) is envisioned to improve treatment quality for many cancer patients. However, given the availability of alternative image-guided strategies, its clinical need is yet to be justified. This study aims to compare the expected clinical outcomes of MRiPT with standard of practice cone-beam CT (CBCT)-guided PT, and other MR-guided methods, i.e. offline MR-guided PT and MR-linac, for treatment of liver tumors. Clinical outcomes were assessed by quantifying the dosimetric and biological impact of target margin reduction enabled by each image-guided approach. Planning target volume (PTV) margins were calculated using random and systematic setup, delineation and motion uncertainties, which were quantified by analyzing longitudinal MRI data for 10 patients with liver tumors. Proton treatment plans were created using appropriate PTV margins for each image-guided PT method. Photon plans with margins equivalent to MRiPT were generated to represent MR-linac. Normal tissue complication probabilities (NTCP) of the uninvolved liver were compared. We found that PTV margin can be reduced by 20% and 40% for offline MR-guided PT and MRiPT, respectively, compared with CBCT-guided PT. Furthermore, clinical target volume expansion could be largely alleviated when delineating on MRI rather than CT. Dosimetric implications included decreased equivalent mean dose of the uninvolved liver, i.e. up to 24.4 Gy and 27.3 Gy for offline MR-guided PT and MRiPT compared to CBCT-guided PT, respectively. Considering Child-Pugh score increase as endpoint, NTCP of the uninvolved liver was significantly decreased for MRiPT compared to CBCT-guided PT (up to 48.4%,p < 0.01), offline MR-guided PT (up to 12.9%,p < 0.01) and MR-linac (up to 30.8%,p < 0.05). Target underdose was possible in the absence of MRI-guidance (D90 reduction up to 4.2 Gy in 20% of cases). In conclusion, MRiPT has the potential to significantly reduce healthy liver toxicities in patients with liver tumors. It is superior to other image-guided techniques currently available.
Collapse
Affiliation(s)
- Maryam Moteabbed
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | - Rudi Labarbe
- Ion Beam Applications, Louvain-La-Neuve, Belguim
| | - John A Wolfgang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Thomas R Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|