1
|
Bergeron P, Dos Santos M, Sitterle L, Tarlet G, Lavigne J, Liu W, Gerbé de Thoré M, Clémenson C, Meziani L, Schott C, Mazzaschi G, Berthelot K, Benadjaoud MA, Milliat F, Deutsch E, Mondini M. Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade. Nat Commun 2024; 15:8845. [PMID: 39397001 PMCID: PMC11471822 DOI: 10.1038/s41467-024-53015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
Collapse
Affiliation(s)
- Paul Bergeron
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Lisa Sitterle
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Jeremy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Winchygn Liu
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | | | - Céline Clémenson
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Cathyanne Schott
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Giulia Mazzaschi
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Kevin Berthelot
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
2
|
Bekker RA, Obertopp N, Redler G, Penagaricano J, Caudell JJ, Yamoah K, Pilon-Thomas S, Moros EG, Enderling H. Spatially fractionated GRID radiation potentiates immune-mediated tumor control. Radiat Oncol 2024; 19:121. [PMID: 39272128 PMCID: PMC11401399 DOI: 10.1186/s13014-024-02514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumor-immune interactions shape a developing tumor and its tumor immune microenvironment (TIME) resulting in either well-infiltrated, immunologically inflamed tumor beds, or immune deserts with low levels of infiltration. The pre-treatment immune make-up of the TIME is associated with treatment outcome; immunologically inflamed tumors generally exhibit better responses to radio- and immunotherapy than non-inflamed tumors. However, radiotherapy is known to induce opposing immunological consequences, resulting in both immunostimulatory and inhibitory responses. In fact, it is thought that the radiation-induced tumoricidal immune response is curtailed by subsequent applications of radiation. It is thus conceivable that spatially fractionated radiotherapy (SFRT), administered through GRID blocks (SFRT-GRID) or lattice radiotherapy to create areas of low or high dose exposure, may create protective reservoirs of the tumor immune microenvironment, thereby preserving anti-tumor immune responses that are pivotal for radiation success. METHODS We have developed an agent-based model (ABM) of tumor-immune interactions to investigate the immunological consequences and clinical outcomes after 2 Gy × 35 whole tumor radiation therapy (WTRT) and SFRT-GRID. The ABM is conceptually calibrated such that untreated tumors escape immune surveillance and grow to clinical detection. Individual ABM simulations are initialized from four distinct multiplex immunohistochemistry (mIHC) slides, and immune related parameter rates are generated using Latin Hypercube Sampling. RESULTS In silico simulations suggest that radiation-induced cancer cell death alone is insufficient to clear a tumor with WTRT. However, explicit consideration of radiation-induced anti-tumor immunity synergizes with radiation cytotoxicity to eradicate tumors. Similarly, SFRT-GRID is successful with radiation-induced anti-tumor immunity, and, for some pre-treatment TIME compositions and modeling parameters, SFRT-GRID might be superior to WTRT in providing tumor control. CONCLUSION This study demonstrates the pivotal role of the radiation-induced anti-tumor immunity. Prolonged fractionated treatment schedules may counteract early immune recruitment, which may be protected by SFRT-facilitated immune reservoirs. Different biological responses and treatment outcomes are observed based on pre-treatment TIME composition and model parameters. A rigorous analysis and model calibration for different tumor types and immune infiltration states is required before any conclusions can be drawn for clinical translation.
Collapse
Affiliation(s)
- Rebecca A Bekker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Nina Obertopp
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, 33612, USA
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - José Penagaricano
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Passelli K, Repáraz D, Kinj R, Herrera FG. Strategies for overcoming tumour resistance to immunotherapy: harnessing the power of radiation therapy. Br J Radiol 2024; 97:1378-1390. [PMID: 38833685 PMCID: PMC11256940 DOI: 10.1093/bjr/tqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - Remy Kinj
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, 1012-Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| |
Collapse
|
4
|
McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol 2024; 34:276-283. [PMID: 38880536 DOI: 10.1016/j.semradonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) includes historical grid therapy approaches but more recently encompasses the controlled introduction of one or more cold dose regions using intensity modulation delivery techniques. The driving hypothesis behind SFRT is that it may allow for an increased immune response that is otherwise suppressed by radiation effects. With both two- and three-dimensional SFRT approaches, SFRT dose distributions typically include multiple dose cold spots or valleys. Despite its unconventional methods, reported clinical experience shows that SFRT can sometimes induce marked tumor regressions, even in patients with large hypoxic tumors. Preclinical models using extreme dose distributions (i.e., half-sparing) have been shown to nevertheless result in full tumor eradications, a more robust immune response, and systemic anti-tumor immunity. SFRT takes advantage of the complementary immunomodulatory features of low- and high-dose radiotherapy to integrate the delivery of both into a single target. Clinical trials using three-dimensional SFRT (i.e., lattice-like dose distributions) have reported both promising tumor and toxicity results, and ongoing clinical trials are investigating synergy between SFRT and immunotherapies.
Collapse
Affiliation(s)
| | | | | | - John Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph O Deasy
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | |
Collapse
|
5
|
Takashima ME, Berg TJ, Morris ZS. The Effects of Radiation Dose Heterogeneity on the Tumor Microenvironment and Anti-Tumor Immunity. Semin Radiat Oncol 2024; 34:262-271. [PMID: 38880534 DOI: 10.1016/j.semradonc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Radiotherapy elicits dose- and lineage-dependent effects on immune cell survival, migration, activation, and proliferation in targeted tumor microenvironments. Radiation also stimulates phenotypic changes that modulate the immune susceptibility of tumor cells. This has raised interest in using radiotherapy to promote greater response to immunotherapies. To clarify the potential of such combinations, it is critical to understand how best to administer radiation therapy to achieve activation of desired immunologic mechanisms. In considering the multifaceted process of priming and propagating anti-tumor immune response, radiation dose heterogeneity emerges as a potential means for simultaneously engaging diverse dose-dependent effects in a single tumor environment. Recent work in spatially fractionated external beam radiation therapy demonstrates the expansive immune responses achievable when a range of high to low dose radiation is delivered in a tumor. Brachytherapy and radiopharmaceutical therapies deliver inherently heterogeneous distributions of radiation that may contribute to immunogenicity. This review evaluates the interplay of radiation dose and anti-tumor immune response and explores emerging methodological approaches for investigating the effects of heterogeneous dose distribution on immune responses.
Collapse
Affiliation(s)
- Maya E Takashima
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
6
|
Sheikh K, Li H, Wright JL, Yanagihara TK, Halthore A. The Peaks and Valleys of Photon Versus Proton Spatially Fractionated Radiotherapy. Semin Radiat Oncol 2024; 34:292-301. [PMID: 38880538 DOI: 10.1016/j.semradonc.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially-fractionated radiotherapy (SFRT) delivers high doses to small areas of tumor while sparing adjacent tissue, including intervening disease. In this review, we explore the evolution of SFRT technological advances, contrasting approaches with photon and proton beam radiotherapy. We discuss unique dosimetric considerations and physical properties of SFRT, as well as review the preclinical literature that provides an emerging understanding of biological mechanisms. We emphasize crucial areas of future study and highlight clinical trials that are underway to assess SFRT's safety and efficacy, with a focus on immunotherapeutic synergies. The review concludes with practical considerations for SFRT's clinical application, advocating for strategies that leverage its unique dosimetric and biological properties for improved patient outcomes.
Collapse
Affiliation(s)
- Khadija Sheikh
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC.
| | - Heng Li
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| | - Theodore K Yanagihara
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Aditya Halthore
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Radiation Oncology, The Johns Hopkins Proton Center, Washington, DC
| |
Collapse
|
7
|
Jenkins SV, Johnsrud AJ, Dings RPM, Griffin RJ. Bystander Effects in Spatially Fractionated Radiation Therapy: From Molecule To Organism To Clinical Implications. Semin Radiat Oncol 2024; 34:284-291. [PMID: 38880537 PMCID: PMC11185274 DOI: 10.1016/j.semradonc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The standard of care for radiation therapy is numerous, low-dose fractions that are distributed homogeneously throughout the tumor. An alternative strategy under scrutiny is to apply spatially fractionated radiotherapy (high and low doses throughout the tumor) in one or several fractions, either alone or followed by conventional radiation fractionation . Spatial fractionation allows for significant sparing of normal tissue, and the regions of tumor or normal tissue that received sublethal doses can give rise to beneficial bystander effects in both cases. Bystander effects are broadly defined as biological responses that are significantly greater than would be anticipated based on the radiation dose received. Typically these effects are initiated by diffusion of reactive oxygen species and secretion of various cytokines. As demonstrated in the literature, spatial fractionation related bystander effects can occur locally from cell to cell and in what are known as "cohort effects," which tend to take the form of restructuring of the vasculature, enhanced immune infiltration, and development of immunological memory. Other bystander effects can take place at distant sites in what are known as "abscopal effects." While these events are rare, they are mediated by the immune system and can result in the eradication of secondary and metastatic disease. Currently, due to the complexity and variability of these bystander effects, they are not thoroughly understood, but as knowledge improves they may present significant opportunities for improved clinical outcomes.
Collapse
Affiliation(s)
- Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR..
| | | | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
8
|
Tubin S. A Partial Tumor Irradiation Approach for Complex Bulky Disease. Semin Radiat Oncol 2024; 34:323-336. [PMID: 38880541 DOI: 10.1016/j.semradonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A large proportion of cancer patients present with unresectable bulky disease at baseline or following treatment failure. The data available in the literature suggest that the vast majority of these patients do not benefit from available standard therapies. Therefore the clinical outcomes are poor; patients are desperate and usually relegated to palliative or best supportive care as the only options. Large tumor masses are usually hypoxic, resistant to radiation and systemic therapy, with extensive regional infiltration of the surrounding critical organs, the presence of which makes it impossible to deliver a radical dose of radiation. Promising data in terms of improved therapeutic ratio where such complex tumors are concerned can be seen with the use of new emerging unconventional radiotherapy techniques known as spatially fractionated radiotherapies (SFRT). One of them is PATHY, or PArtial Tumor irradiation targeting HYpoxic segment, which is characterized by a very short treatment course offering a large spectrum of therapeutic benefits in terms of the symptom relief, quality of life, local tumor control, neoadjuvant and immunomodulatory effects.
Collapse
Affiliation(s)
- Slavisa Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120 Heidelberg; Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States.
| |
Collapse
|
9
|
Budhu S, Kim K, Yip W, La Rosa S, Jebiwott S, Cai L, Holland A, Thomas J, Preise D, Somma A, Gordon B, Scherz A, Wolchok JD, Erinjeri J, Merghoub T, Coleman JA. Comparative study of immune response to local tumor destruction modalities in a murine breast cancer model. Front Oncol 2024; 14:1405486. [PMID: 38957315 PMCID: PMC11217310 DOI: 10.3389/fonc.2024.1405486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Immunotherapy is revolutionizing the management of multiple cancer types. However, only a subset of patients responds to immunotherapy. One mechanism of resistance is the absence of immune infiltrates within the tumor. In situ vaccine with local means of tumor destruction that can induce immunogenic cell death have been shown to enhance tumor T cell infiltration and increase efficacy of immune checkpoint blockade. Methods Here, we compare three different forms of localize tumor destruction therapies: radiation therapy (RT), vascular targeted photodynamic therapy (VTP) and cryoablation (Cryo), which are known to induce immunogenic cell death, with their ability to induce local and systemic immune responses in a mouse 4T1 breast cancer model. The effects of combining RT, VTP, Cryo with anti-PD1 was also assessed. Results We observed that RT, VTP and Cryo significantly delayed tumor growth and extended overall survival. In addition, they also induced regression of non-treated distant tumors in a bilateral model suggesting a systemic immune response. Flow cytometry showed that VTP and Cryo are associated with a reduction in CD11b+ myeloid cells (granulocytes, monocytes, and macrophages) in tumor and periphery. An increase in CD8+ T cell infiltration into tumors was observed only in the RT group. VTP and Cryo were associated with an increase in CD4+ and CD8+ cells in the periphery. Conclusion These data suggest that cell death induced by VTP and Cryo elicit similar immune responses that differ from local RT.
Collapse
Affiliation(s)
- Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Liqun Cai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Jasmine Thomas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dina Preise
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alex Somma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Benjamin Gordon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Avigdor Scherz
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jedd D. Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Immunology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Joseph Erinjeri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Jonathan A. Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
10
|
Saylor PJ, Kozin SV, Matsui A, Goldberg SI, Aoki S, Shigeta K, Mamessier E, Smith MR, Michaelson MD, Lee RJ, Duda DG. The radiopharmaceutical radium-223 has immunomodulatory effects in patients and facilitates anti-programmed death receptor-1 therapy in murine models of bone metastatic prostate cancer. Radiother Oncol 2024; 192:110091. [PMID: 38224917 PMCID: PMC10905770 DOI: 10.1016/j.radonc.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND & PURPOSE Radium-223 (Ra223) improves survival in metastatic prostate cancer (mPC), but its impact on systemic immunity is unclear, and biomarkers of response are lacking. We examined markers of immunomodulatory activity during standard clinical Ra223 and studied the impact of Ra223 on response to immune checkpoint inhibition (ICI) in preclinical models. MATERIALS & METHODS We conducted a single-arm biomarker study of Ra223 in 22 bone mPC patients. We measured circulating immune cell subsets and a panel of cytokines before and during Ra223 therapy and correlated them with overall survival (OS). Using two murine mPC models-orthotopic PtenSmad4-null and TRAMP-C1 grafts in syngeneic immunocompetent mice-we tested the efficacy of combining Ra223 with ICI. RESULTS Above-median level of IL-6 at baseline was associated with a median OS of 358 versus 947 days for below levels; p = 0.044, from the log-rank test. Baseline PlGF and PSA inversely correlated with OS (p = 0.018 and p = 0.037, respectively, from the Cox model). Ra223 treatment was associated with a mild decrease in some peripheral immune cell populations and a shift in the proportion of MDSCs from granulocytic to myeloid. In mice, Ra223 increased the proliferation of CD8+ and CD4+ helper T cells without leading to CD8+ T cell exhaustion in the mPC lesions. In one of the models, combining Ra223 and anti-PD-1 antibody significantly prolonged survival, which correlated with increased CD8+ T cell infiltration in tumor tissue. CONCLUSION The inflammatory cytokine IL-6 and the angiogenic biomarker PlGF at baseline were promising outcome biomarkers after standard Ra223 treatment. In mouse models, Ra223 increased intratumoral CD8+ T cell infiltration and proliferation and could improve OS when combined with anti-PD-1 ICI.
Collapse
Affiliation(s)
- Philip J Saylor
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Sergey V Kozin
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aya Matsui
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saveli I Goldberg
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuichi Aoki
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kohei Shigeta
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emilie Mamessier
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Smith
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - M Dror Michaelson
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard J Lee
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Mayr NA, Mohiuddin M, Snider JW, Zhang H, Griffin RJ, Amendola BE, Hippe DS, Perez NC, Wu X, Lo SS, Regine WF, Simone CB. Practice Patterns of Spatially Fractionated Radiation Therapy: A Clinical Practice Survey. Adv Radiat Oncol 2024; 9:101308. [PMID: 38405319 PMCID: PMC10885580 DOI: 10.1016/j.adro.2023.101308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/26/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Spatially fractionated radiation therapy (SFRT) is increasingly used for bulky advanced tumors, but specifics of clinical SFRT practice remain elusive. This study aimed to determine practice patterns of GRID and Lattice radiation therapy (LRT)-based SFRT. Methods and Materials A survey was designed to identify radiation oncologists' practice patterns of patient selection for SFRT, dosing/planning, dosimetric parameter use, SFRT platforms/techniques, combinations of SFRT with conventional external beam radiation therapy (cERT) and multimodality therapies, and physicists' technical implementation, delivery, and quality procedures. Data were summarized using descriptive statistics. Group comparisons were analyzed with permutation tests. Results The majority of practicing radiation oncologists (United States, 100%; global, 72.7%) considered SFRT an accepted standard-of-care radiation therapy option for bulky/advanced tumors. Treatment of metastases/recurrences and nonmetastatic primary tumors, predominantly head and neck, lung cancer and sarcoma, was commonly practiced. In palliative SFRT, regimens of 15 to 18 Gy/1 fraction predominated (51.3%), and in curative-intent treatment of nonmetastatic tumors, 15 Gy/1 fraction (28.0%) and fractionated SFRT (24.0%) were most common. SFRT was combined with cERT commonly but not always in palliative (78.6%) and curative-intent (85.7%) treatment. SFRT-cERT time sequencing and cERT dose adjustments were variable. In curative-intent treatment, concurrent chemotherapy and immunotherapy were found acceptable by 54.5% and 28.6%, respectively. Use of SFRT dosimetric parameters was highly variable and differed between GRID and LRT. SFRT heterogeneity dosimetric parameters were more commonly used (P = .008) and more commonly thought to influence local control (peak dose, P = .008) in LRT than in GRID therapy. Conclusions SFRT has already evolved as a clinical practice pattern for advanced/bulky tumors. Major treatment approaches are consistent and follow the literature, but SFRT-cERT combination/sequencing and clinical utilization of dosimetric parameters are variable. These areas may benefit from targeted education and standardization, and knowledge gaps may be filled by incorporating identified inconsistencies into future clinical research.
Collapse
Affiliation(s)
- Nina A. Mayr
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Majid Mohiuddin
- Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, Illinois
| | - James W. Snider
- Radiation Oncology, South Florida Proton Therapy Institute, Delray Beach, Florida
| | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Daniel S. Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, Florida
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - William F. Regine
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
12
|
Pannunzio S, Di Bello A, Occhipinti D, Scala A, Messina G, Valente G, Quirino M, Di Salvatore M, Tortora G, Cassano A. Multimodality treatment in recurrent/metastatic squamous cell carcinoma of head and neck: current therapy, challenges, and future perspectives. Front Oncol 2024; 13:1288695. [PMID: 38239635 PMCID: PMC10794486 DOI: 10.3389/fonc.2023.1288695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Squamous cell carcinoma of the head and neck is a complex group of diseases that presents a challenge to the clinician. The prognosis in the recurrent/metastatic disease is particularly dismal, with a median survival of approximately 12 months. Recently, the personalized and multimodal approach has increased prognosis by integrating locoregional strategies (salvage surgery and stereotactic radiotherapy) and systemic treatments (chemotherapy, immunotherapy, and target therapy). Malnutrition is a significant clinical problem that interferes with dose intensity, and thus, feeding supplementation is critical not only to increase the quality of life but also to improve overall survival. With this review, we want to emphasize the importance of the multidisciplinary approach, quality of life, and nutritional supportive care and to integrate the latest updates of predictive biomarkers for immunotherapy and future therapeutic strategies.
Collapse
Affiliation(s)
- Sergio Pannunzio
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Armando Di Bello
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Denis Occhipinti
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Alessandro Scala
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Gloria Messina
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giustina Valente
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Michela Quirino
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Mariantonietta Di Salvatore
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Alessandra Cassano
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Modic Z, Markelc B, Jesenko T. Partial-Volume Irradiation of Murine Tumors. Methods Mol Biol 2024; 2773:97-104. [PMID: 38236540 DOI: 10.1007/978-1-0716-3714-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Radiotherapy is a widely used approach for cancer treatment. However, delivering a single high dose of radiation to bulky tumors can be challenging due to the toxicities induced in the surrounding healthy tissue. To overcome this issue, a nonuniform high dose can be delivered using partial-volume tumor irradiation or spatially fractionated radiotherapy (SFRT). Moreover, SFRT has the potential to induce a stronger antitumor immune response compared to traditional radiotherapy due to the preservation of immune cells in the unirradiated tumor regions. There are several SFRT approaches, including GRID therapy, three-dimensional GRID therapy (LATTICE), microbeam radiation therapy (MRT), and Stereotactic Body Radiation Therapy for PArtial Tumor irradiation targeting exclusively the HYpoxic segment (SBRT-PATHY). The following protocol describes partial-volume tumor irradiation, a technique that enables dose delivery to only a part of the tumor in mice using an X-ray generator and collimators of different dimensions that limit the size of the irradiation field.
Collapse
Affiliation(s)
- Ziva Modic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
15
|
Popp I, Vaes RDW, Wieten L, Adebahr S, Hendriks L, Bavafaye Haghighi E, Degens J, Schäfer H, Greil C, Peeters S, Waller CF, Houben R, Niedermann G, Rawluk J, Gkika E, Duyster J, Grosu AL, De Ruysscher D. Radiotherapy to reinvigorate immunotherapy activity after acquired resistance in metastatic non-small-cell lung cancer: A pooled analysis of two institutions prospective phase II single arm trials. Radiother Oncol 2024; 190:110048. [PMID: 38070686 DOI: 10.1016/j.radonc.2023.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
AIM The current work aimed to investigate the clinical benefit of radiotherapy in patients with metastatic non-small cell lung cancer (NSCLC) developing acquired resistance to immune checkpoint inhibitors. METHOD We report on a pooled, two-institution, phase II single-arm prospective cohort study. The study included patients with stage IV NSCLC who showed progression of one or more measurable lesions under anti-PD-(L)1 inhibition alone, after initially having achieved at least stable disease. Hypofractionated radiotherapy (hRT) of one to four metastases was performed, while one or more lesions were kept untreated. Following hRT, treatment with immune checkpoint inhibitors was continued unchanged until further evidence of tumor progression or unacceptable toxicity. Primary endpoint of the pooled analysis was progression-free survival (PFS), secondary endpoints included overall survival (OS) and toxicity. RESULTS A total of 48 patients were enrolled: mean age was 67.1 ± 9.3 years, 50 % were male and 72.9 % were PD-L1 positive. Immunotherapy was in 95.8 % of patients the first or second line therapy at time of enrollment. hRT was performed to one (93.8 % of cases) or more lesions (median total dose: 27.5 Gy, median 6.5 Gy/fraction). Forty-five patients (93.8 %) were able to continue immunotherapy for a median of 6.2 months following hRT. Median PFS was 4.4 months, with 62.5 % disease control at three months and 37.5 % at six months. Median OS was 14.9 months. Severe adverse events (grade ≥ 2) were reported in 12 cases (25 %), of which none were radiotherapy-related and four were immunotherapy-related. Salvage therapy consisted of chemotherapy (48.8 %) or repeated irradiation (21.9 %). No further tumor treatment was performed in 29.3 % of patients. CONCLUSIONS The current pooled analysis is a prospective evaluation of the role of radiation therapy for metastatic NSCLC in the setting of newly acquired immunotherapy resistance. Hypofractionated radiotherapy can support the outcome of immune checkpoint inhibitors and thus allow continuation of treatment for a relevant amount of time despite initial tumor progression.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW School for Oncology and Reproduction. Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lizza Hendriks
- Department of Respiratory Diseases, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Juliette Degens
- Department of Respiratory Diseases, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Henning Schäfer
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Greil
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Peeters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Cornelius F Waller
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Justyna Rawluk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
16
|
Lukas L, Zhang H, Cheng K, Epstein A. Immune Priming with Spatially Fractionated Radiation Therapy. Curr Oncol Rep 2023; 25:1483-1496. [PMID: 37979032 PMCID: PMC10728252 DOI: 10.1007/s11912-023-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current preclinical and clinical evidence of nontargeted immune effects of spatially fractionated radiation therapy (SFRT). We then highlight strategies to augment the immunomodulatory potential of SFRT in combination with immunotherapy (IT). RECENT FINDINGS The response of cancer to IT is limited by primary and acquired immune resistance, and strategies are needed to prime the immune system to increase the efficacy of IT. Radiation therapy can induce immunologic effects and can potentially be used to synergize the effects of IT, although the optimal combination of radiation and IT is largely unknown. SFRT is a novel radiation technique that limits ablative doses to tumor subvolumes, and this highly heterogeneous dose deposition may increase the immune-rich infiltrate within the targeted tumor with enhanced antigen presentation and activated T cells in nonirradiated tumors. The understanding of nontargeted effects of SFRT can contribute to future translational strategies to combine SFRT and IT. Integration of SFRT and IT is an innovative approach to address immune resistance to IT with the overall goal of improving the therapeutic ratio of radiation therapy and increasing the efficacy of IT.
Collapse
Affiliation(s)
- Lauren Lukas
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Hualin Zhang
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Karen Cheng
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Mathieu M, Budhu S, Nepali PR, Russell J, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Activation of STING in Response to Partial-Tumor Radiation Exposure. Int J Radiat Oncol Biol Phys 2023; 117:955-965. [PMID: 37244631 PMCID: PMC11334988 DOI: 10.1016/j.ijrobp.2023.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE To determine the mechanisms involved in partial volume radiation therapy (RT)-induced tumor response. METHODS AND MATERIALS We investigated 67NR murine orthotopic breast tumors in Balb/c mice and Lewis lung carcinoma (LLC cells; WT, Crispr/Cas9 Sting KO, and Atm KO) injected in the flank of C57Bl/6, cGAS, or STING KO mice. RT was delivered to 50% or 100% of the tumor volume using a 2 × 2 cm collimator on a microirradiator allowing precise irradiation. Tumors and blood were collected at 6, 24, and 48 hours post-RT and assessed for cytokine measurements. RESULTS There is a significant activation of the cGAS/STING pathway in the hemi-irradiated tumors compared with control and to 100% exposed 67NR tumors. In the LLC model, we determined that an ATM-mediated noncanonical activation of STING is involved. We demonstrated that the partial exposure RT-mediated immune response is dependent on ATM activation in the tumor cells and on the STING activation in the host, and cGAS is dispensable. Our results also indicate that partial volume RT stimulates a proinflammatory cytokine response compared with the anti-inflammatory profile induced by 100% tumor volume exposure. CONCLUSIONS Partial volume RT induces an antitumor response by activating STING, which stimulates a specific cytokine signature as part of the immune response. However, the mechanism of this STING activation, via the canonical cGAS/STING pathway or a noncanonical ATM-driven pathway, depends on the tumor type. Identifying the upstream pathways responsible for STING activation in the partial RT-mediated immune response in different tumor types would improve this therapy and its potential combination with immune checkpoint blockade and other antitumor therapies.
Collapse
Affiliation(s)
| | - Sadna Budhu
- Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - James Russell
- Department of Medical Physics, New York City, NY, USA
| | | | - John Humm
- Department of Medical Physics, New York City, NY, USA
| | | | | |
Collapse
|
18
|
Cho YB, Yoon N, Suh JH, Scott JG. Radio-immune response modelling for spatially fractionated radiotherapy. Phys Med Biol 2023; 68:165010. [PMID: 37459862 PMCID: PMC10409909 DOI: 10.1088/1361-6560/ace819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Objective.Radiation-induced cell death is a complex process influenced by physical, chemical and biological phenomena. Although consensus on the nature and the mechanism of the bystander effect were not yet made, the immune process presumably plays an important role in many aspects of the radiotherapy including the bystander effect. A mathematical model of immune response during and after radiation therapy is presented.Approach.Immune response of host body and immune suppression of tumor cells are modelled with four compartments in this study; viable tumor cells, T cell lymphocytes, immune triggering cells, and doomed cells. The growth of tumor was analyzed in two distinctive modes of tumor status (immune limited and immune escape) and its bifurcation condition.Main results.Tumors in the immune limited mode can grow only up to a finite size, named as terminal tumor volume analytically calculated from the model. The dynamics of the tumor growth in the immune escape mode is much more complex than the tumors in the immune limited mode especially when the status of tumor is close to the bifurcation condition. Radiation can kill tumor cells not only by radiation damage but also by boosting immune reaction.Significance.The model demonstrated that the highly heterogeneous dose distribution in spatially fractionated radiotherapy (SFRT) can make a drastic difference in tumor cell killing compared to the homogeneous dose distribution. SFRT cannot only enhance but also moderate the cell killing depending on the immune response triggered by many factors such as dose prescription parameters, tumor volume at the time of treatment and tumor characteristics. The model was applied to the lifted data of 67NR tumors on mice and a sarcoma patient treated multiple times over 1200 days for the treatment of tumor recurrence as a demonstration.
Collapse
Affiliation(s)
- Young-Bin Cho
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
| | - Nara Yoon
- Departmentof Mathematics and Computer Science, Adelphi University, New York, United States of America
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
| | - Jacob G Scott
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, United States of America
- Department of Radiation Oncology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States of America
- Department of Physics, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
19
|
Yan W, Quan C, Waleed M, Yuan J, Shi Z, Yang J, Lu Q, Zhang J. Application of radiomics in lung immuno‐oncology. PRECISION RADIATION ONCOLOGY 2023. [DOI: 10.1002/pro6.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Weisi Yan
- Baptist Health System Lexington Kentucky USA
| | - Chen Quan
- City of Hope Comprehensive Cancer Center Duarte California USA
| | - Mourad Waleed
- Department of Radiation Medicine University of Kentucky Lexington Kentucky USA
| | - Jianda Yuan
- Translational Oncology at Merck & Co Kenilworth New Jersey USA
| | | | - Jun Yang
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Qiuxia Lu
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Jie Zhang
- Department of Radiology University of Kentucky Lexington Kentucky USA
| |
Collapse
|
20
|
Zhang R, Clark SD, Guo B, Zhang T, Jeansonne D, Jeyaseelan SJ, Francis J, Huang W. Challenges in the combination of radiotherapy and immunotherapy for breast cancer. Expert Rev Anticancer Ther 2023; 23:375-383. [PMID: 37039098 PMCID: PMC10929662 DOI: 10.1080/14737140.2023.2188196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Immunotherapy (IT) is showing promise in the treatment of breast cancer, but IT alone only benefits a minority of patients. Radiotherapy (RT) is usually included in the standard of care for breast cancer patients and is traditionally considered as a local form of treatment. The emerging knowledge of RT-induced systemic immune response, and the observation that the rare abscopal effect of RT on distant cancer metastases can be augmented by IT, have increased the enthusiasm for combinatorial immunoradiotherapy (IRT) for breast cancer patients. However, IRT largely follows the traditional sole RT and IT protocols and does not consider patient specificity, although patients' responses to treatment remain heterogeneous. AREAS COVERED This review discusses the rationale of IRT for breast cancer, the current knowledge, challenges, and future directions. EXPERT OPINION The synergy between RT and the immune system has been observed but not well understood at the basic level. The optimal dosages, timing, target, and impact of biomarkers are largely unknown. There is an urgent need to design efficacious pre-clinical and clinical trials to optimize IRT for cancer patients, maximize the synergy of radiation and immune response, and explore the abscopal effect in depth, taking into account patients' personal features.
Collapse
Affiliation(s)
- Rui Zhang
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
- Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, USA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Duane Jeansonne
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Samithamby J Jeyaseelan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Cheema AK, Li Y, Ventimiglia M, Kowalczyk K, Hankins R, Bandi G, Janowski EM, Grindrod S, Villagra A, Dritschilo A. Radiotherapy Induces Innate Immune Responses in Patients Treated for Prostate Cancers. Clin Cancer Res 2023; 29:921-929. [PMID: 36508164 PMCID: PMC9975665 DOI: 10.1158/1078-0432.ccr-22-2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Radiotherapy is a curative therapeutic modality used to treat cancers as a single agent or in combination with surgery and chemotherapy. Advanced radiotherapy technologies enable treatment with large fractions and highly conformal radiation doses to effect free-radical damage to cellular DNA leading to cell-cycle arrest, cell death, and innate immune response (IIR) stimulation. EXPERIMENTAL DESIGN To understand systemic clinical responses after radiation exposure, proteomic and metabolomic analyses were performed on plasma obtained from patients with cancer at intervals after prostate stereotactic body radiotherapy. Pathway and multivariate analyses were used to delineate molecular alterations following radiotherapy and its correlation with clinical outcomes. RESULTS DNA damage response increased within the first hour after treatment and returned to baseline by 1 month. IIR signaling also increased within 1 hour of treatment but persisted for up to 3 months thereafter. Furthermore, robust IIR and metabolite elevations, consistent with an early proinflammatory M1-mediated innate immune activation, were observed in patients in remission, whereas patients experiencing prostate serum antigen-determined disease progression demonstrated less robust immune responses and M2-mediated metabolite elevations. CONCLUSIONS To our knowledge, these data are the first report of longitudinal proteomic and metabolomic molecular responses in patients after radiotherapy for cancers. The data supports innate immune activation as a critical clinical response of patients receiving radiotherapy for prostate cancer. Furthermore, we propose that the observed IIR may be generalized to the treatment of other cancer types, potentially informing multidisciplinary therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC
- Corresponding Author: Amrita K. Cheema, GC2, Pre-clinical Science Building, 3900 Reservoir Road NW, Washington DC 20007. Phone: 202-687-2756; E-mail:
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Mary Ventimiglia
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Keith Kowalczyk
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Ryan Hankins
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Gaurav Bandi
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| | - Einsley-Marie Janowski
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Alejandro Villagra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC
| | - Anatoly Dritschilo
- Department of Radiation Medicine, LL Bles, MedStar-Georgetown University Hospital, Washington DC
| |
Collapse
|
22
|
Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res 2023; 15:113-122. [PMID: 36776730 PMCID: PMC9910204 DOI: 10.2147/cmar.s393934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To report a case of large extremity soft tissue sarcoma (2933 cc), safely treated with a novel approach of interdigitating high-dose LATTICE radiation therapy (LRT) with standard radiation therapy as a neoadjuvant treatment to surgery. Patients and Methods Four sessions of high-dose LRT were delivered in a weekly interval, interdigitated with standard radiation therapy. The LRT plan consisted of 15 high-dose vertices receiving a dose >12 Gy per session, with 2-3 Gy to the peripheral margin of the tumor. The patient underwent surgical excision 2 months after the new regimen of induction radiation therapy. Results and Discussion The patient tolerated the radiation therapy regimen well. The post-operative assessment revealed a negative surgical margin and over 95% necrosis of the total tumor volume. The post-surgical wound complication was mitigated by outpatient wound care. Interdigitating multiple sessions of high-dose LATTICE radiation treatments with standard neoadjuvant radiation therapy as a neoadjuvant therapy for soft tissue sarcoma was feasible and did not incur additional toxicity in this clinical case. A phase-I/II trial will be conducted to further evaluate the toxicity and efficacy of the new treatment strategy with the intent to increase the rate of pathologic necrosis, which has been shown to positively correlate with the overall survival.
Collapse
Affiliation(s)
- Georges F Hatoum
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - H Thomas Temple
- Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvio A Garcia
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - Yi Zheng
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| | - Fouad Kfoury
- Pharmacy Department, South Miami Hospital, South Miami, FL, USA
| | - Jill Kinley
- Department of Clinical Research, HCA Florida JFK Medical Center, Atlantis, FL, USA
| | - Xiaodong Wu
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| |
Collapse
|
23
|
Ji X, Jiang W, Wang J, Zhou B, Ding W, Liu S, Huang H, Chen G, Sun X. Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Front Immunol 2023; 13:1106644. [PMID: 36713375 PMCID: PMC9877461 DOI: 10.3389/fimmu.2022.1106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy is one of the mainstays of cancer treatment. More than half of cancer patients receive radiation therapy. In addition to the well-known direct tumoricidal effect, radiotherapy has immunomodulatory properties. When combined with immunotherapy, radiotherapy, especially high-dose radiotherapy (HDRT), exert superior systemic effects on distal and unirradiated tumors, which is called abscopal effect. However, these effects are not always effective for cancer patients. Therefore, many studies have focused on exploring the optimized radiotherapy regimens to further enhance the antitumor immunity of HDRT and reduce its immunosuppressive effect. Several studies have shown that low-dose radiotherapy (LDRT) can effectively reprogram the tumor microenvironment, thereby potentially overcoming the immunosuppressive stroma induced by HDRT. However, bridging the gap between preclinical commitment and effective clinical delivery is challenging. In this review, we summarized the existing studies supporting the combined use of HDRT and LDRT to synergistically enhance antitumor immunity, and provided ideas for the individualized clinical application of multimodal radiotherapy (HDRT+LDRT) combined with immunotherapy.
Collapse
|
24
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
25
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
26
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
27
|
Jin JY. Prospect of radiotherapy technology development in the era of immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:106-112. [PMID: 39034954 PMCID: PMC11256706 DOI: 10.1016/j.jncc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Radiotherapy (RT) is one of the important modalities for cancer treatments. Mounting evidence suggests that the host immune system is involved in the tumor cell killing during RT, and future RT technology development should aim to minimize radiation dose to the immune system while maintaining a sufficient dose to the tumor. A brief history of RT technology development is first summarized. Three RT technologies, namely FLASH RT, proton therapy, and spatially fractionated RT (SFRT), are singled out for the era of immunotherapy. Besides the technical aspects, the mechanism of FLASH effect is discussed, which is likely the combined results of the recombination effect, oxygen depletion effect and immune sparing effect. The proton therapy should have the advantage of causing much less immune damage in comparison to X-ray based RT due to the Bragg peak. However, the relative biological effectiveness (RBE) uncertainty and range uncertainty may hinder the translation of this advantage into clinical benefit. Research approaches to overcome these two technical hurdles are discussed. Various SFRT approaches and their application are reviewed. These approaches are categorized as single-field 1D/2D SFRT, multi-field 3D SFRT and quasi-3D SFRT techniques. A 3D SFRT approach, which is achieved by placing the Bragg peak of a proton 2D SFRT field in discrete depths, may have special potential because all 3 technologies (FLASH RT, proton therapy and SFRT) may be used in this approach.
Collapse
Affiliation(s)
- Jian-Yue Jin
- Radiation Oncology, Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
28
|
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia 2022; 28:100796. [PMID: 35447601 PMCID: PMC9043662 DOI: 10.1016/j.neo.2022.100796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards personalized therapy.
Collapse
|
29
|
McAuley GA, Lim CJ, Teran AV, Slater JD, Wroe AJ. Monte Carlo evaluation of high-gradient magnetically focused planar proton minibeams in a passive nozzle. Phys Med Biol 2022; 67. [PMID: 35421853 DOI: 10.1088/1361-6560/ac678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/14/2022] [Indexed: 11/12/2022]
Abstract
Objective. To investigate the potential of using a single quadrupole magnet with a high magnetic field gradient to create planar minibeams suitable for clinical applications of proton minibeam radiation therapy.Approach. We performed Monte Carlo simulations involving single quadrupole Halbach cylinders in a passively scattered nozzle in clinical use for proton therapy. Pencil beams produced by the nozzle of 10-15 mm initial diameters and particle range of ∼10-20 cm in water were focused by magnets with field gradients of 225-350 T m-1and cylinder lengths of 80-110 mm to produce very narrow elongated (planar) beamlets. The corresponding dose distributions were scored in a water phantom. Composite minibeam dose distributions composed from three beamlets were created by laterally shifting copies of the single beamlet distribution to either side of a central beamlet. Modulated beamlets (with 18-30 mm nominal central SOBP) and corresponding composite dose distributions were created in a similar manner. Collimated minibeams were also compared with beams focused using one magnet/particle range combination.Main results. The focusing magnets produced planar beamlets with minimum lateral FWHM of ∼1.1-1.6 mm. Dose distributions composed from three unmodulated beamlets showed a high degree of proximal spatial fractionation and a homogeneous target dose. Maximal peak-to-valley dose ratios (PVDR) for the unmodulated beams ranged from 32 to 324, and composite modulated beam showed maximal PVDR ranging from 32 to 102 and SOBPs with good target dose coverage.Significance.Advantages of the high-gradient magnets include the ability to focus beams with phase space parameters that reflect beams in operation today, and post-waist particle divergence allowing larger beamlet separations and thus larger PVDR. Our results suggest that high gradient quadrupole magnets could be useful to focus beams of moderate emittance in clinical proton therapy.
Collapse
Affiliation(s)
- Grant A McAuley
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America
| | - Crystal J Lim
- School of Medicine, Loma Linda University, Loma Linda, CA United States of America
| | - Anthony V Teran
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America.,Orange County CyberKnife and Radiation Oncology Center, Fountain Valley, CA, United States of America
| | - Jerry D Slater
- Department of Radiation Medicine, Loma Linda University, Loma Linda CA, United States of America
| | - Andrew J Wroe
- School of Medicine, Loma Linda University, Loma Linda, CA United States of America.,Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, United States of America.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
30
|
Friedrich T, Scholz M, Durante M. A predictive biophysical model of the combined action of radiotherapy and immunotherapy in cancer. Int J Radiat Oncol Biol Phys 2022; 113:872-884. [DOI: 10.1016/j.ijrobp.2022.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
31
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
32
|
Abstract
AbstractSpatially fractionated radiation therapy (SFRT) challenges some of the classical dogmas in conventional radiotherapy. The highly modulated spatial dose distributions in SFRT have been shown to lead, both in early clinical trials and in small animal experiments, to a significant increase in normal tissue dose tolerances. Tumour control effectiveness is maintained or even enhanced in some configurations as compared with conventional radiotherapy. SFRT seems to activate distinct radiobiological mechanisms, which have been postulated to involve bystander effects, microvascular alterations and/or immunomodulation. Currently, it is unclear which is the dosimetric parameter which correlates the most with both tumour control and normal tissue sparing in SFRT. Additional biological experiments aiming at parametrizing the relationship between the irradiation parameters (beam width, spacing, peak-to-valley dose ratio, peak and valley doses) and the radiobiology are needed. A sound knowledge of the interrelation between the physical parameters in SFRT and the biological response would expand its clinical use, with a higher level of homogenisation in the realisation of clinical trials. This manuscript reviews the state of the art of this promising therapeutic modality, the current radiobiological knowledge and elaborates on future perspectives.
Collapse
|
33
|
Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol 2021; 66. [PMID: 34666318 DOI: 10.1088/1361-6560/ac3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.
Collapse
Affiliation(s)
- Paul Cahoon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Valentina Giacometti
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Francis Casey
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.,Nottingham Radiotherapy Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Emily Russell
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Conor McGarry
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
34
|
Massaccesi M, Boldrini L, Romano A, Rossi E, Schinzari G, Lepre E, Gambacorta MA, Valentini V. Unconventional radiotherapy to enhance immunotherapy efficacy in bulky tumors: a case report. Immunotherapy 2021; 13:1457-1463. [PMID: 34664999 DOI: 10.2217/imt-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Determining the most appropriate management strategy for patients with large tumor masses is a very challenging issue. Unconventional radiotherapy modalities, such as spatially fractionated radiation therapy (SFRT), are associated with dramatic responses. Recent studies have suggested that systemic immune activation may be triggered by SFRT delivery to primary tumor lesion. This report describes the case of a patient treated with a novel form of immune-sparing partially ablative irradiation (ISPART) for a bulky peritoneal metastasis from renal cell cancer, refractory to anti-PD-1 therapy (nivolumab) as third-line therapy after sequential therapy with sunitinib and cabozantinib. The observed response suggests that there may be a synergistic effect between ISPART and immunotherapy. This case report supports the inclusion of ISPART in patients presenting with bulky lesions treated with checkpoint inhibitors .
Collapse
Affiliation(s)
- Mariangela Massaccesi
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy
| | - Luca Boldrini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy
| | - Angela Romano
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy
| | - Ernesto Rossi
- UOC di Oncologia Medica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy
| | - Giovanni Schinzari
- UOC di Oncologia Medica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy
| | | | - Maria Antonietta Gambacorta
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy.,Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Vincenzo Valentini
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, 00168, Italy.,Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
35
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
36
|
Boustani J, Lecoester B, Baude J, Latour C, Adotevi O, Mirjolet C, Truc G. Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies. Cancers (Basel) 2021; 13:cancers13194893. [PMID: 34638376 PMCID: PMC8508444 DOI: 10.3390/cancers13194893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immune checkpoint blockade has yielded unprecedented and durable responses in cancer patients, the efficacy of this treatment remains limited. Radiation therapy can induce immunogenic cell death that contributes to the local efficacy of irradiation. However, radiation-induced systemic responses are scarce. Studies combining radiation with checkpoint inhibitors suggest a synergistic potential of this strategy. In this review, we focused on parameters that can be optimized to enhance the anti-tumor immune response that results from this association, in order to achieve data on dose, fractionation, target volume, lymph nodes sparing, radiation particles, and other immunomodulatory agents. These factors should be considered in future trials for better clinical outcomes. To this end, we discussed the main preclinical and clinical data available to optimize the efficacy of the treatment combination. Abstract Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- Department of Radiation Oncology, University Hospital of Besançon, 25000 Besançon, France
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Benoît Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Jérémy Baude
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| | - Charlène Latour
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
- Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Céline Mirjolet
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
- Correspondence:
| | - Gilles Truc
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| |
Collapse
|
37
|
Abstract
Radiation therapy benefits the majority of patients across the spectrum of cancer types. However, both local and distant tumor recurrences limit its clinical success. While departing from the established tenet of fractionation in clinical radiotherapy, ablative-intensity hypofractionated radiotherapy, especially stereotactic radiosurgery and stereotactic ablative radiotherapy, has emerged as an alternative paradigm achieving unprecedented rates of local tumor control. Direct tumor cell killing has been assumed to be the primary therapeutic mode of action of such ablative radiation. But with increasing recognition that tumor responses also depend on the immunostimulatory or immunosuppressive status of the tumor microenvironment, the immunologic effect of ablative radiotherapy is emerging as a key contributor to antitumor response. More recently, novel radiation modalities, such as spatially fractionated radiotherapy and ultrahigh dose rate FLASH irradiation, that venture even further from conventional paradigms have shown promise of increasing the therapeutic index of radiation therapy with the potential of immunomodulation. Here, we review the immunomodulatory impact of novel radiation therapy paradigms, heretofore considered radiobiological heresies, a deeper understanding of which is imperative to realizing fully their potential for more curative cancer therapy.
Collapse
|
38
|
Asperud J, Arous D, Edin NFJ, Malinen E. Spatially fractionated radiotherapy: tumor response modelling including immunomodulation. Phys Med Biol 2021; 66. [PMID: 34298527 DOI: 10.1088/1361-6560/ac176b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023]
Abstract
A mathematical tumor response model has been developed, encompassing the interplay between immune cells and cancer cells initiated by either partial or full tumor irradiation. The iterative four-compartment model employs the linear-quadratic radiation response theory for four cell types: active and inactive cytotoxic T lymphocytes (immune cells, CD8+T cells in particular), viable cancer cells (undamaged and reparable cells) and doomed cells (irreparably damaged cells). The cell compartment interactions are calculated per day, with total tumor volume (TV) as the main quantity of interest. The model was fitted to previously published data on syngeneic xenografts (67NR breast carcinoma and Lewis lung carcinoma; (Markovskyet al2019Int. J. Radiat. Oncol. Biol. Phys.103697-708)) subjected to single doses of 10 or 15 Gy by 50% (partial) or 100% (full) TV irradiation. The experimental data included effects from anti-CD8+antibodies and immunosuppressive drugs. Using a new optimization method, promising fits were obtained where the lowest and highest root-mean-squared error values were observed for anti-CD8+treatment and unirradiated control data, respectively, for both cell types. Additionally, predictive capabilities of the model were tested by using the estimated model parameters to predict scenarios for higher doses and different TV irradiation fractions. Here, mean relative deviations in the range of 19%-34% from experimental data were found. However, more validation data is needed to conclude on the model's predictive capabilities. In conclusion, the model was found useful in evaluating the impact from partial and full TV irradiation on the immune response and subsequent tumor growth. The model shows potential to support and guide spatially fractionated radiotherapy in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Jonas Asperud
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
| | - Delmon Arous
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.,Department of Medical Physics, The Norwegian Radium Hospital, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
39
|
Khalifa J, Mazieres J, Gomez-Roca C, Ayyoub M, Moyal ECJ. Radiotherapy in the Era of Immunotherapy With a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas? Front Oncol 2021; 11:662236. [PMID: 33968769 PMCID: PMC8097090 DOI: 10.3389/fonc.2021.662236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced immune effects have been extensively deciphered over the last few years, leading to the concept of the dual immune effect of radiotherapy with both immunostimulatory and immunosuppressive effects. This explains why radiotherapy alone is not able to drive a strong anti-tumor immune response in most cases, hence underlining the rationale for combining both radiotherapy and immunotherapy. This association has generated considerable interest and hundreds of trials are currently ongoing to assess such an association in oncology. However, while some trials have provided unprecedented results or shown much promise, many hopes have been dashed. Questions remain, therefore, as to how to optimize the combination of these treatment modalities. This narrative review aims at revisiting the old, well-established concepts of radiotherapy relating to dose, fractionation, target volumes and organs at risk in the era of immunotherapy. We then propose potential innovative approaches to be further assessed when considering a radio-immunotherapy association, especially in the field of non-small-cell lung cancer (NSCLC). We finally propose a framework to optimize the association, with pragmatic approaches depending on the stage of the disease.
Collapse
Affiliation(s)
- Jonathan Khalifa
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
| | - Julien Mazieres
- Department of Pulmonology, Centre Hospitalo-Universitaire Larrey, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Carlos Gomez-Roca
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Department of Medical Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
| | - Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiotherapy, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse – Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
40
|
Fractionated Radiation Severely Reduces the Number of CD8+ T Cells and Mature Antigen Presenting Cells Within Lung Tumors. Int J Radiat Oncol Biol Phys 2021; 111:272-283. [PMID: 33865948 DOI: 10.1016/j.ijrobp.2021.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The combination of standard-of-care radiation therapy (RT) with immunotherapy is moving to the mainstream of non-small cell lung cancer treatment. Multiple preclinical studies reported on the CD8+ T cell stimulating properties of RT, resulting in abscopal therapeutic effects. A literature search demonstrates that most preclinical lung cancer studies applied subcutaneous lung tumor models. Hence, in-depth immunologic evaluation of clinically relevant RT in orthotopic lung cancer models is lacking. METHODS AND MATERIALS We studied the therapeutic and immunologic effects of low-dose fractionated RT on lungs from C57BL/6 mice, challenged 2 weeks before with firefly luciferase expressing Lewis lung carcinoma cells via the tail vein. Low-dose fractionation was represented by 4 consecutive daily fractions of image guided RT at 3.2 Gy. RESULTS We showed reduced lung tumor growth upon irradiation using in vivo bioluminescence imaging and immunohistochemistry. Moreover, significant immunologic RT-induced changes were observed in irradiated lungs and in the periphery (spleen and blood). First, a significant decrease in the number of CD8+ T cells and trends toward more CD4+ and regulatory T cells were seen after RT in all evaluated tissues. Notably, only in the periphery did the remaining CD8+ T cells show a more activated phenotype. In addition, a significant expansion of neutrophils and monocytes was observed upon RT locally and systemically. Locally, RT increased the influx of tumor-associated macrophages and conventional type 2 dendritic cells, whereas the alveolar macrophages and conventional type 1 DCs dramatically decreased. Functionally, these antigen-presenting cells severely reduced their CD86 expression, suggesting a reduced capacity to induce potent immunity. CONCLUSIONS Our results imply that low-dose fractionated RT of tumor-bearing lung tissue shifts the immune cell balance toward an immature myeloid cell dominating profile. These data argue for myeloid cell repolarizing strategies to enhance the abscopal effects in patients with non-small cell lung cancer treated with fractionated RT.
Collapse
|
41
|
Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X, Zhou H, Liu N, Zhu H, Qin S, Liu C, Gao X, Yang Z, Liu Z. ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci U S A 2021; 118:e2010333118. [PMID: 33785590 PMCID: PMC8040592 DOI: 10.1073/pnas.2010333118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Compelling evidence indicates that radiotherapy (RT) has a systemic inhibitory effect on nonirradiated lesions (abscopal effect) in addition to the ablation of irradiated tumors. However, this effect occurs only in rare circumstances in clinical practice, and mechanisms underlying the abscopal effect of RT are neither fully understood nor therapeutically utilized. Here we identified that intercellular adhesion molecule-1 (ICAM-1), an inducible glycoprotein of the immunoglobulin superfamily, is up-regulated in nonirradiated tumors responsive to RT. ICAM-1 expression in preclinical animal models can be noninvasively detected by optical imaging and positron emission tomography (PET) using near-infrared fluorescence dye- and 64Cu-labeled imaging probes that we synthesized, respectively. Importantly, the expression levels of ICAM-1 determined by quantitative PET imaging showed a strong negative linear correlation with the growth of nonirradiated tumors. Moreover, genetic or pharmacologic up-regulation of ICAM-1 expression by either an intratumoral injection of engineered recombinant adenovirus or systemic administration of a Toll-like receptor 7 agonist-capsulated nanodrug could induce markedly increased abscopal responses to local RT in animal models. Mechanistic investigation revealed that ICAM-1 expression can enhance both the activation and tumor infiltration of CD8+ T cells to improve the responses of the nonirradiated tumors to RT. Together, our findings suggest that noninvasive PET imaging of ICAM-1 expression could be a powerful means to predict the responses of nonirradiated tumors to RT, which could facilitate the exploration of new combination RT strategies for effective ablation of primary and disseminated lesions.
Collapse
Affiliation(s)
- Yang Zhao
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ting Zhang
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanpu Wang
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dehua Lu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinhong Du
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xun Feng
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Zhou
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shangbin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China
| | - Chenxin Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhaofei Liu
- Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
42
|
Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021; 45:75. [PMID: 33760193 PMCID: PMC8020208 DOI: 10.3892/or.2021.8026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydrostatic pressure (HP) is a physical parameter that is now regarded as an important variable for life. High hydrostatic pressure (HHP) technology has influenced biological systems for more than 100 years. Food and bioscience researchers have shown great interest in HHP technology over the past few decades. The development of knowledge related to this area can better facilitate the application of HHP in the life sciences. Furthermore, new applications for HHP may come from these current studies, particularly in tumor vaccines. Currently, cancer recurrence and metastasis continue to pose a serious threat to human health. The limited efficacy of conventional treatments has led to the need for breakthroughs in immunotherapy and other related areas. Research into tumor vaccines is providing new insights for cancer treatment. The purpose of this review is to present the main findings reported thus far in the relevant scientific literature, focusing on knowledge related to HHP technology and tumor vaccines, and to demonstrate the potential of applying HHP technology to tumor vaccine development.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Mu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan Tang
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
43
|
Wu X, Perez NC, Zheng Y, Li X, Jiang L, Amendola BE, Xu B, Mayr NA, Lu JJ, Hatoum GF, Zhang H, Chang SX, Griffin RJ, Guha C. The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat Res 2021; 194:737-746. [PMID: 33064814 DOI: 10.1667/rade-20-00066.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/03/2022]
Abstract
The concept of spatially fractionated radiation therapy (SFRT) was conceived over 100 years ago, first in the form of GRID, which has been applied to clinical practice since its early inception and continued to the present even with markedly improved instrumentation in radiation therapy. LATTICE radiation therapy (LRT) was introduced in 2010 as a conceptual 3D extension of GRID therapy with several uniquely different features. Since 2014, when the first patient was treated, over 150 patients with bulky tumors worldwide have received LRT. Through a brief review of the basic principles and the analysis of the collective clinical experience, a set of technical recommendations and guidelines are proposed for the clinical implementation of LRT. It is to be recognized that the current clinical practice of SFRT (GRID or LRT) is still largely based on the heuristic principles. With advancements in basic biological research and the anticipated clinical trials to systemically assess the efficacy and risk, progressively robust optimizations of the technical parameters are essential for the broader application of SFRT in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Wu
- Executive Medical Physics Associates, North Miami Beach, Florida.,Innovative Cancer Institute, South Miami, Florida.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Yi Zheng
- Executive Medical Physics Associates, North Miami Beach, Florida.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medline, Seattle, Washington
| | - Jiade J Lu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | | | - Hualin Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sha X Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chandan Guha
- Department of Radiation Oncology Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
44
|
Jiang L, Li X, Zhang J, Li W, Dong F, Chen C, Lin Q, Zhang C, Zheng F, Yan W, Zheng Y, Wu X, Xu B. Combined High-Dose LATTICE Radiation Therapy and Immune Checkpoint Blockade for Advanced Bulky Tumors: The Concept and a Case Report. Front Oncol 2021; 10:548132. [PMID: 33643893 PMCID: PMC7907519 DOI: 10.3389/fonc.2020.548132] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
Although the combination of immune checkpoint blockades with high dose of radiation has indicated the potential of co-stimulatory effects, consistent clinical outcome has been yet to be demonstrated. Bulky tumors present challenges for radiation treatment to achieve high rate of tumor control due to large tumor sizes and normal tissue toxicities. As an alternative, spatially fractionated radiotherapy (SFRT) technique has been applied, in the forms of GRID or LATTICE radiation therapy (LRT), to safely treat bulky tumors. When used alone in a single or a few fractions, GRID or LRT can be best classified as palliative or tumor de-bulking treatments. Since only a small fraction of the tumor volume receive high dose in a SFRT treatment, even with the anticipated bystander effects, total tumor eradications are rare. Backed by the evidence of immune activation of high dose radiation, it is logical to postulate that the combination of High-Dose LATTICE radiation therapy (HDLRT) with immune checkpoint blockade would be effective and could subsequently lead to improved local tumor control without added toxicities, through augmenting the effects of radiation in-situ vaccine and T-cell priming. We herein present a case of non-small cell lung cancer (NSCLC) with multiple metastases. The patient received various types of palliative radiation treatments with combined chemotherapies and immunotherapies to multiple lesions. One of the metastatic lesions measuring 63.2 cc was treated with HDLRT combined with anti-PD1 immunotherapy. The metastatic mass regressed 77.84% over one month after the treatment, and had a complete local response (CR) five months after the treatment. No treatment-related side effects were observed during the follow-up exams. None of the other lesions receiving palliative treatments achieved CR. The dramatic differential outcome of this case lends support to the aforementioned postulate and prompts for further systemic clinical studies.
Collapse
Affiliation(s)
- Liuqing Jiang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobo Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenyao Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fangfen Dong
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cheng Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Qingliang Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chonglin Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson Medical College, Philadelphia, PA, United States
| | - Yi Zheng
- Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Xiaodong Wu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Physics, Executive Medical Physics Associates, Miami, FL, United States
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Hörner-Rieber J, Klüter S, Debus J, Adema G, Ansems M, Verheij M. MR-Guided Radiotherapy: The Perfect Partner for Immunotherapy? Front Oncol 2021; 10:615697. [PMID: 33604296 PMCID: PMC7884826 DOI: 10.3389/fonc.2020.615697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the last years, preclinical and clinical studies have emerged supporting the rationale to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of immunotherapy by improving tumor antigen release, antigen presentation, and T-cell infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly allows for daily on-table treatment adaptation, which enables both dose escalation for increasing tumor response and superior sparing of radiosensitive organs-at-risk for reducing toxicity. The current review focuses on the potential of combining MR-guided adaptive radiotherapy with immunotherapy by providing an overview on the current status of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might especially assist in answering open questions in radio-immunotherapy regarding optimal radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes, and response prediction.
Collapse
Affiliation(s)
- Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gosse Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
46
|
Romano E, Honeychurch J, Illidge TM. Radiotherapy-Immunotherapy Combination: How Will We Bridge the Gap Between Pre-Clinical Promise and Effective Clinical Delivery? Cancers (Basel) 2021; 13:457. [PMID: 33530329 PMCID: PMC7865752 DOI: 10.3390/cancers13030457] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations.
Collapse
Affiliation(s)
- Erminia Romano
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Jamie Honeychurch
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
| | - Timothy M. Illidge
- Division of Cancer Sciences, Faculty of Biology, School of Medical Sciences, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (E.R.); (J.H.)
- Manchester Academic Health Science Centre, NIHR Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
47
|
Tubin S, Gupta S, Grusch M, Popper HH, Brcic L, Ashdown ML, Khleif SN, Peter-Vörösmarty B, Hyden M, Negrini S, Fossati P, Hug E. Shifting the Immune-Suppressive to Predominant Immune-Stimulatory Radiation Effects by SBRT-PArtial Tumor Irradiation Targeting HYpoxic Segment (SBRT-PATHY). Cancers (Basel) 2020; 13:cancers13010050. [PMID: 33375357 PMCID: PMC7795882 DOI: 10.3390/cancers13010050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review presents and summarizes the key components and outcomes of a novel, unconventional radiation approach aimed to exploit immune-stimulatory radiation effects which, being added to direct radiation tumor cell killing, may improve the therapeutic ratio of radiotherapy. This technique, as a product of translational oncology research, was intentionally developed for the induction of immune-mediated bystander and abscopal effects in the treatment of unresectable bulky tumors which have much fewer therapeutic options and show poor prognoses after conventional treatments. This review offers insights into a unique unconventional radiotherapy technique which, due to its higher immunogenic potential, may improve the prognosis of patients affected by highly complex malignancies, providing additional opportunities for future research in terms of combining novel immuno-modulating agents with more modern radiotherapy approaches. Abstract Radiation-induced immune-mediated abscopal effects (AE) of conventional radiotherapy are very rare. Whole-tumor irradiation leads to lymphopenia due to killing of immune cells in the tumor microenvironment, resulting in immunosuppression and weak abscopal potential. This limitation may be overcome by partial tumor irradiation sparing the peritumoral immune-environment, and consequent shifting of immune-suppressive to immune-stimulatory effect. This would improve the radiation-directed tumor cell killing, adding to it a component of immune-mediated killing. Our preclinical findings showed that the high-single-dose irradiation of hypoxic tumor cells generates a stronger bystander effect (BE) and AE than the normoxic cells, suggesting their higher “immunogenic potential”. This led to the development of a novel Stereotactic Body RadioTherapy (SBRT)-based PArtial Tumor irradiation targeting HYpoxic segment (SBRT-PATHY) for induction of the immune-mediated BE and AE. Encouraging SBRT-PATHY-clinical outcomes, together with immunohistochemical and gene-expression analyses of surgically removed abscopal-tumor sites, suggested that delivery of the high-dose radiation to the partial (hypoxic) tumor volume, with optimal timing based on the homeostatic fluctuation of the immune response and sparing the peritumoral immune-environment, would significantly enhance the immune-mediated anti-tumor effects. This review discusses the current evidence on the safety and efficacy of SBRT-PATHY in the treatment of unresectable hypoxic bulky tumors and its bystander and abscopal immunomodulatory potential.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
- Correspondence: ; Tel.: +43-676-9021-687
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Helmuth H. Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Martin L. Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - Samir N. Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Martin Hyden
- Institute for Pathology, Kabeg Klinikum Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria;
| | - Simone Negrini
- Internal Medicine, Clinical Immunology and Translational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Piero Fossati
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| |
Collapse
|
48
|
Huang Q, Sun Y, Wang W, Lin LC, Huang Y, Yang J, Wu X, Kong L, Lu JJ. Biological Guided Carbon-Ion Microporous Radiation to Tumor Hypoxia Area Triggers Robust Abscopal Effects as Open Field Radiation. Front Oncol 2020; 10:597702. [PMID: 33330089 PMCID: PMC7713593 DOI: 10.3389/fonc.2020.597702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023] Open
Abstract
Recently, a growing number of studies focus on partial tumor irradiation to induce the stronger non-target effects. However, the value of partial volume carbon ion radiotherapy (CIRT) targeting hypoxic region of a tumor under imaging guidance as well as its effect of inducing radiation induced abscopal effects (RIAEs) have not been well investigated. Herein, we developed a technique of carbon ion microporous radiation (CI-MPR), guided by 18F-FMISO PET/computerized tomography (CT), for partial volume radiation targeting the hypoxia area of a tumor and investigated its capability of inducing abscopal effects. Tumor-bearing mice were inoculated subcutaneously with breast cancer 4T1 cells into the flanks of both hind legs of mouse. Mice were assigned to three groups: group I: control group with no treatment; group II: carbon ion open field radiation (CI-OFR group) targeting the entire tumor; group III: partial volume carbon ion microporous radiation (CI-MPR group) targeting the hypoxia region. The tumors on the left hind legs of mice were irradiated with single fraction of 20 Gy of CIRT. Mice treated with CI-MPR or CI-OFR showed that significant growth delay on both the irradiated and unirradiated of tumor as compared to the control groups. Tumor regression of left tumor irradiated with CI-OFR was more prominent as compared to the tumor treated with CI-MPR, while the regression of the unirradiated tumor in both CI-MPR and CI-OFR group was similar. Biological-guided CIRT using the newly developed microporous technique targeting tumor hypoxia region could induce robust abscopal effects similar to CIRT covering the entire tumor.
Collapse
Affiliation(s)
- Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yun Sun
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Research and Development, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weiwei Wang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lien-Chun Lin
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiaodong Wu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
49
|
Luke JJ, Onderdonk BE, Bhave SR, Karrison T, Lemons JM, Chang P, Zha Y, Carll T, Krausz T, Huang L, Martinez C, Janisch LA, Hseu RD, Moroney JW, Patel JD, Khodarev NN, Salama JK, Ott PA, Fleming GF, Gajewski TF, Weichselbaum RR, Pitroda SP, Chmura SJ. Improved Survival Associated with Local Tumor Response Following Multisite Radiotherapy and Pembrolizumab: Secondary Analysis of a Phase I Trial. Clin Cancer Res 2020; 26:6437-6444. [PMID: 33028595 PMCID: PMC8561652 DOI: 10.1158/1078-0432.ccr-20-1790] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Multisite stereotactic body radiotherapy followed by pembrolizumab (SBRT+P) has demonstrated safety in advanced solid tumors (ASTs). However, no studies have examined the relationships between irradiated tumor response, SBRT-induced tumor gene expression, and overall survival (OS). PATIENTS AND METHODS Patients with AST received SBRT (30-50 Gy in 3-5 fractions) to two to four metastases followed by pembrolizumab (200 mg i.v. every 3 weeks). SBRT was prescribed to a maximum tumor volume of 65 mL. Small metastases received the complete prescribed coverage (complete-Rx), while larger metastases received partial coverage (partial-Rx). Treated metastasis control (TMC) was defined as a lack of progression for an irradiated metastasis. Landmark analysis was used to assess the relationship between TMC and OS. Thirty-five biopsies were obtained from 24 patients: 19 pre-SBRT and 16 post-SBRT (11 matched) prior to pembrolizumab and were analyzed via RNA microarray. RESULTS Sixty-eight patients (139 metastases) were enrolled with a median follow-up of 10.4 months. One-year TMC was 89.5% with no difference between complete-Rx or partial-Rx. On multivariable analysis, TMC was independently associated with a reduced risk for death (HR, 0.36; 95% confidence interval, 0.17-0.75; P = 0.006). SBRT increased expression of innate and adaptive immune genes and concomitantly decreased expression of cell cycle and DNA repair genes in the irradiated tumors. Elevated post-SBRT expression of DNASE1 correlated with increased expression of cytolytic T-cell genes and irradiated tumor response. CONCLUSIONS In the context of SBRT+P, TMC independently correlates with OS. SBRT impacts intratumoral immune gene expression associated with TMC. Randomized trials are needed to validate these findings.
Collapse
Affiliation(s)
- Jason J Luke
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | - Paul Chang
- University of Chicago Medicine, Chicago, Illinois
| | - Yuanyuan Zha
- University of Chicago Medicine, Chicago, Illinois
| | - Tim Carll
- University of Chicago Medicine, Chicago, Illinois
| | | | - Lei Huang
- University of Chicago Medicine, Chicago, Illinois
| | | | | | - Robyn D Hseu
- University of Chicago Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int J Mol Sci 2020; 21:ijms21239324. [PMID: 33297519 PMCID: PMC7730562 DOI: 10.3390/ijms21239324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, modern therapies involving immune checkpoint inhibitors, cytokines, and oncolytic virus have been developed. Because of the limited treatment effect of modern therapy alone, the immunostimulatory effect of radiotherapy attracted increasing attention. The combined use of radiotherapy and modern therapy has been examined clinically and non-clinically, and its effectiveness has been confirmed recently. Because melanomas have high immunogenicity, better therapeutic outcomes are desired when using immunotherapy. However, sufficient therapeutic effects have not yet been achieved. Thus far, radiotherapy has been used only for local control of tumors. Although extremely rare, radiotherapy has also been reported for systemic control, i.e., abscopal effect. This is thought to be due to an antitumor immune response. Therefore, we herein summarize past information on not only the mechanism of immune effects on radiotherapy but also biomarkers reported in case reports on abscopal effects. We also reviewed the animal model suitable for evaluating abscopal effects. These results pave the way for further basic research or clinical studies on new treatment methods for melanoma. Currently, palliative radiation is administered to patients with metastatic melanoma for local control. If it is feasible to provide both systemic and local control, the treatment benefit for the patients is very large.
Collapse
|